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Assessing Specification Errors in Stochastic 
Discount Factor Models 

LARS PETER HANSEN and RAVI JAGANNATHAN* 

ABSTRACT 

In this article we develop alternative ways to compare asset pricing models when it 
is understood that their implied stochastic discount factors do not price all portfolios 
correctly. Unlike comparisons based on x2 statistics associated with null hypotheses 
that models are correct, our measures of model performance do not reward variability 
of discount factor proxies. One of our measures is designed to exploit fully the 
implications of arbitrage-free pricing of derivative claims. We demonstrate empiri- 
cally the usefulness of our methods in assessing some alternative stochastic factor 
models that have been proposed in asset pricing literature. 

IN THEORIES OF ASSET PRICING, portfolio payoffs are modeled as bundled contin- 
gent claims to a numeraire consumption good. When asset markets are fric- 
tionless, portfolio prices can be characterized as a linear valuation functional 
that assigns prices to the portfolio payoffs (e.g., see Ross (1978), Harrison and 
Kreps (1979), Kreps (1981), Chamberlain and Rothschild (1983), Hansen and 
Richard (1987), and Clark (1993)). These valuation functionals are typically 
represented as inner products of payoffs with pricing kernels or stochastic 
discount factors. As argued by Hansen and Richard (1987), observable impli- 
cations of candidate models of asset markets are summarized conveniently in 
terms of their implied stochastic discount factors.' 

WVhile formal statistical testing of such asset pricing models can yield in- 
sights, it is also of interest to evaluate the performance of these models even 
when it is understood that the implied stochastic discount factors do not 
correctly price all portfolios. Pricing errors may occur either because the model 
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' We use the term stochastic discount factor as a label for a state-contingent discount factor. The 
market value today of an uncertain payoff tomorrow is represented by multiplying the payoff by 
the discount factor and adding across states of nature using the underlying probabilities. The 
discount factor is stochastic because it varies across states of nature. This variation captures 
corrections for risk as argued by Rubinstein (1976). 
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is viewed formally as an approximation, as in many linear factor pricing 
models, or because the empirical counterpart to the theoretical stochastic 
discount faetor is error ridden (e.g., see Roll's (1977) critique of the single- 
period capital asset pricing model). In this article we associate a stochastic 
discount factor proxy with an asset pricing model and ask the question, How 
large is the misspecification of the stochastic discount factor proxy? 

When there is only one asset, a natural measure of model misspecification is 
the pricing error associated with that asset-i.e., the difference between the 
price of the asset and the hypothetical price assigned by a candidate stochastic 
discount factor. In this case it is also straightforward to compare the relative 
performance of any two stochastic discount factor proxies. When there are a 
number of assets, there is a vector of pricing errors associated with each proxy. 
Comparing the specification error in two different proxies is not possible 
without taking a stand on the relative importance of the various assets. As we 
will verify, our measures of specification error focus on the most mispriced 
portfolios, while correcting for portfolio size in a particular way. 

Conveniently, these maximum pricing errors are also the least squares 
distances between the stochastic discount factor proxy and families of stochas- 
tic discount factors that price correctly the vector of securities used in an 
econometric analysis. Except possibly when there are arbitrage opportunities 
present in the data set used in the empirical investigation, the set of correctly 
specified discount factors is nonempty and typically large (e.g., see Hansen and 
Jagannathan (1991)). However, as long as a proxy is misspecified, its least 
squares distance to the set of correctly specified discount factors will be strictly 
positive. In this article we consider two different distance measures corre- 
sponding to distances to two alternative families of stochastic discount factors. 
The second of these two families is smaller because the discount factors are 
restricted to be positive. Only such discount factors are consistent with the 
absence of arbitrage opportunities on the space of hypothetical derivative 
claims. The resulting measures of model misspecification are, by design, com- 
parable across models and their associated proxies. 

Pricing errors or closely related expected return errors are commonly used to 
assess asset pricing models. For instance, in linear factor models of returns the 
principle of no-arbitrage is used to characterize the sense in which security 
market prices can be approximately represented in terms of the prices of a 
small number of factors (e.g., see Ross (1976), Huberman (1982), Chamberlain 
and Rothschild (1983), and Shanken (1987)). Similarly, in present-value mod- 
els with constant discount factors, Durlauf and Hall (1989) compute greatest 
lower bounds on the magnitude of pricing errors. As we will demonstrate, the 
least squares distance measures we propose also have a pricing-error inter- 
pretation. Like Shanken's (1987) analysis of linear factor models, one of our 
least squares distance measures can also be interpreted as the maximum 
pricing error for portfolios of payoffs with second moments equal to unity. One 
important way in which we extend the analysis of Shanken (1987) is that we 
also investigate implications for arbitrage-free pricing of derivative claims by 
restricting attention to positive stochastic discount factors. 
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This article is divided into five sections. In Section I we define two families 
of admissible stochastic discount factors, one associated with the pricing of the 
original collection of securities and the other associated with the assignment of 
arbitrage-free prices of derivative claims. In Section II we present our two 
alternative measures of model misspecification and deduce their pricing-error 
interpretations. We show that one of the specification-error measures depends 
only on the pricing errors of the collection of securities used in an econometric 
analysis, but not on pricing errors of derivative claims on those securities. We 
then demonstrate that the second measure takes account of potential pricing 
errors for derivative claims. In Section III we use duality theory to compute the 
specification-error measures in practice. In Section IV we establish the close 
connection between one of our measures of model misspecification and the 
expected return error measure of Shanken (1987) applied to linear factor 
pricing models. The duality results of Section III are then used in Section V to 
show that the econometric methods of Hansen, Heaton, and Luttmer (1995) 
are directly applicable. Finally, in Section VI we illustrate our apparatus by 
assessing several stochastic discount factor proxies that have been proposed in 
the literature. 

I. Stochastic Discount Factors 

In this section we construct the admissible set of stochastic discount factors. By 
a stochastic discount factor we mean a random variable that can be used to 
compute market prices today by discounting, state-by-state, the corresponding 
payoffs at a future date. As we will see, typically there is a large family of such 
random variables consistent with the asset market data used in an economet- 
ric analysis. Formally, we will use the apparatus of a Hilbert space to model 
the collection of portfolio payoffs, and we will use a continuous linear func- 
tional on that space as a way to represent the market values assigned to those 
payoffs. Given this setup, we will then construct two alternative families of 
stochastic discount factors. The smaller of the two families will be restricted so 
that the prices assigned to hypothetical derivative claims respect the Principle 
of No-Arbitrage. 

For simplicity, we focus on asset market transactions that take place at two 
dates, t and t + T. At date t financial assets are purchased, while at date t + 
T the payoffs are received. We let qt denote the vector of prices used in an 
econometric analysis and let xt+ denote the corresponding vector of payoffs. In 
the first four sections we omit the date subscripts t and t + T for notational 
convenience. As we see in Section V, to extract observable implications, we 
presume that these two periods are replicated over time in a manner that is 
stationary, at least asymptotically. The idea is to then apply a Law of Large 
Numbers to justify the approximation of population moments using time series 
averages. 
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A. Payoff Space 

We follovw Harrison and Kreps (1979), Chamberlain and Rothschild (1983), 
and others by modeling portfolio payoffs as elements of a Hilbert space. Such 
a space is convenient because it possesses all the nice properties of finite- 
dimensional vector spaces and accommodates some infinite-dimensional prob- 
lems as well. In building a Hilbert space, we must specify the associated inner 
product (the counterpart to a dot product of two vectors). The corresponding 
norm of a payoff is then simply the square root of the inner product of that 
element with itself. We now specify formally the Hilbert space structure used 
in our article. 

Let 9 be the conditioning information that is observed at the date of the 
asset payoffs. Associated with 9 is the space L2 of all random variables with 
finite second moments that are in the information set i. This space is used as 
the collection of hypothetical (and perhaps real) claims that could be traded. 
(For technical reasons, we restrict 3 and hence L2 to be separable.) We endow 
L2 with its usual inner product and norm: 

(h1lh2)j E(h1h2) and llhll (hlh)112, h1,h2 in L2. (1) 

Let P denote the space of portfolio payoffs used in an econometric analysis. 
In other words, the econometrician is presumed to have at his disposal histor- 
ical data on some vector of basis payoffs (typically returns or excess returns). 
The space P then includes the basis payoffs along with synthetic portfolios 
constructed with these basis payoffs. 

ASSUMPTION 1.1: P is a closed linear subspace of L2. 

The closure restriction is imposed for technical convenience. 
Although in practice the payoff space P is built from a vector of basis payoffs, 

we do not assign any special role to a set of primitive payoffs beyond the fact 
that such payoffs are used to generate P. We view the basis payoffs as merely 
convenient building blocks for the space of portfolio payoffs used in assessing 
models. We do not require that the space P coincide with the entire collection 
of payoffs that can be traded by investors. Some asset payoffs available to 
investors may be precluded from an analysis for reasons of tractability. Alter- 
natively, some of the conditioning information used by investors may not be 
fully reflected in the basis payoffs used in an empirical investigation. 

