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Assessing Stability and Change in Criminal Offending:
A Comparison of Random Effects, Semiparametric,
and Fixed Effects Modeling Strategies

Shawn Bushway,1,2 Robert Brame,2 and Raymond Paternoster2,3

An important theoretical problem for criminologists is an explanation for the
robust positive correlation between prior and future criminal offending. Nagin
and Paternoster (1991) have suggested that the correlation could be due to time-
stable population differences in the underlying proneness to commit crimes
(population heterogeneity) andyor the criminogenic effect that crime has on
social bonds, conventional attachments, and the like (state dependence). Because
of data and measurement limitations, the disentangling of population heterogen-
eity and state dependence requires that researchers control for unmeasured per-
sistent heterogeneity. Frequently, random effects probit models have been
employed, which, while user-friendly, make a strong parametric assumption that
the unobserved heterogeneity in the population follows a normal distribution.
Although semiparametric alternatives to the random effects probit model have
recently appeared in the literature to avoid this problem, in this paper we return
to reconsider the fully parametric model. Via simulation evidence, we first show
that the random effects probit model produces biased estimates as the departure
of heterogeneity from normality becomes more substantial. Using the 1958 Phila-
delphia cohort data, we then compare the results from a random effects probit
model with a semiparametric probit model and a fixed effects logit model that
makes no assumptions about the distribution of unobserved heterogeneity. We
found that with this data set all three models converged on the same substantive
result—even after controlling for unobserved persistent heterogeneity, with mod-
els that treat the unobserved heterogeneity very differently, prior conduct had a
pronounced effect on subsequent offending. These results are inconsistent with
a model that attributes all of the positive correlation between prior and future
offending to differences in criminal propensity. Since researchers will often be
completely blind with respect to the tenability of the normality assumption, we
conclude that different estimation strategies should be brought to bear on the
data.
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1. INTRODUCTION

In many models of criminal offending a measure of previous criminal
conduct is included as an explanatory variable in recognition of the adage
that ‘‘the best predictor of future behavior is prior behavior.’’ The stability
of behavior over time is not an observation criminologists have mono-
polized—economists have found that those currently unemployed are more
likely than the employed to be out of work at some future point in time
(Phelps, 1972), accident researchers have long observed that those who have
had accidental injuries in the past are more likely than chance alone to have
others in the future (Arbous and Kerrich, 1951; Banks, 1977; Greenwood
and Wood, 1919), and psychologists have noted that psychological disorders
experienced in the past are a good predictor of subsequent bouts of
emotional distress (Fischer et al., 1984; Robins, 1966, 1978). Having
observed this pattern, criminologists, like their colleagues in other disci-
plines, wish to account for such observed regularities in behavior. Why is
criminal offending fairly stable over time?

Following Heckman (1981), Nagin and Paternoster (1991) have sug-
gested two general processes which could account for the observed stability
in criminal conduct over time. The first of these processes implicates time-
stable differences between individuals in their latent tendency to commit
crimes. According to this proneness explanation, individuals vary in the
probability with which they will commit crime at all points in time because
they differ with respect to some risk factor (impulsivity, criminal propensity,
or an antisocial trait, etc.) that is established early in life and remains, at
least relatively, stable over time. Since this process attributes continuity in
offending over time to persistent differences between individuals in a latent
criminal risk factor, it has been termed a population heterogeneity expla-
nation (Heckman, 1981; Hsiao, 1986; Nagin and Paternoster, 1991). Quite
simply, population differences in a predisposition or proneness to commit
crimes leads to differences in offending at all subsequent points in time. Any
observed positive correlation between past and future offending therefore,
is simply due to sample selection rather than causality, and is a variant of
the problem of omitted variable bias (Nagin and Paternoster, 1991, p. 166).
More generally, the correlation between current offending and events that
are themselves the product of time-stable individual differences is spurious
rather than causal. The population heterogeneity explanation of continuity
in criminal offending is illustrated in Fig. 1.

A population heterogeneity explanation is compatible with a number
of criminological theories. For example, Wilson and Herrnstein (1985,
p. 209) have articulated a theory of crime that is a catalogue of individual
differences of ‘‘enduring personal characteristics.’’ To them, some persons
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Fig. 1. Population heterogeneity explanation of continuity in offending over time.

have a higher propensity to commit crime because they are impulsive, are
difficult to condition, and have a high discount rate (are short-sighted).
These differences are formed very early in life and they have diverse manifes-
tations later in life (poor school performance, alcoholism and drug addic-
tion, and unemployment). Others have explained variations in offending
with time stable individual differences in biological characteristics, such as
central nervous system (Moffitt and Lynam, 1994; Raine, 1997) or neuro-
transmitter dysfunctions (Berman et al., 1997).

Perhaps the most well-known population heterogeneity explanation in
criminology today is Gottfredson and Hirschi’s (1990) general theory of
crime. In their theory, crime and other self-destructive behaviors are due
to individual differences in self-control. Self-control is a person’s ability to
appreciate and consider the long-term consequences of their actions. It is
formed early in life as a product of socialization experiences within the
family and is relatively time-stable thereafter. Persons low in self-control are
unable to resist the short-run temptations offered by crime and other acts
that, like crime, provide immediate and easy gratification (unemployment,
sexual promiscuity, drug abuse).

While the specific source may differ, in each of these population hetero-
geneity explanations, continuity in criminal offending is due primarily to
preestablished differences in offending propensity, such that a person’s
experiences in later life have no causal impact on criminal offending. As is
true for the relationship between past and future offending, any observed
correlation between such later life experiences and criminal conduct is
merely spurious.