One particularly convenient specification of the payoff space P is as follows. 
Let x denote an n-dimensional random vector with entries in L2 and a non- 
singular second-moment matrix. In this case, the entries of x are payoffs on n 
primitive securities and form a basis for the space of payoffs P: 

P-{xc: cERn}. (2) 

We require that Exx' be nonsingular, which implies that for each payoffp in P, 
there is a unique vector of portfolio weights c such that p = c * x. This payoff 
space structure will be used in our empirical investigation reported in Section 
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V. In using this space, we do not mean to require the portfolio weights used by 
the investors to be constant, for we would expect them to depend explicitly on 
conditioning information. Instead, the constant portfolio weight specification is 
adopted for econometric convenience. 

When an econometrician models the evolution of conditioning information 
available to an investor, a richer specification of portfolio payoffs can be 
employed. For instance, suppose the payoff vector x is modeled as a factor 
general autoregressive conditional heteroskedasticity (GARCH) process, as in 
Bollerslev and Engle (1993) or King, Sentana, and Wadhwani (1994), or is 
modeled using the semi-nonparametric method of Gallant and Tauchen (1989). 
The information used in constructing conditional moments or distributions can 
also be exploited in forming hypothetical portfolios, as in Gallant, Hansen, and 
Tauchen (1990). In these cases we assume that E(xx'IS6) is nonsingular with 
probability one, where '6 contains information observed by economic agents at 
the trading date whose evolution is modeled by the econometrician to form 
portfolios. The payoff space P is then given by 

P {p E L': p = w * x for some random vector w of portfolio weights 

that is in the conditioning information set f}. (3) 

It is demonstrated in Hansen and Richard (1987) that P, as given by equation 
(3), satisfies Assumption 1.1. 

B. Pricing 

Our intention is to compare the hypothetical prices assigned by a given 
model to security market payoffs with market prices; we do this using time 
series averages. For this reason it is convenient to analyze the valuation 
implications of a model as reflected by the average or expected prices. We 
assume that portfolio payoffs in P obey the Law of One Price: To each portfolio 
payoff p in P there corresponds a unique expected price ir(p). We need the 
following assumption to facilitate the subsequent analysis. 

ASSUMPTION 1.2: The functional 7r is continuous and linear on P, and there 
exists a payoff p E P such that -r(p) = 1. 

This assumption can often be derived from a more primitive no-arbitrage 
restriction when there is a security with limited liability (e.g., see Kreps (1981) 
or Clark (1993)). For many of the examples we consider, there are other, more 
mechanical, devices for verifying Assumption 1.2 because, in effect, the payoff 
spaces are constructed from a finite number of distinct primitive payoffs. This 
is the case for both specifications (2) and (3) of P. 

To illustrate the construction of the pricing functional, initially suppose that 
P is given by equation (2). Corresponding to the payoff vector x, there is a price 
vector q of current period prices where IqI has a finite first moment. Then 
Assumption 1.2 is satisfied for 

7T(x c) cEq (4) 
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as long as Eq is not a vector of zeros. The requirement that lqI have a finite first 
moment is satisfied trivially when the basis payoffs are all returns. Such 
payoffs have unit prices by design and hence do not vary over time. Conse- 
quently, the expected prices and actual prices coincide, as do prices of portfo- 
lios with constant weights. In other words, the functional ir assigns prices in 
this case because prices coincide with expected prices. 

The question then emerges as to why we allow q to be random in the first 
place. We do so because we also wish to accommodate payoffs on portfolios of 
the primitive assets, where the amount invested depends on new information 
that becomes available over time. In such cases, the resulting time series of 
prices will fluctuate. For instance, suppose the econometrician has data on 
both a return, r, and information available to investors at the purchase date, 
z. Then, for the purposes of the empirical investigation, the synthetic payoff zr 
can be constructed with expected price Ez. Of course, the conditioning infor- 
mation could be captured in a more limited way by constructing a synthetic 
portfolio payoff that by design is still a return (it has unit price). For instance, 
if there are two initial returns, and if a portfolio is constructed with weights z, 
and 1 - z as in Breen, Glosten, and Jagannathan (1989), by construction the 
price will be unity (and hence will not fluctuate over time). 

For an alternative illustration of ir, suppose that P is given by equation (3). 
In this case, we restrict q'E(xx' S6)-1q to have a finite mean. The expected 
pricing functional is now given by 

-(w * x) = E(w * q). (5) 

It is shown in Appendix A that the resulting ir is a bounded linear functional 
on P. Random (fluctuating) prices can be avoided in this setting by shrinking 
the set P appropriately. For instance, P might be constructed to be the subset 
of payoffs given on the right side of equation (3) with constant prices.2 This still 
permits the inclusion of conditioning information, but in a more limited way. 

C. Stochastic Discount Factors 

We now return to our general analysis. An admissible stochastic discount 
factor is a random variable m in L2 such that the expected price of a payoff p 
can be represented as the inner product of the payoff and m: 

r(p) = E(pm) for all p E P. (6) 

Note that a stochastic discount factor m discounts payoffs state by state. It 
incorporates both a discount effect and an adjustment for risk. To see this, 
write 

Epm = EpEm + Cov(p, m). (7) 

2 It follows from the proof of Corollary 3.1 in Hansen and Richard (1987) that the resulting P 
satisfies Assumption 1.1 and that 7r satisfies Assumption 1.2. 
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Discounting of the future is captured by the first term on the right side of 
equation (7) (so long as Em is less than one), and adjustment for risk is 
captured by the second term. Let it denote the set of all admissible stochastic 
discount factors. It follows from the Riesz Representation Theorem that JA is 
not empty and that there is a unique random variable in the intersection of JU 
and P, i.e., there exists a unique stochastic discount factor that is also a 
portfolio payoff. This particular stochastic discount factor has the minimum 
norm among all of the elements of AL. All other stochastic discount factors can 
be represented as the sum of the minimum norm stochastic discount factor and 
of a random variable that is orthogonal to the space P of portfolio payoffs. 

It is not tractable for an empirical researcher to study simultaneously the 
payoffs and prices on all traded assets. Moreover, it is sometimes of interest to 
identify a stochastic discount factor from some initial collection of portfolio 
payoffs and use it in pricing other assets (such as derivative claims on these 
payoffs). When this is the objective, it is necessary to restrict further the family 
of stochastic discount factors. This is because some of the stochastic discount 
factors in At will be negative with positive probability. Hence, while they assign 
the right prices to the collection of assets used in the empirical investigation, 
they will assign negative prices to some positive derivative claims on these 
payoffs. Such stochastic discount factors are unsuitable for pricing contingent 
claims. 

We follow the usual approach in derivative claims pricing by considering 
arbitrage-free extensions of the pricing function ir from the space P of portfolio 
payoffs used in an empirical investigation to the larger space L2. Recall that L2 
contains functions of the portfolio payoffs in P as long as the resulting random 
variables are finite; hence, it contains a rich collection of potential derivative 
claims. Extensions of the pricing functional ir are constructed by taking mem- 
bers m of JU and forming the following linear functionals: 

17m(h) =Ehm for all h L2. (8) 

Then lTm agrees with ir on P. Following Ross (1978) and Kreps (1981), some 
discount factors in JU can be eliminated from consideration because the result- 
ing extensions 7Tm of ir introduce arbitrage opportunities on the space of 
potential derivative claims L2. For pricing derivative claims, the 1Tms of inter- 
est are those that satisfy the following condition. 

Condition N: A pricing functional p does not induce arbitrage opportunities 
on a subspace H of L2 if, for any h E H such that h - 0 and llhll > 0, p(h) > 0. 

It is easy to show that (rTm, L2) satisfies Condition N if, and only if, m is strictly 
positive with probability one (e.g., see Harrison and Kreps (1979) and Hansen 
and Richard (1987)). Hence when our concern is the pricing of derivative 
claims, we look at stochastic discount factors restricted to be in the subset JAt + 
of JU consisting of random variables m that are strictly positive with probabil- 
ity one. 
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As long as (ir, P) satisfies the no-arbitrage condition (Condition N), then 
Assumption 1.3 follows from Kreps (1981).3 

AssuMPTIoN 1.3: Jt` is not empty. 

The set A` ? is convex but is not necessarily closed. For much of our analysis, 
it will be convenient to include limit points by using the closure ,t+ in place of 
jt++. This closure is just the subset of At consisting of only nonnegative 
random variables. 

II. Least Squares Approximation of Proxies 

In this section, we take as a starting point a proxy used in an empirical 
investigation in place of a correctly specified stochastic discount factor. This 
proxy assigns approximate prices to payoffs, and the question of interest is how 
to measure the magnitude of this approximation error. One example is the 
capital asset pricing model (CAPM) proxy y = a + brm, where rm is the return 
on the market. Another is the consumption CAPM proxy with power utilityy = 
f3g-Y, where f3 is the subjective discount factor y- 0 and where g is the 
consumption growth factor. We propose to measure the degree of model mis- 
specification by the least squares distances between the proxy and the families 
Xi and A++. We then show how the resulting measures are directly tied to 
pricing errors, both in payoffs in P and of contingent claims. 

Let y be a random variable in L2 that is a proxy for a stochastic discount 
factor. This proxy is used to construct approximate prices for securities via the 
following formula: 

7Ta(h) =E(yh) (9) 

for any payoff h in the space L2 of potential derivative claims. For example, if 
the econometrician is studying the CAPM without using conditioning informa- 
tion, y will equal a + brm where rm is the proxy for the return on the market 
and a and b are two unknown constants to be estimated in an empirical 
analysis (see Dybvig and Ingersoll (1982)). More will be said about this esti- 
mation subsequently. 

If the proxy y turns out to be an admissible stochastic discount factor (that 
is, in jt), then the hypothetical expected prices assigned by the proxy will 
coincide with the actual expected prices. In general, the proxy will not be 
admissible either, because the model is, strictly speaking, misspecified or the 
observed stochastic discount factor is measured with error.4 Consequently, 
pricing errors may be introduced on the original collection of payoffs, P, as well 
as on the collection of potential derivative claims, L2. One measure of the 

3 Strictly speaking, this holds when L2 is separable. 
4 See Roll (1977) for a discussion of why the CAPM is not testable, because the return on the 

market portfolio of all assets is not observable by an econometrician. Moreover, some derivations 
of the arbitrage pricing theory (APT), such as those in Huberman (1982) and Chamberlain and 
Rothschild (1983), obtain factor pricing only as an approximation. 
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magnitude of specification error induced by using the proxy as a stochastic 
discount factor is its distance from the admissible set of stochastic discount 
factors (either At or At+). In view of this, we study the following least squares 
problems in the next two sections: 

Problem 1: 

8 min Iy - m . 

Problem 2: 

+ min Ily - m1. 

In the case of Problem 2, we use At+ instead of At++ as a constraint set merely 
to guarantee that the infimum is attained. It is well known that both problems 
have unique solutions (e.g., see Luenberger (1969)).5 

The least squares distances 8 and 8+ can be translated directly into pricing- 
error measures. We first show that 8 is the (sharp) bound on the approxima- 
tion-error functional: 

*T(p) - Ta(P) - i(pP)* (1 0) 

By the Riesz Representation Theorem, there exists a unique payoffp in P such 
that 

*r(p) = E(fip), p E- P. (1 

It also follows from this theorem that the bound on the approximation-error 
functional is given by loll In other words, 

= max 1*(p)1; (12) 
P&P,|lp1==1 

hence loll is the maximum pricing error (per unit norm). The fact that loll gives 
a bound stems from the Cauchy-Schwarz Inequality: 

(P) -:': IIPII IIPII (13) 

The fact that the bound is sharp can be established by showing that the pricing 
error of the unit norm payoff5/11p51 is given by the left side of equation (13). 

Now that we have obtained a characterization of a sharp bound on the 
pricing-error functional, it remains to demonstrate that this bound is indeed 8. 
Note that the random variable y - m can be used to represent the approxi- 
mation-error functional fr for any admissible stochastic discount factor m. 
Since p can be used to represent the same approximation-error functional on 

5 By uniqueness in this setting, we follow the usual convention of treating the equivalence class. 
of all random variables that are equal almost surely as a single element of L2. 



566 The Journal of Finance 

P, y - m - p is orthogonal to P. Moreover, because p is in P, 3 is the least 
square projection of y - m onto P for any m in Al. Therefore, 

IIPII C 6. (14) 

Also, since p can be used to represent the approximation-error functional and 
since y can be used to represent the approximate pricing functional, the 
random variable y - p can be used to represent ir. Consequently, this random 
variable is in At, which implies that 

IIPII - &. (15) 

Taken together, inequalities (14) and (15) give us the following alternative 
interpretation of 8: 

PROPOSITION 2.1: Suppose Assumptions 1.1 and 1.2 are satisfied. Then 

,= max | a(p) -r(p) 1. 
PEP, Ip11= 1 

The close connection between pricing errors and the least squares distance 
between y and At is to be expected from the continuity results of Green (1986), 
Kandel and Stambaugh (1987), and Glosten and Jagannathan (1993). As we 
see in Section IV, it is even more closely connected to a result in Shanken 
(1987). 

As a byproduct of the proof of this proposition, it follows that one character- 
ization of the solution to the least squares Problem 1 is y - p, where p is the 
unique random variable in P that can be used to represent the approximation- 
error functional. Hence the solution entails finding an additional pricing factor 
among the portfolio payoffs to add to the proxy. This pricing factor p3 is the 
smallest adjustment, in a least squares sense, required to make y - p an 
admissible stochastic discount factor; the magnitude of this adjustment is 6. In 
the next section we give a more algorithmic characterization of the solution to 
both least squares problems. 

Next we deduce the pricing-error characterization of 8'. This characteriza- 
tion entails looking at pricing-errors for payoffs in the span of contingent 
claims on events in 5, i.e., on payoffs in L2. Although we are interested in cases 
in which P is not sufficiently rich to permit us to "price by arbitrage" the 
payoffs in L2, there still exist nontrivial arbitrage bounds on the possible price 
assignments. These arbitrage bounds are fully captured by the range of price 
assignments implied by the stochastic discount factors in JAt+. 

For the moment, imagine forming pricing errors using a single stochastic 
discount factor in Ait++, for example, m. Let lTm denote the corresponding 
extension of X to all of L2. For any h in L2, the pricing error for this claim 
satisfies the Cauchy-Schwarz bound: 

lEmh - Eyh? jj Ilm - yll llh||. (16) 
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Define the following: 

b+--supf{ 7Tm(h) - 1ra(h) :h E L2, llhll = 1}. (17) 

Then 

+ =jm - yjj, (18) 

which can be verified by letting h = (m - y)/llm - yll. Clearly, the pricing error 
bound 8+ is sensitive to the choice of the stochastic discount factor m in At". 
We eliminate this sensitivity by computing the mini-max bound: 

inf{8+:m E A++} = inf Ily-mll 
mEV t++ 

= min Ily - ml 
mCAt + 

-a (19) 

Therefore, the least squares distance between y and the convex set A`+ gives 
the following mini-max bound on the pricing errors for all hypothetical deriv- 
ative claims: 

PROPOSITION 2.2: Suppose that Assumptions 1.1-1.3 are satisfied. Then 

= min max 1i7rm(h) - lTa(h)l 
mE4/+ hEL2,llhll=1 

As empirical researchers, we are interested in the solutions to least squares 
Problems 1 and 2 for three reasons. First, we will use 5 and V+ as measures of 
model misspecification. By construction, V+ is greater than or equal to &. As we 
have seen, both of these measures have alternative interpretations as bounds 
on the magnitude of pricing errors induced by using a proxy y. In particular, 
optimization Problem 2 is of interest when it is envisioned that the identified 
stochastic discount factor will also be used to price securities not used in the 
empirical investigation. Second, we will use the solutions to these problems as 
devices for identifying or selecting among the multitude of stochastic discount 
factors that correctly price assets. The identified discount factors are the 
closest ones (in a least squares sense) to the proxy. Third, the solutions to these 
optimization problems help to diagnose the deficiencies of a given model or 
family of models of a stochastic discount factor. 

At this juncture, some queries might emerge concerning our use (or abuse) 
of these optimization problems. For instance, why measure model misspecifi- 
cation by these least squares criteria, and why use these criteria as devices for 
identifying alternative stochastic discount factors? Taking a more precise 
stand on the nature of the model misspecification or stipulating in more detail 
how the competing models will be used may result in better justified criteria 
for measuring the extent of the misspecification. However, such an exercise 
will necessarily restrict the scope of such comparisons to a narrower range of 
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models.6 Further, using the least squares criteria in conjunction with a para- 
-metric model has the virtue that the parametric model is employed in a less 
rigid way than usual without discarding it completely. 

III. Using Duality to Solve the Least Squares Problems 

To solve the least squares problems in practice, it is most convenient to use 
appropriately formulated dual or conjugate problems. The conjugate problems 
are also of value in interpreting the solution. We treat formally the case in 
which P is generated by a finite-dimensional random vector x with a nonsin- 
gular second-moment matrix, although comparable results could be obtained 
for the other specifications of P presented in Section I. We initially focus on 
optimization Problem 2, in which we minimize the distance between the proxy 
and the family of nonnegative stochastic discount factors. We do so only 
because this problem is slightly more difficult to solve than is optimization 
Problem 1. After solving Problem 2, we will return briefly to the solution to 
Problem 1. 

We rewrite the primal Problem 2 as7 

(+)2= min Ily - m112 subject to E(mx) = Eq. (20) 
mEL2,m-0 

To justify formally the use of Lagrange multipliers in solving this problem, in 
the Appendix A we verify that, given the no-arbitrage restriction (Assumption 
1.3), the expected price vector Eq is an interior point in the set IC{Emx: m E 
L2, m -0} (e.g., see Luenberger (1969), p. 236). Consequently, we are led to 
investigate the saddle-point problem: 

(8+)2= min sup {E[(y -M)2] + 2A'E(xm)- 2A'Eq} 
mcL2,m-0 AeRRn 

= max min {E[(y - m)2] + 2A'E(xm) - 2A'Eq}. (21) 
AERn mEL2,m-0 

To construct the criterion of the conjugate problem, we must solve the inner 
minimization problem in the second line of equation (21). This turns out to be 

6 A nice example of a more structured approach to assessing model misspecification is found in 
McCulloch and Rossi (1990). These authors use exponential utility functions to measure the 
magnitude of expected return errors in factor models. Unfortunately, their approach is not 
conducive to making comparisons across a wide class of models, including models in which 
investors have alternative preference orderings to those implied by the exponential functions of 
the next period's market wealth. 