A second explanation for the observed continuity in criminal offending
over time argues that persons who commit criminal offenses are substan-
tially transformed by their experiences in such a manner as to weaken exist-
ing restraints andyor strengthen existing incentives to commit crimes in the
future. In this view, previous criminal conduct has a genuine causal effect
on future criminality and has been termed a state dependence explanation
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(Nagin and Paternoster, 1991). Unlike the population heterogeneity expla-
nation, the state dependence explanation of the continuity in offending over
time emphasizes contagion and the dynamic interplay between the actions
of offenders and their environment. That is, prior offending affects future
offending because it can destroy marriages and jobs and bring offenders
into closer affiliation with like-minded other offenders. For those who com-
mit crimes, therefore, things can get materially worse and they may become
more enmeshed in offending. Similarly, finding the right partner or job may
materially improve the lot of a prior offender, and such changes in their lives
may lead to short- or long-term desistance from crime. The state dependence
explanation for the positive correlation between past and future criminal
behavior is shown in Fig. 2.

As Nagin and Paternoster (1991, pp. 166–167) have noted, the state
dependence explanation is also congenial with a number of theories of
crime. For example, criminal behavior can damage a person’s social bond
by weakening conventional attachments, by eroding conventional commit-
ments or aspirations, and by undermining moral restraints (Hirschi, 1969).
Consistent with social learning theory, criminal conduct may lead one into
closer affinity with deviant others, and the values and norms they support
(Akers, 1985). Consistent with the process described by labeling theorists,
criminal conduct can create ‘‘problems of adjustment’’ that are responded
to by additional, secondary deviance (Lemert, 1972). Criminal acts can also
lead to conflict with teachers and parents and have other consequences that
both generate new sources of strain and abrade previously successful adap-
tations to strain (Agnew, 1992).

Although we have discussed the population heterogeneity and state
dependence explanations as if they were rival hypotheses, they are not
incompatible processes. Indeed, one can easily believe that continuity in
criminal behavior may be due to a mixture of both differential proneness to
crime (population heterogeneity) and contagion (state dependence). Samp-
son and Laub’s (1993, 1995, 1997; Laub and Sampson, 1993) theory of
age-graded informal controls is such a mixed model that combines both

Fig. 2. State dependence explanation of continuity in offending over time.
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explanations. Their position is that while there is differential initial prone-
ness to crime, the commission of criminal acts has negative causal effects
on the lives of offenders, consequences that may lead to additional crime
(Sampson and Laub, 1997, pp. 144–145):

Invoking a state dependence argument (Nagin and Paternoster, 1991), our theory
incorporates the causal role of prior delinquency in facilitating adult crime
through a process of ‘‘cumulative disadvantage.’’ . . . We emphasize a develop-
mental model where delinquent behavior has a systematic attenuating effect on
the social and institutional bonds linking adults to society. . . . The cumulative
continuity of disadvantage is thus not only a result of stable individual differ-
ences in criminal propensity, but a dynamic process whereby childhood antisocial
behavior and adolescent delinquency foster adult crime through the severance of
adult social bonds.

Unlike a pure population heterogeneity or state dependence explanation,
therefore, mixed models like Sampson and Laub’s include both. While not
hostile to the importance of individual differences, mixed models presume
that change and later life events do, nonetheless, matter. This mixed model
is shown in Fig. 3.

The current debate in criminology between the predominance of conti-
nuity and change in offending (Gottfredson and Hirschi, 1990, 1995; Nagin
and Paternoster, 1991, 1994; Sampson and Laub, 1993, 1995) can, therefore,
be understood as a debate over population heterogeneity vs. state depen-
dence explanations. A pure population heterogeneity explanation implies
that continuity in criminal offending is due entirely to time-stable differences
in a latent proneness to crime and that later life events such as marriages
or jobs will have no effect on offending after controlling for sources of
criminal propensity. A pure state dependence argument implies that conti-
nuity in offending is due entirely to a process of contagion, where criminal
behavior increases the probability of future criminal acts by reducing inhi-
bitions and strengthening incentives to crime. A mixed model implicates
both proneness and contagion. A critical test of three positions, therefore,

Fig. 3. Mixed population heterogeneity and state dependence explanation of offending.
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would require assessing the impact of dynamic factors on crime after a care-
ful calibration and control for sources of individual heterogeneity.

The strategy for those investigating population heterogeneity and state
dependent effects, therefore, has been to measure individual differences in
criminal propensity with available data. To do this, researchers have con-
structed indices of criminal propensity comprised of measured individual
factors (for example, IQ, daring personality, attitude toward deviance, poor
parental child-rearing behavior, parental criminality) that have been
thought to be related to criminal behavior (Nagin and Paternoster, 1991;
Sampson and Laub, 1993; Nagin and Farrington, 1992a, b; Paternoster and
Brame, 1997). There are, of course, two problems with this strategy: (1)
there is no agreed-upon understanding of exactly what the elements of such
an index of criminal propensity might be, and (2) even if such agreement
did exist, it is unlikely that available data sources would have measured
indicators of all or even many such elements. As a result, while some sources
of heterogeneity are observed and measured, researchers could not be con-
fident that they have captured all such between-individual differences in
criminal propensity. In response to this, researchers have tried to incor-
porate unobserved sources of persistent heterogeneity in their statistical
models.

The first attempt to control for unobserved sources of criminal propen-
sity was with so-called ‘‘random effects’’ models. Random effects models
decompose the error term into two components, one of which reflects time-
stable differences across individuals (unobserved persistent heterogeneity).
With such a random effects probit model, Nagin and Paternoster (1991)
found that prior criminal behavior had an effect on subsequent behavior
even after controlling for observed and unobserved sources of criminal pro-
pensity. These findings were inconsistent with a pure population heterogen-
eity theory. Subsequent to this, random effects models were used by Nagin
and Farrington (1992a, b); Paternoster and Brame (1997); Sampson and
Laub (1993); and Paternoster et al. (1997), and in each case the reported
findings could not be squared with a pure population heterogeneity expla-
nation—controlling for both observed and unobserved heterogeneity, prior
criminal offending had an effect on current criminal offending.

Although the random effects model provided a tractable way to control
for unobserved heterogeneity, Nagin and Paternoster (1991, p. 169) cau-
tioned about the fragility of their findings. They observed (p. 183) that such
random effects models presume that unobserved heterogeneity is normally
distributed in the population and that ‘‘[r]esults can be very sensitive to distri-
butional assumptions about the nature of the heterogeneity.’’ In view of the
possible sensitivity of results to the distributional assumptions about unob-
served heterogeneity, Nagin and Land began to develop an alternative
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modeling strategy (Nagin and Land, 1993; Land et al., 1996; Land and Nagin,
1996). In their semiparametric mixed Poisson model, no parametric assump-
tion is made about the distribution of persistent unobserved heterogeneity;
instead, the heterogeneity is nonparametrically approximated in model
estimation.4 This flexibility comes at a cost: we have to assume that
unobserved individual differences are drawn from a discrete (multinom-
inal) probability distribution. If unobserved individual differences are, in
fact, drawn from a continuous distribution, there will be some misspecifi-
cation bias.

There is, of course, another, though far more blunt approach to the
treatment of persistent unobserved heterogeneity. A fixed-effects strategy,
though not yet commonly employed by criminologists, models unobserved
heterogeneity explicitly as a time-constant intercept term for each individual
in the sample. Essentially, this individual-specific intercept term captures all
individual effects that are constant over time—no other assumptions about
persistent unobserved heterogeneity are necessary. This approach takes out
any time-constant individual effect (i.e., gender, race, intelligence, criminal
propensity) without explicitly specifying its substance. The fixed effects
approach uses a constant for each individual to absorb all individual-specific
effects so that any observed effect for a dynamic factor must, by definition,
be independent of stable criminal propensity. Indeed, it is independent of
any stable individual characteristic.

Essentially, then, the Nagin and Paternoster (1991) paper highlighted
the possible sensitivity of a random effects modeling strategy. To the extent
that persistent unobserved heterogeneity can be assumed to be normally
distributed, the random effects approach to studying state dependence and
population heterogeneity seems reasonable. If unobserved criminal propen-
sity is not normally distributed, then estimated structural coefficients from
random effects models may be biased. The distributional sensitivity issue
was addressed by Nagin and Land by introducing a nonparametric alterna-
tive, although they did not directly confront the sensitivity issue originally
raised by Nagin and Paternoster. In addition to the nonparametric
approach developed by Nagin and Land, there is a fixed effects strategy
that rather bluntly deals with time-stable individual differences by including
a constant for each individual. We can think of these three approaches to
the treatment of unobserved persistent heterogeneity (random effects,-
nonparametric, fixed effects) as lying on a continuum—the random effects
approach is the most restrictive model because it treats unobserved

4Nagin and Land referred to their model as a semiparametric model because it ‘‘combines a
parametric specification of the regression component of the model with a non-parametric
specification of the error term’’ (Land and Nagin, 1996, p. 170).
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Fig. 4.

heterogeneity as part of the error term and normally distributed, the non-
parametric model treats heterogeneity as part of the error term but assumes
nothing about the shape of its distribution, and the fixed effects model sim-
ply absorbs all individual-specific effects with unique intercept terms. In
addition, as we will demonstrate later, these models also lie on an efficiency
continuum, with the fixed effects model having the least efficient estimator
and the random effects model providing the most efficient estimator (see,
Fig. 4).

With these different estimation strategies to an important substantive
problem as a backdrop, we have two objectives we wish to accomplish in
this paper: (1) to explain in as clear a manner as possible the assumptions
of each statistical model, especially the fixed effects approach, because most
criminologists will not be familiar with it, and (2) to examine the state
dependenceypopulation heterogeneity explanations by comparing the
results obtained from these three different modeling strategies on a simple
data set. Ultimately, our argument will be that all three strategies employed
together can provide useful theoretical and methodological insights that
could not be obtained by the use of only one strategy. In other words, our
position is that rather than choosing among random effects, semipara-
metric, and fixed effects strategies, all methods should be used when the
data allow. If different statistical models that make different assumptions
lead to similar conclusions, researchers can be more confident that the story
they are telling is a resilient one. In addition, an important insight can be
gained about the sensitivity of findings to distributional assumptions by
comparing the results of different statistical models that make different dis-
tributional assumptions about unobserved persistent heterogeneity.

The paper is organized as follows. First, in order, we discuss the
assumptions underlying the random effects, semiparametric, and fixed
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effects models. Second, we demonstrate the utility of using complementary
statistical strategies using the 1958 Wolfgang Philadelphia cohort data.

2. MODELING CONTINUITY AND CHANGE IN CRIMINAL
OFFENDING

2.1. The Random Effects Probit Model

In order to sort out the effects of state dependence and individual het-
erogeneity in a longitudinal sequence of binary outcomes, it is necessary to
observe the set of outcomes and the sources of the heterogeneity—the time-
constant factors which might contribute to the offending behavior. Unfortu-
nately, in criminology research, it is not possible to measure all of the time-
constant factors which contribute to an individual’s offending behavior.
Models which do not include relevant measures of individual heterogeneity
are subject to the problem of omitted variable bias. As a result, one might
infer that the state dependent effect (a causal impact of prior offending) is
larger than it is in reality. In response to this problem, Nagin and Paternos-
ter (1991) suggested that methods be used to control for unobserved individ-
ual heterogeneity. These methods should allow for more valid inference
about the relative plausibility of the state dependent and individual hetero-
geneity explanations described above.