7 This construction parallels a construction in Luttmer (1994). Luttmer considers a slightly 
different problem. In line with his interest in computing volatility bounds on stochastic discount 
factors when transaction costs are present, y is 0 in his setup, but the payoff space P is constructed 
more generally to include short-sale constraints. 
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an easy problem to solve, as we will now demonstrate. Rewrite the portion of 
the saddle-point criterion containing m as 

E[(y - m)2] + 2A'E(xm) = E[(y - k'x - m)2] - A'E(xx')A + 2A'E(yx). 
(22) 

Since the second and third terms on the right side of equation (22) do not 
involve m, to construct the criterion function for the conjugate problem we 
solve the problem 

min E[(y - A'x - m)2]. (23) 
mEL2,m-O 

Optimization problem (23) is a least squares problem whereby nonnegative 
random variables m are used to approximate the y - A'x. We use the notation 
(h)+ to denote an option payoff equal to max {h, 0}. The solution to problem (23) 
is simply the option payoff (y - A'x)+, as we now demonstrate. Construct an 
orthogonal decomposition of the target payoff y - A'x in the least squares 
criterion: 

y - A'x = (y - A'x)+ + [-(-y + A'x)+]. (24) 

This decomposition is orthogonal because the second term is zero whenever the 
first term is not. Moreover, since the first term is itself nonnegative, it can be 
approximated perfectly by a nonnegative random variable. However, the sec- 
ond term is nonpositive, and the closest (in the least squares sense) nonnega- 
tive random variable to it is the degenerate random variable that is equal to 
zero with probability one. Therefore, the solution to equation (23) is given by 
the first term in the decomposition. To verify this conclusion formally, rewrite 
the criterion in equation (23) as 

E[(y - A'x - m)2] = E{[(y - A'x)+- m]2} + 2E[( - y + A'x)+m] 

+ E{[(-y + A'x)+]2}. (25) 

The first two terms are nonnegative and are equal to zero only if m = (y - 
A'x)+, and the third term does not depend on m. 

We now obtain the conjugate of Problem 2 by substituting the solution to 
equation (25) into the criterion of the saddle-point problem (21): 

Problem 2': 

(8+)2 = max E{y2 - [(y - k'x)+]2 - 2A'q}. 
AERn 

Notice that the criterion for the optimization Problem 2' is concave in the 
multiplier vector A, and the constraint set is finite dimensional. This finite- 
dimensional character of the conjugate problem makes it much more tractable 
to solve than the original primal problem. Although the optimal choice of A and 
hence the square root of the optimized value of the criterion V+ cannot typically 
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be expressed in terms of simple matrix manipulations, both can be computed 
easily using standard numerical methods. 

We can obtain the conjugate to Problem 1 using an analogous (but actually 
simpler) argument. Recall that optimization Problem 1 finds the minimum 
distance between the proxy y and the family of all discount factors (including 
negative ones). By mimicking our previous logic, it is easy to verify that the 
conjugate to optimization Problem 1 is given by 

Problem 1': 

82 = max E[y2 - (y -A AX)2 - 2k'q] 
AERn 

The first-order conditions for this problem are 

E[x(y - A'x) - q] = 0, (26) 

which can be interpreted as finding the vector A such that y - A'x is an 
admissible stochastic discount factor. The solution for A is given by 

A = (Exx')-1E(xy - q), (27) 

as long as there are no redundant payoffs in the basis vector x. In relating this 
to the analysis leading up to Proposition 2.1, the random variable p3 used to 
represent the approximation-error functional is given by 

=-A'x. (28) 

As we remarked in Section II, the "pricing factor" A'x is the smallest adjust- 
ment in a least squares sense required to make y - Aix an admissible stochas- 
tic discount factor. The magnitude of this adjustment is given by 

8 = [(Exy - Eq)'(Exx')-1(Exy - Eq)]1 2. (29) 

Since we are proposing to use 8 as a measure of model misspecification, it is 
of interest to compare it to the chi-square test of a stochastic discount factor 
model suggested by Hansen and Singleton (1982) and Brown and Gibbons 
(1985). Notice from equation (29) that the chi-square statistic 52 iS a quadratic 
form in the pricing-error vector Exy - Eq. The distance or weighting matrices 
in these two quadratic forms are different, however. The distance matrix in the 
quadratic form on the right side of (29), (Exx')-1, is invariant to the choice of 
the proxy and is different from the one used in computing a large sample 
chi-square test of the null hypothesis that the pricing-error vector (Eq - Exy) 
is zero. In the latter case, the distance matrix is proportional to the inverse of 
the asymptotic covariance matrix for a central limit approximation. Equiva- 
lently, it is the inverse of the spectral density matrix for the time series process 
associated with the pricing-error vector q - xy. A drawback of the chi-square 
statistic as a measure of model misspecification is its sensitivity to the choice 
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of proxy y and its reward for sampling error associated with the sample mean 
of q - xy. The reward built into the chi-square statistic is reflected in the use 
of the inverse of the asymptotic covariance matrix.8 

Now consider the conjugate Problem 2'. The solution A is not necessarily 
unique, but the resulting random variable (y - A'x)' is unique.9 As with 
Problem 1', the first-order conditions 

E[(y - A'x)+x - q] = 0 (30) 

for Problem 2' provide us with a simple interpretation of this random variable. 
It is the stochastic discount factor in A+t that is closest to the proxy y.10 In other 
words, the smallest alteration in the proxy required to price correctly the 
payoffs in P is -A'x in states for which y - A'x is nonnegative and is -y 
otherwise. The quantity V+ measures the magnitude of this correction. There- 
fore, we are again led to find a payoff in P to use in correcting the discount 
factor proxy. In this case a possibly nonlinear transformation is required to 
ensure that the resulting random variable is both an admissible stochastic 
discount factor and is nonnegative. Of course, if the solution to Problem 1' 
turns out to be nonnegative, then it will also be the solution to Problem 2'. 

To summarize, we have derived the conjugates to the least squares problems 
posed in Section II. These conjugate problems are easy to solve in practice, and 
they give us an operational way to make comparisons of competing misspeci- 
fied models of stochastic discount factors. As a side benefit, the solutions 
identify minimal perturbations as explicit functions of portfolio payoffs that 
correct the proxies (misspecified discount factors) for their inherent pricing 
errors. Also, the magnitude of the multiplier vectors can be used to assess the 
importance of particular basis payoffs for correcting the proxy. 

IV. Linear Factor Pricing Models 

Although our interest is in a more general class of asset pricing models, in 
this section we derive some results that are special to linear factor pricing 
models. This discussion is designed to show the connection between our work 
and some previous contributions to the empirical asset pricing literature. In 
particular, we address two issues. We first look at the relationship between 
pricing errors such as we have described here and expected return errors 
commonly employed in the linear factor pricing literature. We then provide a 

I Allen (1991) makes essentially the same point in justifying an alternative distance measure to 
the ones developed here. Allen's focus is on the role of conditioning information in the pricing of a 
single return, whereas ours looks across returns but can still accommodate conditioning informa- 
tion. 

9 The solution A is unique when the second-moment matrix of the random vector xl y,_,X>O} is 
nonsingular where 1 X,-x,,>O} is an indicator function equal to 1 wheny - Ax is strictly positive and 
O otherwise. I 

10 Hansen and Jagannathan (1991) attempt to prove an infinite dimensional version of this - 

result when y = 0. However, there is a mistake in their Lemma A5. 
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simple characterization of the solution to least squares Problem 1 for linear 
factor pricing models. 

A. Expected Payoff Errors 

An alternative to using the proxy to deduce prices is to use it to infer 
expected payoffs and, in particular, expected returns. We now explore the 
connection between the expected return error bound deduced by Shanken 
(1987) and least squares Problem 1. The connection turns out to be close for 
factor models in which factor prices are chosen according to the least squares 
criterion of Problem 1. 

Consider a stochastic discount factor m with a positive mean. When we use 
the covariance decomposition (7), we have the familiar characterization of a 
risk return tradeoff: 

E(p) = r(p) cov(m, p) (31) 

where 1/E(m) plays the role of a riskless return. (More generally, E(m) is the 
average price of a unit payoff.) We interpret -cov(m, p)/E(m) as a measure of 
the compensation for holding a risky portfolio. When m = a + brm, where rm 
is the market return, it is straightforward to deduce the familiar single-beta 
representation of the risk-return tradeoff in terms of the market return. 

Now suppose we use proxyy for m in formula (31) to deduce the approximate 
expected payoffs Ea(p) to an investment of IT(p). When m and y have the same 
mean (that is, when they assign the same price to a unit payoff), the expected 
payoff error is 

cov(m - y, p) 
Ea(p) - E(p) = 

c 
E(y) (32) 

By means of the Cauchy-Schwarz Inequality, we bound the absolute expected 
payoff error as follows: 

lEap- E I - rn - yII std(p) (3 IEap EPI? Ey (33) 

To sharpen this bound, we are led to solve Problem 3. 

Problem 3: 

6- min jly-mll. 
mCj4,Em =Ey 

Then 

jEa(p) - E(p)j ' E (p) (34) 
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Optimization Problem 3 can be converted into a special case of optimization 
Problem 1 and solved accordingly. The conversion is done by replacing P with 
the larger space P, which is formed by the span of a unit payoff and P, and by 
assigning a price of Ey to the unit payoff. Let At denote the smaller collection 
of admissible stochastic discount factors for this larger space. By construction, 
all of the discount factors will have mean Ey, since that is the (average) price 
assigned to a unit payoff. In other words, 

I 

At = {m E At: Em = Ey}, (35) 

which gives us an equivalent way to represent the constraint set of Problem 3. 
By simply mimicking the proof of Proposition 2.1, it can be shown that the 
expected payoff error bound given in equation (34) is sharp. 

PROPOSITION 4.1: Suppose that P does not contain a unit payoff, that Assump- 
tions 1.1 and 1.2 are satisfied, and that Ey > 0. Then 

Ey = max jEa(p) - E(p)j. y pCP,std(p)=1 

This proposition shows the connection between one of our measures of model 
misspecification and the expected return error bound of Shanken (1987). An 
unpleasant aspect of this result is that it is predicated on the proxy's price 
assignment for a unit payoff. That is, in forming approximate expected payoffs, 
we take as given the valuation assignment of Ey to a unit payoff. Although we 
have deliberately chosen to exclude a unit payoff from P in our formal state- 
ment of Proposition 4.1, in fact the result still holds if the unit payoff is 
included in P and if the proxy assigned the correct price to it. From this 
vantage point, Proposition 4.1 seems to be of limited interest, because the 
proxy is required to price correctly a unit payoff. However, as we will now see, 
for a linear factor model this concern is mitigated by the fact that the implicit 
proxy is not known ex ante but instead depends on an unknown parameter 
vector. 

For Ross's (1976) linear factor model, the stochastic discount factor proxy is 
of the form 

y Oo + Yo, (36) 

where f is a random vector of factors and 00 and yo are components of a 
parameter vector that is to be estimated. For instance, as we noted in Section 
II, in the absence of conditioning information, the CAPM implies such a 
discount factor proxy for f equal to the market return (possibly scaled and 
translated). When the factor components have a mean of zero, are mutually 
uncorrelated, and have unit standard deviations, the elements of 00 can be 
interpreted as factor prices and yo is the price assignment to a unit payoff. 
Since we are confronted by the unknown parameter vector 0, we study the 
following modification of optimization Problem 1. 
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Problem 4: 

6 = min min ljf'O + y - m||. 
(06,y) mEA 

Note that the first-order condition for the choice of y is given by 

Ey - m = O, (37) 

where mh is the optimal choice of m in At. In other words, the parameters for the 
discount factor proxy are chosen so that the fitted proxy has the same mean as 
the admissible stochastic discount factor that is closest to it. In light of 
Propositions 2.1 and 4.1, the least squares distance 6 from the proxy y to the 
space X of stochastic discount factors gives both the maximum pricing error 
and the maximum expected payoff error (times Ey) for linear factor models. 

The key ingredient in this argument is that there is an unknown constant 
term in the stochastic discount factor that gets chosen to minimize the least 
squares criterion. The presumed linearity in the other factors is not essential 
to the argument. Of course, not all stochastic discount factor parameteriza- 
tions have an unknown constant term. (See Hansen and Singleton (1982) and 
Brown and Gibbons (1985) for examples based on consumption CAPMs with 
parameterized utility functions.) Once it is conceded that the proxy might 
misprice a unit payoff, least squares Problem 3 seems less appealing to us. 
Why should we constrain the family of discount factors to price the unit payoff 
in precisely the same way the proxy does? 

B. Factor Mimicking Payoffs 

We complete our discussion by providing a characterization of the solution to 
Problem 4. Because of the solution characterization of Problem 1 provided in 
Section II, we know that for each 0, 

min flf'& + y - mll = J1Proj(f1P)'0 + Proj(11P)y - Proj(m1P)1u, (38) 
m CA 

where Proj( IP) denotes the least squares projection onto the closed linear space 
P. The operations Proj(flP) and Proj(1IP) have the simple interpretations of 
forming factor mimicking payoffs as analyzed by Huberman, Kandel, and 
Stambaugh (1987). Also, since all admissible stochastic discount factors imply 
the same pricing functional on P, Proj(mIP) does not vary with m. We let p* 
denote this projection, which is itself an admissible stochastic discount factor. 
As a consequence of equation (38), we can reduce Problem 4 to 

6 = min IIProj(fIP)'0 + Proj(1IP)-y 7-p*I1. (39) 
(0,y)EP 

The optimization problem in equation (39) is quadratic in the parameter vector 
and its solution is easy to interpret: choose 0 and y to price correctly the factor 
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mimickiing payoffs. This interpretation follows directly from the first-order 
conditions (remembering that p* prices correctly all payoffs in P). 

V. Implementation and Approximation 

The analysis so far has been conducted using population expectations, which 
must be approximated in practice. As we indicated in Section I, we presume 
the existence of time series data of the form {(qt, xt, yt?7): t = 1, 2, . . . , T} for 
sample size T. The stochastic process generating these data is modeled as 
being stationary, at least asymptotically. Our approach is to solve sample 
counterparts to the conjugate maximization problems discussed at the end of 
Section III. Consequently, our estimator (dT) of the distance between the proxy 
and the set of discount factors is given by 

f T 11/2 

dT = max(1/T) E [(y"+)2 - (Yt+T- A Xt+T) - 2 qt] , (40) 
{AERn t=1 

and our estimator (d %) of the distance between the proxy and the set of positive 
stochastic discount factors is 

f T 11/2 

dT = max(1/T) E [(Yt+T- (Yt+T- A'xt+T) - 2A'qt] . (41) { AERn t=1 

While finite sample results would be preferable, they appear to be hard to 
obtain at the level of generality of this article. For this reason, Hansen, 
Heaton, and Luttmer (1995) derive the limiting (or asymptotic) distribution of 
these estimators (see Proposition 3.2 in Hansen, Heaton, and Luttmer (1995)). 
From their results it follows that 

T1 2(dT - 8) -> N[0, 62/(482)] (42) 

where the scalar Or2 is the variance in the following central limit approxima- 
tion: 

T 

T E (Yt-+T)--(Yt+T-A'Xt+T -2A'qt-82] N(0, 2). (43) 
t=1 

Recall that A maximizes the population conjugate problem. Hence the numer- 
ator term Or2 in the asymptotic variance in equation (42) comes from the central 
limit approximation for the criterion of the conjugate maximization problem 
evaluated at the solution to the population problem and centered appropri- 
ately. The denominator term 482 is present because of the mean-value approx- 
imation in the transformation of 82 to 8. However, the limiting distribution for 
dT does not include an adjustment for the fact that A is approximated by the 
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sample solution to the conjugate maximization problem. Even though this 
latter approximation always results in a larger estimate of 8, it turns out that 
the impact of estimating A does not alter the limiting distribution for 8. 

To use this limiting distribution in practice requires that we obtain an 
estimate of the scalar asymptotic variance &2 in equation (43). This can be 
accomplished by forming a scalar time series sequence {Ut T: t = 1, 2, . . ., T, 
where 

Ut,T (Y (Yt+T ET44) 

and where eT iS the value of A that maximizes equation (40). Notice that the 
sample mean of {Ut,T} is (dT)2. Then &2 can be estimated by using one of the 
frequency zero spectral density estimators described by Newey and West 
(1987) or Andrews (1991) applied to the time series sequence {Ut,T - (dT)2: t = 

1, 2, .. ., T}. Let ST denote the resulting estimator. Then statistical inference 
can be based on the approximation 

T1/2 dT 

2ST 6(T 5) >N(O, 1). (45) 

The validity of this approximation requires that 8 be strictly positive. 
Although the limiting distribution of dT is altered when 8 is zero, this 

phenomenon occurs only when the proxy is a valid discount factor, i.e., when 

E(yx - q) = 0. (46) 

This restriction is what underlies the generalized-method-of-moments estima- 
tion and the inference methods described in Hansen and Singleton (1982). In 
particular, for a given proxy, this moment condition can be checked using an 
asymptotic chi-square test. 

The same distribution theory given in equation (42) also applies when the 
proxy y depends on unknown parameters, as in observable factor models or 
utility-based models with unknown preference parameters. For instance, con- 
sider observable factor models for which the time series of proxies satisfy 

Yt+T 0 ft+T + ', (47) 

where 0 is unknown. The sample estimator of the specification-error bound can 
now be represented as 

( T 1/2 

=minmax (lIT) E [(O'ft+e + y)2 - (a'ft+T - A Xt+T)2 - 2k'qt] 
(0,,y) A GR- t= 1 

(48) 

The limiting distribution in equation (42) still remains valid as long as the 
population least-squares distance, 8, between the family of proxies and the 
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family of valid stochastic discount factors is strictly positive. In using formula 
(48) we are implicitly employing the sample two-stage least squares estimator 
for A described in Section II. 