Nagin and Paternoster (1991) first proposed using the so-called random
effects probit model to address this problem. This model divides the error
term into two components, a random error component and an individual-
specific, time-constant component. This can be represented by the following
equation:

y*it Gδ (t)Cγ yitA1Cε it , ε itGα iCνit (1)

where y*it is a latent variable for the i th person in the panel, δ (t) is a coef-
ficient that captures the amount of change in y*it associated with a unit
change in time, γ is the parameter which measures the state dependent
effect, ε it is the overall error term, α i is the individual specific component,
and νit is the purely random normal disturbance with zero mean and unit
variance. The observed outcome, yit is equal to 1 if the latent construct
y*itHτ and 0 otherwise (τ is an arbitrary cutoff point). This equation
explicitly recognizes that some unmeasured elements of the model will not
be truly random but will instead be fixed for a given individual over time
(reflected in α i). With this specification in hand, the crucial task is to esti-
mate the parameters of the model such that the fixed component of the
error term (α i) is not allowed to bias the estimate of the state dependent
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effect, γ . This task is accomplished by assuming that the fixed component
of the error term is associated with a known mixing distribution.5

More specifically, Hsiao (1986, p. 169) asserts that the probability mass
function for this model using the set of T binary outcomes, yit , associated
with an individual whose unobserved heterogeneity is captured by the vari-
able α i , is given by

pr[yi uα i]G ∏
T

tG1

F [yit uyitA1 , α i]

G ∏
T

tG1

Φ[(2yitA1)(δ (t)Cγ yitA1Cα i)] (2)

where yiG( yi1 , yi2 , . . . , yiT ) and Φ( · ) is the standard normal cumulative dis-
tribution function. Since α i is unobserved, this model cannot be estimated
as written. Statisticians have found that they can address this problem by
integrating α i out of the multivariate outcome distribution. This integration
can be performed provided we make the following two assumptions: (1) α i

is drawn from a normal mixing distribution with zero mean and variance,
σ2, and (2) α i does not contribute to the lag of the first observation in the
sequence of observations, yi 0 .

6 The latter assumption is known as the
‘‘initial conditions assumption’’ (see, e.g., Nagin and Paternoster, 1991;
Nagin and Farrington, 1992a) and simply means that the process must be
observed at its beginning. When both assumptions are met, we can consist-
ently estimate δ and γ using the following probability mass function (Hsiao,
1986, p. 169):

pr[yi uα i]G ∏
T

tG1
#Φ[(2yitA1)(δ (t)Cγ yi,tA1Cα i)] d(α i) (3)

The advantage of this procedure is that we are able to integrate the individ-
ual heterogeneity, α i , out of the probability mass function. As a practical
matter, we can then interpret our probit coefficients as though the individual
heterogeneity did not exist. The quadrature methods described by Butler
and Moffitt (1982) are used to evaluate the integral.

5The mixing distribution refers to the underlying distribution of individual heterogeneity in the
population. Specifically, it refers to the particular functional form which the researcher has
chosen to represent this unobserved feature of the population from which the sample was
drawn. In the current case, the mixing distribution is continuous and normal. Intuitively, the
mixing distribution can be thought of as the formula by which the unobserved time-stable
traits are distributed in the population.

6In the current model, no other factors besides lagged y are included as explanatory factors.
In more sophisticated models with exogenous right-hand side variables, researchers must also
assume that αi is not correlated with any of these exogenous factors.
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The assumption about initial conditions is arcane and can be rather
difficult to understand in terms of the statistical model. Those analyzing
trend data must, nonetheless, directly confront this issue because violation
of this assumption can lead to a positively biased estimate of the coefficient
on the lag of the dependent variable, γ . Such bias could lead to incorrect
inference about the importance of state dependence (Hsiao, 1986). In this
paper, we sidestep the issue of initial conditions in order to concentrate on
the concerns raised by the first assumption concerning the normal distri-
bution of individual heterogeneity in the population. We do this by per-
forming our analysis on a dataset in which the initial conditions
assumptions are satisfied, the 1958 Philadelphia cohort collected by Wolf-
gang. The sample has arrest data starting at birth. Of course, much crimino-
logical research is performed on datasets for which this assumption is in
fact not satisfied. Because of the importance of the initial conditions issue,
we deal with it separately in another paper (Brame et al., 1998).

The assumption that the random effects, α i , are normally distributed
provides the basis for a convenient algorithm to evaluate the integral in Eq.
(3). Assuming that α i ∼ N(0, σ2), rather than some other distribution, is a
technical advantage because the methods for integration under the assump-
tion that heterogeneity is normally distributed are well developed (see, e.g.,
Greene, 1997, pp. 896–898). Yet it is possible that this normality assumption
is violated in most criminology research. It is axiomatic that criminal
offending follows a skewed distribution (Nagin and Land, 1993). Hence, it
is possible that criminal propensity is similarly skewed.7

The fact that an assumption is violated, however, does not necessarily
mean that the model cannot provide a reasonably good estimate of the
parameters of interest. Indeed, it was generally thought that the specification
of the distribution of individual heterogeneity in the population would not
have a large impact on estimates of structural parameters (Heckman and
Singer, 1984). On the other hand, Maltz (1994) has convincingly argued that
this type of general belief in the robustness of the statistical model can lead
to an undesirable situation in which individual researchers never check the
validity of their modeling assumptions.

In 1984, Heckman and Singer challenged the general belief in the distri-
butional robustness of random effects models when they studied this prob-
lem carefully in the context of single-spell duration dependence models.8

7But Osgood and Rowe (1994) have observed that a skewed criminal offending distribution
does not necessarily imply a skewed criminal propensity distribution.

8These models try to predict the amount of time spent in a particular spell, such as a spell of
unemployment. Researchers have tried to explain why people who have been unemployed for
a long time seem to stay unemployed. One explanation (state dependence) is that something
about unemployment causes an individual to become more unemployable, and hence it
becomes increasingly unlikely that the individual will leave the spell of unemployment. The
second explanation (individual heterogeneity) simply says that not all people are the same,
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They integrated the random effects, α i , out of the model based on the
assumption that they were drawn from one of three distributions in the
population: (1) normal, (2) log normal, and (3) gamma.9 In each case, the
coefficients of substantive interest led to dramatically different conclusions.
As they pointed out, ‘‘(A)d hoc specifications of model unobservables criti-
cally affect the empirical estimates achieved from ‘structural’ duration mod-
els’’ (Heckman and Singer, 1984, p. 276).