A parallel set of results applies to the estimator d' of 8+. For instance, 

T1/2 (d - 8+) N[0, &2/(485+2)], (49) 

where the scalar &2 is the variance in the following central limit approxima- 
tion: 

T 

T E [(yt+T)2 - (yt+ - xt+7'A)+2 - 2qt'A - 8+2] - N(0, &2) (50) 
t=1 

VI. Applications 

In this section we apply the least squares measures of specification errors 
developed in the previous sections to a variety of alternative models of sto- 
chastic discount factors that have appeared in the literature. We use a common 
vector of six asset returns in making comparisons among models. 

A. Data Description 

Time series of six monthly returns for the period 1959:1-1990:12 were 
constructed as follows. (In this application, T is one.) The first return is the 
equally weighted portfolio of New York Stock Exchange (NYSE) stocks in the 
largest size decile; the second is an equally weighted portfolio of NYSE stocks 
in the smallest size decile; the third is a portfolio of long-term government 
bonds. These three assets are a subset of the assets used by Ferson and 
Constantinides (1991) and Ferson and Harvey (1992). The remaining three 
returns were constructed as "managed portfolios" in which 1 - z units were 
invested in the one-month Treasury bill and z units were invested in the 
largest size decile portfolio. For the fourth return, the portfolio weight z is the 
annual yield difference between Aaa and Baa bonds; for the fifth return, z is 
the annual yield difference between Baa bonds and the one-month Treasury 
bill; and for the last return, z is the annual yield difference between one-year 
and one-month Treasury bills. In all cases the yield differences were selected 
from the previous time periods so that they were in the conditioning informa- 
tion sets of investors at the time of the investment. More details of the data 
construction and sources are given in Appendix B. 

B. Constant Discount Factors 

We begin by evaluating constant discount factor models, i.e., 

y = 3 (51) 
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for some ,B. We are mainly interested in these models as points of reference, 
because constant discount factor models imply that the asset valuation is risk 
neutral. We perform two calculations. First, we compute the constant discount 
factors that minimize the two specification error measures. We also find which 
value of ,B is most plausible from the vantage point of the chi-square statistic. 

Consider the least squares problem: 

8 = min min E[((3 - mr)2]1/2 
(3 mEEA 

= min min E[((3 - M)2]1/2 
mEsa (3 

= min std(m), (52) 
mEA{ 

where std(m) is the standard deviation of the stochastic discount factor m. 
Hence, in this special case, the discount factor closest to the family of constant 
random variables is just the stochastic discount factor that is least variable 
and the distance is given by the standard deviation of that least variable 
stochastic discount factor. 

For the data set used in our application, the estimated mean of the least 
volatile stochastic discount factor is 0.998, with a standard deviation of 0.329. 
As we have argued, this standard deviation is also our estimate of 8, with a 
standard error of 0.054. The least variable stochastic discount factor is positive 
for almost all of the sample points, so there is no difference between the 
estimates of 8 and 8' in the first three decimal points. 

For comparison, we also report the corresponding results obtained by apply- 
ing generalized method of moments (GMM), as in Hansen (1982). When the 
model is correctly specified and ,B is known, the GMM criterion is constructed 
to have a chi-square limiting distribution, with degrees of freedom equal to the 
number of assets (six). When ,B is unknown, a GMM estimate is obtained by 
minimizing the criterion function. The limiting distribution of the minimized 
value of the GMM criterion remains chi-square, but with one less degree of 
freedom. The minimum chi-square value for the family of constant discount 
factors is 41.6. Since the degree of freedom for the associated chi-square test is 
five, the probability value is essentially zero. Thus there is considerable sta- 
tistical evidence against risk-neutral pricing. 

C. Power Utility 

We now extend the collection of models that we explore using the familiar 
class of time-separable power utility models. We parameterize the time t 
marginal utility to be (ct)-y for positive y. The implied stochastic discount 
factor is the intertemporal marginal rate of substitution between time t + 1 
and time t: 

Yt+i = 03(ct+i/ct) _, (53) 
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Table I 

Specification Errors for Power Utility 
The stochastic discount factor proxy is f(ct,1/ct)-', where : is the rate of time preference, ct is the 
per capita nondurables consumption for month t, and y is the coefficient of relative risk aversion 
of the representative consumer. Details of the data construction and sources are given in Section 
VI.A and Appendix B. The column labeled 5 gives the least squares distances between the proxies 
and the family of stochastic discount factors, and the column labeled &' gives the distances 
between the proxies and the family of nonnegative stochastic discount factors. The column labeled 
X2 gives the chi-square test statistics for the null hypothesis that all pricing errors are zero. 
Numbers in parentheses are estimated standard errors. The standard errors are computed using 
the method described in Newey and West (1987) with m = 15. (Very similar results are obtained 
using m = 9 and 12.) The entries in the row labeled "minimized" are computed by selecting 
parameter values for f and y that minimized the corresponding criteria. In the column labeled 6 
the minimizers are f = 1.03 and y = 33.3; in the column 6' the minimizers are f = 1.03 and y = 
28.6; and in the column labelled x2 the minimizers are f = 1.608 and y = 249.5. 

Y 6 a+ X2 

f = 0.95 
0 0.332 0.333 2,824.9 

(0.054) (0.054) 
1 0.333 0.333 2,850.9 

(0.053) (0.054) 
5 0.333 0.333 1,557.7 

(0.053) (0.054) 
10 0.333 0.333 705.9 

(0.053) (0.053) 
15 0.334 0.334 419.2 

(0.052) (0.053) 
f= 1.00 

0 0.329 0.329 46.6 
(0.054) (0.055) 

1 0.329 0.329 42.6 
(0.054) (0.054) 

5 0.329 0.329 47.8 
(0.054) (0.054) 

10 0.328 0.328 55.7 
(0.053) (0.054) 

15 0.328 0.328 58.1 
(0.053) (0.054) 

Minimized 0.327 0.327 35.2 
(0.053) (0.053) 

where ,B is the subjective discount factor. We use consumption of nondurables 
as our proxy for ct, which leaves us with a two-parameter family of stochastic 
discount factors. In Table I we report estimates of both least squares distance 
measures for several alternative choices of , and y. 

Several important conclusions emerge from this table. First, the positivity 
restriction on the admissible stochastic discount factors has very Jittle impact 
for these data, as is shown by the slight difference between the distance 
measures 8 and 8'. Second, there is very little distance variation across the 
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discount factor proxies. For the (,B, y) pairs reported, the distances range from 
only 0.328 to 0.335, which is certainly a small range considering the size of the 
estimated standard errors. The minimum specification errors for the entire 
family of stochastic discount factors is 0.327, only expanding the range 
slightly. Thus the estimated maximum pricing errors always exceed thirty 
percent of the norm. Moreover, the power utility model barely reduces the 
estimated pricing error relative to the constant discount factor model described 
previously. 

To understand better why the specification-error criterion is so large, recall 
that the norm of a random variable can be decomposed into a mean component 
and a standard deviation component via the formula 

IIPII = [E(p)]2 + [std(p)2]12. (54) 

We applied this decomposition to p while recalling that 8 is the norm of this 
random variable. More precisely, we computed the means and standard devi- 
ations of p for the different specifications of y. We find that the mean is 
typically very small relative to the standard deviation, indicating that most of 
the norm of p is attributable to its standard deviation. The random variable p 
can be decomposed as p = - - p*, where I is the least square projection of the 
proxy y on the payoff space P, and where p* is the unique stochastic discount 
factor in P. As is emphasized by Cochrane and Hansen (1992), the standard 
deviations of the ps are small for the class of power utility models, so most of 
the variation in the p3s comes from variation in p*, which is invariant to the 
choice of proxy. This is confirmed by the fact that the correlation among the ps 
is extremely high across the power utility models (in excess of 0.999). 

Even though the range of the chi-square statistics is extremely large for the 
parameter values reported in Table I, they all have extremely small probabil- 
ity values for the null hypothesis that the model is correctly specified. By 
minimizing the value of the chi-square statistic by our choice of ,B and y, we 
obtain coefficient estimates that are perverse, with a very large (absolute) 
value of y and with a chi-square statistic that remains quite large.1" 

Recall from formula (29) that the specification-error 8 is similar to a scaled 
version of the chi-square statistic. Both objects are square roots of quadratic 
forms in the pricing error vector. As is illustrated in Table I, the relative 
magnitudes (across proxies) of these two objects can be quite different in 
practice. The critical distinction is that a chi-square statistic uses a distance 
measure in the quadratic form, which changes with the proxy and rewards 
variation. This feature of the chi-square statistic shows up because, from the 
vantage point of classical statistics, it is harder to reject models (at a fixed 
significance level) with highly variable discount factor proxies. By design, our 

"V While the chi-square value is reduced to 35.2, this remains far to the right tail of a chi-square 
distribution. However, the accuracy of the asymptotic approximations with large (in absolute 
value) powers are likely to be extremely poor, because the sample moment calculations are 
dominated by a small number of recessionary (negative growth rate) data points. 
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Table II 

Lagrange Multipliers for Power Utility 
The stochastic discount factor proxy is f(ctj/ct)-'Y. The numbers reported are the Lagrange 
multipliers for the pricing constraints (denoted by the vector A in equation (40) in the text) for the 
least squares optimization problem. A distinct multiplier is reported for each of the six securities 
listed in the first column. Numbers in parentheses are estimated standard errors. The standard 
errors are computed using the method described in Newey and West (1987) with m = 15. 
Descriptions of the securities and details of the data construction and sources are given in Section 
VL.A and Appendix B. 

f3 1.00 

Security Y= 0 = 5 = 15 

1 8.60 8.61 8.63 
(3.89) (3.88) (3.88) 

2 1.81 1.80 1.77 
(0.96) (0.97) (0.98) 

3 4.74 4.79 4.89 
(1.80) (1.81) (1.82) 

4 -13.46 -13.47 -13.50 
(3.71) (3.72) (3.72) 

5 3.76 3.75 3.73 
(0.89) (0.88) (0.88) 

6 -5.56 -5.58 -5.64 
(1.77) (1.77) (1.78) 

least squares specification-error measures do not reward stochastic discount 
factor variability. 

In Table II we report the estimates of the Lagrange multipliers that are 
associated with the pricing constraints. According to the duality approach of 
Section III, these multipliers are also the portfolio weights for the factor payoff 
p that we use to correct the proxy. Given the high correlation among the ps, it 
is not surprising that the Lagrange multipliers are very similar in magnitude 
as the power parameter y is altered. Notice in particular that the coefficients 
on the three managed portfolios (payoffs 4, 5, and 6) are all large relative to 
their standard errors. 

D. Consumption Externality 

We now alter the preferences of consumers by introducing an externality in 
preferences as is done in Abel (1990). An extreme version of this preference 
specification has the time t felicity function as a power of the ratio ct/ct_1, 
where c* 1 is time t - 1 community-wide consumption. The corresponding 
marginal utility of consumption is modified to be 

mut = (ct)-7(ct_1)-1, (55)_ 
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Table III 

Specification Errors for Power Utility With Consumption 
Externality 

The stochastic discount factor proxy is f(c,j1/c,)-'Y(c/c,1)'Y- 1, where : is the rate of time prefer- 
ence, ct is the per capita nondurables consumption for month t, and y is the coefficient of relative 
risk aversion of the representative consumer. Details of the data construction and sources are 
given in Section VL.A and Appendix B. The column labeled 6 gives the least squares distances 
between the proxies and the family of stochastic discount factors, and the column labeled 6' gives 
the distances between the proxies and the family of nonnegative stochastic discount factors. The 
column labeled x2 gives the chi-square test statistics for the null hypothesis that all pricing errors 
are zero. Numbers in parentheses are estimated standard errors. The standard errors are com- 
puted using the method described in Newey and West (1987) with m = 15. The entries in the row 
labeled "minimized" are computed by selecting parameter values for ,B and y that minimize the 
corresponding criteria. In the column labeled 6 the minimizers are f = 0.998 and y = 7.3; in the 
column 8' the minimizers are f = 0.999 and y = 4.8; and in the column labelled x2 the minimizers 
are f = 21.1 and y = 237.6. 

Y 6 a+ v 

f3 = 0.95 
0 0.332 0.332 2,762.1 

(0.054) (0.054) 
1 0.332 0.332 2,837.7 

(0.054) (0.054) 
5 0.332 0.332 807.6 

(0.053) (0.054) 
10 0.332 0.332 244.0 

(0.053) (0.053) 
15 0.332 0.332 123.9 

(0.052) (0.053) 
f= 1.00 

0 0.328 0.339 42.2 
(0.054) (0.055) 

1 0.328 0.328 42.3 
(0.054) (0.055) 

5 0.328 0.328 42.1 
(0.054) (0.055) 

10 0.328 0.329 42.8 
(0.053) (0.054) 

15 0.328 0.329 42.8 
(0.053) (0.053) 

Minimized 0.328 0.328 27.5 
(0.053) (0.054) 

where we have imposed the equilibrium condition that c*_1 = ct1. The sto- 
chastic discount factor proxy is now 

Yt+1 = i 3(ct+j1ct) 7(ct1ct_j) 1. (56) 

In Table III we report results for the same parameter configurations as in 
Table I. The specification-error results are very similar. The chi-square sta- 
tistics are reduced a little, but not sufficiently to make the null hypothesis, 
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that the proxies are in Al+, appear plausible. Therefore, the introduction of a 
consumption externality has very little impact on either the specification-error 
measures or the statistical inferences. 

E. Reciprocal of the Market Return 

We next consider the inverse market portfolio as a discount factor proxy. 
This random variable can be justified as a discount factor by following Rubin- 
stein (1976) and by assuming that consumers' preferences are time and state 
separable and have a logarithmic felicity function (a power utility with y = 
-1). More generally, Epstein and Zin (1991) rationalize this discount factor by 
relaxing state-separability and imposing a logarithmic risk correction in a 
recursive utility formulation. We treat this as an error-ridden proxy for the 
familiar reasons delineated by Roll (1977). The specification-error measures, 
with and without positivity imposed, are again essentially the same; they are 
equal to 0.311, with a standard error of 0.055. This is a small improvement 
over the best specification error from the power utility model.12 

F. Observable Factor Models 

The final stochastic discount factor proxies that we consider are those 
implied by three alternative linear factor models. For each of the three models 
there are two factors: a constant factor and a single variable factor. The first 
two of these models employ the implicit stochastic discount factor for the 
one-period CAPM: a constant plus a scale multiple of the market return. We 
use both the equally-weighted and the value-weighted returns as alternative 
measures of the market return; this gives rise to two alternative linear factor 
models. The third model imitates Breeden, Gibbons, and Litzenberger (1989) 
by using the consumption growth rate as an observable factor. 

The results are reported in Table IV. Since linear factors models are not 
typically designed to price derivative claims, we report only the 6 measure of 
model misspecification. In generating these results, the unknown coefficients 
were estimated both by minimizing the specification error and by minimizing 
the chi-square statistic. Again, according to the chi-square statistic there is 
substantial statistical evidence against all three models. The smallest specifi- 
cation error, 0.286, and the value of the chi-square statistic, 30.2, are found 
when the variable factor is the equally-weighted return, although the specifi- 
cation error is almost the same when the variable factor is the value-weighted 
return. 

Particularly in the case of the consumption factor model, there is a substan- 
tial difference in the selected discount proxy, depending on whether the spec- 
ification-error measure is minimized or the chi-square statistic is minimized. 
In the latter case the sample standard deviation of the implied approximating 
stochastic discount factor is more than thirty times more variable, illustrating 

12 Interestingly, the chi-square statistic is 128, so a naive use of classical chi-square statistics 
might lead one to argue in favor of the power utility model. 
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Table IV 

Specification Errors for Linear Factor Models 
The stochastic discount factor is &'f,+1 where f,+1 contains a constant and one of the variable 
factors listed in the first column of the table, and &' is the estimated parameter vector. Details of 
the data construction and sources are given in Section VI.A and Appendix B. The column labeled 
8 gives the least squares distances between the family of proxies and the family of stochastic 
discount factors. The column x2 gives the chi-square test statistic for the null hypothesis that all 
pricing errors are zero. Estimated standard errors for 8 are given in parentheses. The standard 
errors are computed using the method described in Newey and West (1987) with m = 15. 

Variable Factor 8 X2 

Coefficients Estimated by Minimizing the Specification Error 
Equally-weighted return 0.286 30.1 

(0.054) 
Value-weighted return 0.289 33.5 

(0.052) 
Consumption growth 0.325 38.9 

(0.052) 
Coefficients Estimated by Minimizing the Value of the x2 

Equally-weighted return 0.286 29.3 
Value-weighted return 0.290 31.5 
Consumption growth 1.57 12.0 

that the chi-square criterion rewards variability in the discount factor proxy. 
A naive econometrician using only the chi-square values reported in the last 
column of the second panel in Table IV might erroneously conclude that the 
consumption factor model does better than the other two factor models. This 
conclusion is problematic, because the chi-square statistics are uniformly large 
relative to their degrees of freedom. While these statistics show that particular 
classes of models are misspecified, they are not designed for making compar- 
isons among misspecified models. As we emphasized in Section III, our least 
squares measures are better suited for this task. To see that minimizing the 
chi-square statistic gives a different picture than minimizing the least squares 
specification error, notice that the least squares specification error exceeds one 
for the consumption factor model when the parameter estimates are obtained 
by minimizing the chi-square statistic. 

The estimated multipliers on the pricing constraints and their standard 
errors are reported in Table V. Again, the coefficients on the three managed 
portfolios (payoffs 4, 5, and 6) are all large relative to their standard errors. 
Recall that these portfolio payoffs are constructed using variables in the 
conditioning information sets of investors. The role of securities such as these 
in constructing the "price factor" p given in equation (28) lends support to the 
unconditional version of the CAPM derived by Jagannathan and Wang (1993, 
1996) and the empirical factor models of Cochrane (1992) and Bansal, Hsieh, 
and Viswanathan (1993). 