Nagin and Paternoster (1991, p. 183) responded to this specific result
by warning in the conclusion to their paper that the ‘‘(r)esults (using the
random effects model) can be very sensitive to distributional assumptions
about the nature of the heterogeneity.’’ Subsequently, Nagin and Land
(1993) implemented the semiparametric model proposed by Heckman and
Singer (1984) and described below. Although a random effects model, their
semiparametric approach imposes no parametric assumptions on the func-
tional form of the individual heterogeneity. Instead, the mixing distribution
can be viewed as multinominal (i.e., a categorical variable). The only restric-
tion placed on the mixing distribution is that it is discrete rather than con-
tinuous. Each category within this multinominal mixture can then be viewed
as a point of support for the distribution of the α i . Essentially what the
model does is estimate a separate intercept, or point of support, for as many
distinct groups as can be identified in the data. Within this framework, each
individual has some nonzero probability of being assigned to each point of
support.

Although statisticians often prefer nonparametric methods to para-
metric ones a priori, we believe that the dismissal of random effects models
on these grounds may have been premature. Rather than asking if different
functional form assumptions provide different answers using the same data,
we think the more interesting question is whether or not the classic random
effects model can provide reasonable estimates even if the true distribution
is not normal.

As a first cut at this question, we performed a simulation experiment
based on the process implied by Eq. (1). There were two parts to the experi-
ment. In the first part, we generated the heterogeneity, α i , from a highly
positively skewed lognormal distribution. In the second part, we again gen-
erated the heterogeneity from a skewed lognormal distribution, but in this

and as a result, some people are more motivated, employable, etc., than others. These higher
achievers will become reemployed sooner than the lower achievers. Eventually, only the low
achievers are still unemployed, which explains why those with long spells are less likely to
become reemployed.

9At present, it is necessary to develop special programs to estimate the models using assump-
tions other than the normal distribution. These models have more difficult likelihood functions
than the traditional models that assume normality.
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Table I. Monte Carlo Simulation Results

Parameter True value Average estimate SD % bias

Part 1: Log normal heterogeneity with strong positive skew

δ (1) −3.0 −2.132 0.112 28.9
δ (2) −2.9 −2.085 0.109 28.1
δ (3) −2.8 −1.997 0.095 28.7
δ (4) −2.7 −1.899 0.097 29.7
δ (5) −2.6 1.789 0.088 31.2
γ 0.3 0.395 0.105 31.7

Part 2: Log normal heterogeneity with moderate positive skew

δ (1) −3.0 −2.049 0.121 31.7
δ (2) −2.9 −1.956 0.106 32.6
δ (3) −2.8 −1.847 0.099 34.0
δ (4) −2.7 −1.747 0.101 35.3
δ (5) −2.6 −1.646 0.083 36.7
γ 0.3 0.311 0.131 3.7

part, the skewness of the heterogeneity was reduced in magnitude compared
to that in the first part. In each case, the standard random effects probit
model was used to estimate the parameters. For each part of the experiment,
we generated 100 data sets, with 1000 cases in each data set followed for
TG5 periods of time.10 Heckman and Singer’s (1984) results implied that
the performance of the standard random effects probit model will be poor
when the parametric assumptions upon which it is based are violated. In
examining the results of the first part of our simulation experiment, we
found this to be the case. Even after controlling for unobserved heterogen-
eity, the random effects probit estimator yielded biased estimates for all
structural parameters in the model. The second part of our experiment,
however, suggests that the magnitude of the bias is related to the amount
of skew in the distribution of the heterogeneity. In this part of the experi-
ment, our parameter estimates were still biased for the time-trend effects,
δ (t), that we included in the model but the estimate of the state dependent
effect, γ , was very close to the value used to generate the data. The results
are given in Table I and a more detailed description of our simulation proto-
col appears in Appendix A.

These results confirm that violation of the distributional assumptions
of the random effects model can be problematic. They also suggest, how-
ever, that the model provides an accurate estimate for the state dependent

10Our simulation protocol generates offense frequency distributions which are highly skewed,
like those found in many criminological data sets. Furthermore, we allowed for increasing
rates of offending over time by incorporating a linear time trend into the data generating
process.
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effect when the skew is moderate. A natural way to proceed, then, would
be to perform a simulation experiment over the range of skewness thought
to occur ‘‘in nature.’’ Unfortunately, we do not have a good sense of the
amount of skewness in criminal propensity. Heckman and Singer (1984)
have proposed a very appealing strategy in the face of such ignorance. In
view of the strong parametric assumption of the random effects model,
Heckman and Singer (1984, p. 309) recommend that researchers explicitly
compare the results of this estimator with a less restrictive, nonparametric
maximum-likelihood estimator (NPMLE):

The NPMLE can be used to check the plausibility of any particular parametric
specification of the distribution of unobserved variables. If the estimated param-
eters of a structural model achieved from a parametric specification of the distri-
bution of unobservables are not ‘‘too far’’ from the estimates of the same
parameters achieved from the NPMLE proposed in this paper, the econo-
metrician would have much more confidence in adopting the particular specifica-
tion of the mixing measure. Development of a formal test statistic to determine
how far is ‘‘too far’’ is a topic for the future.

In subsequent sections of this paper, we adopt this ‘‘compare and con-
trast’’ strategy advocated by Heckman and Singer. We propose to test the
robustness of the random effects probit model on actual data by comparing
the results from this model with those from the less restrictive semipara-
metric probit and fixed effect logit models. These latter two models should
provide estimates that are less biased a priori because they provide for a
more general structure for unobserved individual heterogeneity. If the ran-
dom effects model provides similar answers, then we have reason to think
either that the distributional assumptions are not violated or that the
violations do not affect the integrity of the random effects model.

It could be argued that, regardless of the results, we should automati-
cally move to these less restrictive models and discard the more restrictive
random effects model. This preference is hindered by the fact that these
less restrictive models impose their own constellation of costs in terms of
computational complexity, efficiency loss, andyor modeling limitations
which might prevent their widespread application.11 We believe that the best
approach would be to estimate two or more alternative models simul-
taneously. Such an approach would avoid overreliance on a particular mod-
el’s assumptions or conceptualization of unobserved heterogeneity. Further,
if different estimators yield similar answers, researchers can be more certain
that the results are not an artifact of a particular model specification, and,
no longer quite so worried about bias, they can confidently rely on the

11Nagin and Land are currently developing ‘‘canned’’ software which will facilitate easier use
of these methods with count data.
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results from the most efficient model specification. If the results are very
different, the researcher can decide to use the results from the more con-
servative model with fewer assumptions. In Section 4, we discuss a formal
method which will help researchers decide which model to use when the
results are ambiguously different.