In Table VI we report the correlations in the additional factor 13 used to 
correct the candidate discount factors. Not surprisingly, the correlations 
among the payoffs with the maximum pricing error (per unit norm) across 
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Table V 

Lagrange Multipliers for Factor Models 
The stochastic discount factor is &'ft+l where ft+1 contains a constant and one of the variable 
factors listed in the first column of the table, and &' is the estimated parameter vector. The 
numbers reported are the Lagrange multipliers for the pricing constraints (denoted by the vector 
A in equation (40) in the text) for the least squares optimization problem. A distinct multiplier is 
reported for each of the six securities listed in the first column. Numbers in parentheses are 
estimated standard errors. The standard errors are computed using the method described in 
Newey and West (1987) with m = 15. Details of the data construction and sources are given in 
Section VI.A and Appendix B. 

Variable Factor 

Equally- Value- 
Consumption Weighted Weighted 

Security None Growth Return Return 

1 8.80 8.93 8.64 6.90 
(4.63) (4.60) (4.71) (4.71) 

2 1.71 1.50 -0.05 1.41 
(1.10) (1.03) (0.80) (1.01) 

3 4.80 5.42 6.10 6.30 
(2.20) (2.32) (2.10) (2.04) 

4 -13.52 -13.70 -13.00 -12.80 
(3.94) (4.10) (3.74) (3.70) 

5 3.80 3.64 3.10 2.90 
(1.0) (1.09) (0.90) (0.80) 

6 -5.60 -5.90 4.90 -4.70 
(1.50) (1.50) (1.50) (1.40) 

Table VI 

Correlations of f Across Proxies 
This table reports the correlations among the estimated Ps for the proxies implied by four different 
models with alternative variable factors, where j [given in equation (28)] is the smallest adjust- 
ment in the least squares sense required to make the stochastic discount factor price the given set 
of assets right. The model with the variable factor labeled "None" has a discount factor that is 
constant. Details of the data construction and sources are given in Section VI.A and Appendix B. 

Equally- Value- 
Consumption Weighted Weighted 

Variable Factors Growth Return Return 

None 0.99 0.87 0.88 
Consumption growth 0.92 0.94 
Equally-weighted return 0.96 

factor models are quite high. (They all exceed 0.87). Abstracting from any 
sampling error, this high correlation indicates that whatever is missing in one 
proxy is also missing in the other. However, the following caution is in order. 
Suppose that the mispricing is an artifact of poor asymptotic approximations. 
For instance, suppose that our asymptotic measures of sampling error under- 
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state the true sampling variability by making a portfolio that performs well in 
a sample appear to be mispriced. In this case, even if all of the factor models 
are correctly specified, the estimated p3s could well be highly correlated across 
models. 

VII. Concluding Remarks 

In this article we explore alternative ways to compare stochastic discount 
factor proxies when it is understood that the models under consideration are 
misspecified. In contrast to comparisons based on chi-square statistics, our 
measures do not reward variability of the proxies. Instead, they focus on 
measuring maximum pricing errors (per unit norm). Using our alternative 
least squares measures, we show the sense in which power utility models do 
not perform much better than constant discount factor models. While the 
estimated specification errors are a little smaller for CAPM-style models in 
which the stochastic discount factor is a linear combination of a constant plus 
a scale factor times a measure of the market return, even these models imply 
specification errors that exceed twenty-five percent of the norm for some 
payoffs. Bansal, Hsieh, and Viswanathan (1993) use our apparatus to docu- 
ment the advantages of nonlinear factor models over linear ones in pricing 
international securities; Bakshi and Chen (1995) use it to investigate the 
extent to which investors directly incorporate wealth into their preference- 
orderings when making portfolio decisions. Finally, Chen and Knez (1995) 
extend our setup to measure the degree to which markets are integrated. 

We propose and justify two alternative measures of model misspecification. 
The first measure relies on linearity of the pricing functional. The second 
measure exploits the positivity of arbitrage-free stochastic discount factors for 
pricing derivative claims. The second measure is conceptually more appealing 
when evaluating candidate discount factors for the pricing of derivative claims. 
Associated with this measure is a nonnegative stochastic discount factor that 
prices the original collection of payoffs correctly. This discount factor is the 
closest (in a least squares sense) to the prespecified proxy, and it assigns prices 
to derivative claims within (or at the boundary of) the range of arbitrage-free 
price assignments to derivative claims. Thus the misspecified parametric 
model can be used to select among the family of nonnegative stochastic dis- 
count factors in assigning prices to derivative claims. 

For the data used in this article, the differences between the two measures 
of model misspecification are negligible. This, by itself, is an interesting 
insight for stochastic discount factor models designed for use in pricing deriv- 
ative securities. However, this finding is unlikely to be true for all data sets. 
For instance, the findings in Hansen and Jagannathan (1991) suggest that 
using holding-period returns for Treasury bills might lead to a more substan- 
tial discrepancy between specification-error measures. Moreover, from the 
work of Luttmer (1994) it is important to take explicit account of transaction 
costs. Hansen, Heaton, and Luttmer (1995) show how to incorporate such 
market frictions into the measures described here. 
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Appendix A 

The first proposition establishes a result stated in Section I. 

PROPOSITION A.1: Suppose that P is given by equation (3). Then X, given by 
equation (5), is a bounded linear functional. 

Proof: To see this, consider any w * x with a norm less than or equal to one. 
Let A denote any factorization of the conditional second-moment matrix 
E(xx'1|9), and note that 

IjAwj12 = E[w'E(xx'Jt)w)] 

= E(w'xx'w) 

= jjw * x112. (A. 1) 

Furthermore, 

Elw q = Elw'A'(A ')> 1q I 

J JAw JJJ(A')-1qJJ. (A.2) 

Finally, note that 

(A' -lq 112= E[q'E(xx'J') 1q] 
<oo. (A.3) 

It follows that X is well defined on P and bounded. Q.E.D. 

The next proposition imitates a result in Luttmer (1994). It is used to justify 
the duality approach applied in Section III. 

PROPOSITION A.2: Suppose that P is generated by a random vector x with a 
nonsingular second-moment matrix, that the corresponding price vector q has a 
finite first moment, and that Assumption 1.3 is satisfied. Then Eq is an interior 
point in the set {Emx: m E L2, m O}. 

Proof: Let I1(y) {a: Ia = 1 and a'-y ? O} and f2 {a: 11 (a'x)1 = 0 and 
lal = 1}. For any y E Rn, let '7,(a'x) = a''y. Then 01(y) n t2 is empty if and only 
if (P, ,,) satisfies Condition N. (There are no-arbitrage opportunities on (P, 
7T'n).) Therefore, IC1 (Eq) n C2 is empty. Since IC (Eq) and C2 are both compact 
sets, there is a positive distance between them (where distance is measured 
using the Hausdorff metric). Moreover, IC is a continuous function of the price 
assignment y. Consequently, there is an open ball around Eq such that, for all 
-y in this ball, IC (y) n 2 is empty. For any such y, the linear functional seY can 
be represented as ir(p) = E(pm) for some nonnegative m E L2. (In fact, m can 
be chosen to be strictly positive with probability one.) Q.E.D. 
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Appendix B 

The large and small capitalization stock portfolio returns are constructed 
using data from the Center for Research in Security Prices (CRSP) tapes. We 
sorted firms on the NYSE into decile classes based on the market value of 
common stocks outstanding in June of each year. We then constructed the time 
series of monthly returns for an equally-weighted portfolio of stocks in the 
largest and smallest size deciles for the twelve v months in the subsequent 
calendar year. We repeated this procedure for each calendar year and then 
spliced together the monthly series for different calendar years. 

Monthly returns on long-term government bonds and one-month Treasury 
bills were from Stocks, Bonds, Bills and Inflation -1991 Year Book of Ibbotson 
Associates. Yields on one-month and one-year Treasury bills, as well as Aaa 
and Baa bonds, were taken from Federal Reserve Bulletins. Nominal returns 
were deflated using the price deflator series for consumption of nondurables 
from CITIBASE. 

Monthly returns on the equally-weighted as well as value-weighted index of 
stocks in the NYSE and American Stock Exchange (AMEX), which were used 
to construct candidate marginal rates of substitution, are from the CRSP 
tapes. Monthly per capita consumption data used in constructing candidate 
marginal rates of substitution were constructed using data from CITIBASE. 

Table B.1 
Summary Statistics of Return Data 

The six securities are described in Section VI.A. 

Standard 
Security Mean Deviation Skewness Kurtosis 

1 1.008 0.044 -0.122 4.975 
2 1.013 0.071 0.899 10.402 
3 1.005 0.029 0.789 6.216 
4 1.006 0.056 1.066 9.124 
5 1.021 0.167 0.697 10.824 
6 1.001 0.056 1.043 13.598 

Table B.2 

Correlations Among Security Returns 
The six securities are described in Section VI.A. 

Security 2 3 4 5 6 

1 0.70 0.33 0.92 0.90 0.72 
2 0.14 0.63 0.60 0.42 
3 0.40 0.31 0.30 
4 0.93 0.80 
5 0.81 
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Table B. 1 gives the summary statistics for the return data. Notice that there 
is substantial variation in the characteristics of the six assets. For example, 
asset 4 has about the same average return as asset 3 but is almost twice as 
volatile. 

Table B.2 gives the correlation among the six asset returns. 
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