In the next two sections, we describe the semiparametric probit model
and the fixed effects logit model with lagged dependent variables. We believe
that neither model has been previously estimated in the criminological litera-
ture. The semiparametric probit model is still a random effects model, but
it no longer restricts the mixing distribution to be normal. Instead it assumes
that the distribution of unobserved persistent heterogeneity is discrete. The
fixed effects logit model makes no assumptions at all about the distribution
of individual heterogeneity in the population.

2.2. The Semiparametric Probit Model

In this section, we consider another modeling strategy that can be
brought to bear on the problem of analyzing the relationship between crimi-
nal offending activity at different points in time. This approach, initially
developed for criminology by Nagin and (Nagin and Land, 1993; Land and
Nagin, 1996; Land et al., 1996), uses a finite mixture of discrete probability
distributions to study longitudinal sequences of event count outcomes. After
considering some of the basic features of this approach, we extend Nagin
and Land’s finite mixture strategy to the problem of investigating longitudi-
nal sequences of binary outcomes. This allows us to compare the model
directly with the random effects probit and avoids the additional complexity
of event count data.

In the conventional random effects probit model we are concerned
about whether we can obtain valid inferences about the relationship between
offending behavior at different discrete time periods when the distribution
of stable individual differences is not normal. As Nagin and Land (1993)
have pointed out, estimators based on finite mixtures do not make assump-
tions about the shape of the distribution of individual heterogeneity in the
population, sometimes called the mixing distribution. Consequently, infer-
ences based on the finite mixture estimator may be more accurate than infer-
ences based on the standard random effects probit estimator when the
distribution of stable individual differences is not normally distributed.

The probability mass function for the finite mixture model for a
sequence of binary outcomes is given by

pr( yi uπ , γ , δ , α )G ∑
K

jG1

π j3 ∏
T

tG1

( yitpr( yit uα j )C(1Ayit)(1Apr( yit uα j )))4 (4)



Bushway, Brame, and Paternoster38

where π j is the unconditional probability of membership in point of support
( j ). The probability mass for individual i, at time t, and point of support j
is given by

pr( yit uα j )GΦ(α jCδ (t)Cγ yitA1) (5)

where Φ( · ) is the standard normal cumulative distribution function, α j is
the intercept for point of support j, δ is a vector of tA1 binary time period
indicators that uniquely identify each specific discrete period in the data for
each individual, and γ captures the effect of the previous period’s activity
on the contemporary binary outcome.

While the finite mixture model described above provides a very flexible
way to approach the problem of controlling for unobserved heterogeneity,
it also has some weaknesses. First, if the true mixing distribution is continu-
ous, then a finite mixture estimator is a clear misspecification. Nevertheless,
as Nagin and Land (1993) have noted, even if the true mixing distribution
is continuous, we can still obtain useful inferences from finite mixtures
because they will approximate a continuous mixture in large samples and
the approximation will improve as the number of observations grows. With
finite numbers of observations, however, it is important to keep in mind that
the estimator only approximates a continuous mixture. Thus, the estimator
assumes that, within a discrete point of support of the mixing distribution,
all individuals are exchangeable with each other. To the extent that this is
not literally true, there will be some bias in the parameter estimates obtained
with this approach.

A second weakness becomes prominent in the case where longitudinal
sequences of binary outcomes are under investigation. In our experience,
we have not been able to identify parameter estimates associated with finite
mixtures unless we have data (1) with at least seven discrete periods of
outcomes and (2) where there are some periods in which the prevalence of
event occurrence is greater than 12–15%. Minimum conditions for identifi-
cation still need to be derived; thus, when the two above conditions hold, we
know the model is identified but we are uncertain about what the minimum
conditions for identification actually are. We are continuing to work on this
problem.

2.3. The Fixed Effects Model

In this section, we present the fixed effects logit model for the analysis
of offending participation. Unlike the previous two models, the fixed effects
model no longer conceptualizes the unobserved heterogeneity as part of the
error term. Instead, the fixed effects approach models unobserved hetero-
geneity explicitly as a time constant intercept for each individual in the
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sample. The model can be written as follows:

y*it Gα iCγ yitA1Cνit (6)

where α i is no longer an error component but rather a separate intercept
for each individual. This is known as an autoregressive logistic regression
model.

In general, this intercept is estimated for each individual. The intercept
will absorb all individual-specific factors which are constant over each wave
of the panel data. As a result, any significant state-dependent impact for the
model must be, by definition, independent of the unobserved heterogeneity.
This type of unequivocal control for unobserved heterogeneity as it is
revealed in the data would provide a very strong test of the state dependent
hypothesis.

Implementation of this model is made difficult by the discrete nature
of the dependent variable and the limited number of periods usually avail-
able in panel data. To see why, consider the likelihood function for the fixed
effect logit model, as given by Maddala (1987, p. 328):

pr( yit uα i , yitA1)G
exp(α iCγ yitA1)

1Cexp(α iCγ yitA1)
(7)

where yit is 1 if the ith individual commits a crime during this period and 0
otherwise, α i is a time constant intercept for each individual i which reflects
unmeasured sources of heterogeneity, and γ is the parameter that captures
the effect of prior offending activity. Estimating this model by maximizing
the likelihood function based on Eq. (7) will not provide consistent estimates
of α i unless the panel has a large number of time periods because each
period provides a unique observation of α i . Most microlevel criminological
data do not have the required large number of time periods. As a result,
estimates of γ , which are conditional on α i , are also not consistent in cases
with small T. In a continuous framework, this problem might be dealt with
by differencing the data or taking differences from the within individual
mean. Such a procedure will eliminate α i for each individual from the model
when the equations for Y* in adjacent periods are subtracted from one
another and allow for consistent estimates of γ . However, this procedure is
not possible in the discrete, nonlinear framework.

As a nonlinear alternative, Chamberlain (1984) suggests working with
a conditional likelihood function. The appropriate conditioning quantities
are the total number of offenses, Σyit , and the offense status in the last year
of observation, yiT . Initial conditions are dealt with by conditioning on the
first year of observation, yi1 .

12 Conditioning on these three quantities

12In our framework, initial conditions are not a concern since we will be using a data set in
which initial conditions are satisfied. This redundancy should not affect the results.
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together sweeps out the fixed effects and allows for the consistent estimation
of γ . Formally, he writes the conditional probability mass function as

pr1yi* ∑
T

tG1

yit , yi1 , yiT2G exp(γ ∑T

tG2 yityitA1)

Σdk∈Bi
exp(γ ∑T

tG2 dtdtA1)
(8)

This equation is complicated enough to require detailed explanation. Like
the other models we consider in this paper, the probability of observing the
ith individual’s joint distribution of the outcomes yiG( yi1 , . . . , yiT ) is the
central focus. Unlike the other models, however, this joint probability is
conditional on three quantities: (1) the sum of the outcomes over all periods
in the sequence (Σyit), (2) the outcome in the first period of the sequence
( yi1), and (3) the outcome in the last period of the sequence ( yiT ). We refer
to the set of all possible combinations of these three quantities as a triple,
Bj , where jG1, 2, . . . , J [with JG(TA1)B4]. Each of the J triples is com-
prised of all joint outcomes, ( yi1 , . . . , yiT ), which share the same values for
each of the three quantities in the triple. Each such longitudinal sequence
is denoted dkG(d1 , . . . , dT ), for the kG1, 2, . . . , K possible sequences that
comprise the triple, Bj . Note that not all triples have the same number of
sequences, so K is free to vary across each of the J triples.

The actual equation is comprised of two parts. The kernel of the
numerator is the sum of the products of adjacent outcomes within the
sequence for the ith individual multiplied by γ . The conditional maximum-
likelihood estimate of γ captures the effect of prior offending activity on
future offending activity. The denominator is the sum of the exponentiated
sums of the products of adjacent outcomes multiplied by γ for all K longi-
tudinal sequences that comprise the triple, Bj , to which the numerator
sequence belongs.

For example, suppose we wanted to estimate the joint probability of
the outcome [0, 0, 1, 1] in a TG4 period panel, where 0 means that the
individual did not offend in the period and 1 means that the individual did
offend in the period. We first need to identify the triple to which this out-
come set belongs. For this outcome, Σt yitG2, yi1G0, and yi4G1. There is
only one other outcome which belongs to this triple: [0, 1, 0, 1]. The sum of
the product of the adjacent terms for [0, 0, 1, 1] is just
(0B0C0B1C1B1)G1. The sum of the product of the adjacent terms for
[0, 1, 0, 1] is just (0B1C1B0C0B1)G0. Thus, an individual with a
[0, 0, 1, 1] outcome contributes exp(γ B1)y[exp(γ B0)Cexp(γ B1)] to the
conditional likelihood function. A detailed explanation for the case where
TG5 is presented in Appendix B.13

13We have developed SAS computer programs which will estimate fixed effects logit models of
this form for up to 10 waves of panel data. We will be happy to make these programs
available upon request.
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One unique feature of this model is that not all individuals will contrib-
ute to the conditional likelihood function. Only in the case where γ does
not cancel out of the conditional likelihood function associated with an
individual’s outcome sequence will that individual contribute to the likeli-
hood function. For example, in the case with four periods, only those indi-
viduals who offend according to the following 4 patterns (of a total of 16
offending patterns) contribute to the likelihood function: [1100], [0011],
[1010], and [0101]. In Corcoran and Hill’s (1985) data with five time periods,
only 7% of a sample of 1251 observations or 89 people actually contribute
to the likelihood function. Although Chamberlain claims that the results
are consistent regardless of the number of observations that actually con-
tribute to the likelihood function, Maddala (1987) nonetheless points to this
small sample problem as one of the weaknesses of the method. At the very
least, more cases should lower the standard error of the estimates.14

The main weakness in this model is that the conditioning exercise which
eliminates the fixed effect does not work when other variables are present.
Since other factors can be included in the absence of the lagged endogenous
variable, one is faced with a choice: either include other factors and omit
the lagged endogenous variable or include the lagged endogenous variable
and omit all other factors. The other two models described in this section
do not force the researcher to make such a choice. Therefore, while this
model does an excellent job of bluntly controlling for unobserved hetero-
geneity by including a fixed effect in the original specification (and then
eliminating the need to actually estimate the fixed effect), its usefulness for
identifying the effects of prior offending (state dependence) in the presence
of heterogeneity in criminal propensity is limited relative to the other
methods presented.

One very useful feature of the fixed effects model, however, is that it
can provide an upper bound on the state dependent effect, before other time
varying factors are included in the model. This simple autoregressive model
can also be estimated with the random effects and semiparametric models
to determine the impact of the more restrictive assumptions about the
individual heterogeneity made by these latter two models.

The paper proceeds by estimating just such a simple autoregressive
model on the 1958 Philadelphia cohort data with all three methods
described in this section. If the results are similar across all three models,
then we have reason to believe that the parametric assumptions are not very
restrictive. We also estimate a slightly more complicated model with an
intercept and six time dummies. We omit the time dummy for the first per-
iod. The time dummies allow for global shifts in offending propensity over

14One way to increase the number of cases is to increase the number of time periods.
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the period of observation (Gottfredson and Hirschi, 1990). Although the
above discussion did not include time-varying explanatory variables besides
lagged offending, the random effects and semiparametric models generalize
easily. This comparison will help to determine if the comparison made in
the simple case generalizes to more realistic models.

3. DATA

We base our analysis on data from the 1958 Philadelphia birth cohort
study (Tracy et al., 1990). The data are comprised of the 13,160 males who
were born in Philadelphia in 1958. We characterize the longitudinal offend-
ing sequence of each of these males with a 1BT vector, where TG7,15 yiG

[yi,tG1 , yi,tG2 , . . . , yi,tG7]. Each of the yi,t is coded 1 if the individual has a
police contact for criminal activity during that period and 0 otherwise. We
define the seven periods in the following way: Period 1Gage 6 to 8, Period
2Gage 9 to 11, Period 3Gage 12 to 14, Period 4Gage 15 to 17, Period 5G
age 18 to 20, Period 6Gage 21 to 23, and Period 7Gage 24 to 26. For
each individual the longitudinal offending sequence, yi , identifies the specific
periods within the seven-period panel in which that individual had at least
one police contact for criminal activity.

Figure 5 presents the proportion of the 13,160 males who had at least
one police contact for each of the seven periods. Corroborating much prior
research (see, e.g., Hirschi and Gottfredson, 1983; Blumstein et al., 1986;
Nagin and Land, 1993), this descriptive analysis suggests that participation
in criminal activity starts at very low levels in childhood and rises steadily
to a peak of nearly 25% in the 15–17 age band. After that point, partici-
pation steadily declines. In the next section, we turn to a description of our
analysis results.

4. RESULTS

4.1. Normal Random Effects Probit and Semiparametric Probit

For this paper, we are interested primarily in the following substantive
question: What is the relationship between prior and future criminal offend-
ing when the effects of stable individual differences have been taken into
account? A finding that prior offending has no effect on future offending
once unobserved persistent heterogeneity is controlled would be difficult to
reconcile with a pure state dependence explanation. Similarly, a finding that

15Past research used a maximum of five periods. We used seven periods, which we felt increased
the flexibility of this approach. Sensitivity analysis suggests that the following analysis is
robust to the number of periods used.
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Fig. 5. Prevalence of offending by age for 1958 Philadelphia birth cohort males
(NG13,160).

prior offending has a substantial effect on future offending even after con-
trolling for criminal propensity would be equally difficult to square with a
pure population heterogeneity explanation. We are also interested in
whether different methods for answering this question lead us to different
sets of conclusions.

To address these questions, we estimate the parameters of five models.
Model 1, presented in columns 2 and 3 in Table II, is of the form

y*it Gδ0Cγ yitA1Cε it (9)

where the error term, ε it , is given by ε itGα itCνit , with yitG1 when y*itH0
and yitG0, otherwise. The parameter estimates associated with this model
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Table II. Investigation of State Dependence with Normal Random Effects Probit Model

Model 1. No trend controls Model 2. Trend controls

Parameter Parameter
Parameter estimate utu ratio estimate utu ratio

Overall intercept −1.514 160.43 −2.924 64.68

Time trend effects
δ (1) 0 —
δ (2) 0.517 10.60
δ (3) 1.463 32.42
δ (4) 1.961 43.39
δ (5) 1.390 30.37
δ (6) 1.314 28.90
δ (7) 1.065 23.27

State dependent effect
γ 1.052 48.13 0.611 25.23

Cov(ε it , ε itC1)
ρ 0.120 7.16 0.331 18.88

log-likelihood −27,802.03 −25,312.56

include a population intercept term, δ0 , an estimate of the effect of offend-
ing in yitA1 , γ , and an estimate of the correlation between the collection
of ε it for the same individual, ρ. The maximum-likelihood estimate of the
correlation parameter, ρ, is calculated by dividing the variance of α i by the
variance of ε it (see Nagin and Paternoster, 1991; Nagin and Farrington,
1992a).

The results associated with Model 1 point to several conclusions. First,
the estimate of ρ (.120) is relatively small but significantly different from
zero. This provides evidence of persistent unobserved heterogeneity. Second,
the estimate of γ is positive, significantly different from zero, and substan-
tively quite large (1.052). The best way to interpret this estimate is to com-
pare pr[yit uα i , yitA1G1] to pr[yit uα i , yitA1G0]. In this case, pr[yit uα i ,
yitA1G1]GΦ[δ0Cγ ]G0.322, while pr[yit uα i , yitA1G0]GΦ[δ0]G0.065.
Thus, individuals who offended in the previous period are almost five times
more likely to offend in the current period as individuals who did not con-
trolling for individual differences.

Since Fig. 5 shows a pronounced time trend, we speculated that it
would be important to incorporate some form of time trend control. Model
2 is simply Model 1 with a dummy variable for TA1 time periods in the
analysis (the effect of the dummy variable for tG1 is absorbed into the
intercept term). The time dummies provide a very general kind of control
over population shifts in the probability of offending over time. Table II
presents the parameter estimates associated with Model 2.
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The results associated with Model 2 produce two important con-
clusions. First, the estimated heterogeneity in the α (i), as measured by ρ,
apparently increases to 0.331 from 0.120 as a result of controlling for time
trends. Second, the estimate of γ is somewhat lower in Model 2 than in
Model 1 (0.611 vs 1.052). As an indication of the effect that this estimate
implies, we compare predicted probabilities conditional on a particular time
period. First, we calculate pr[yitG4G1uα i , yitG3G1]GΦ[δ0Cδ4Cγ ]G0.362.
Next we calculate pr[yitG4G1uα i , yitG3G0)GΦ[δ0Cδ4]G0.168. The esti-
mates associated with Model 2, therefore, suggest that, at tG4, individuals
who offended in the previous period are twice as likely to offend in the
current period as individuals who did not. In short, the effect of introducing
a control for time trend is to attenuate the estimated effect of prior offend-
ing activity.16

We now turn to an investigation of the semiparametric random effects
probit model. Recall that this model has the same form as the normal ran-
dom effects probit model with one exception: we now assume that the α i

are drawn from jG1, 2, . . . , K discrete categories. Our specification allows
us to estimate each of the α j and the proportion of the population to which
each α j estimate applies. Table III presents Model 3, which is a semipara-
metric random effects probit model with no time controls. In this model,
we were able to identify two discrete categories for the α j . Thus, we have
α jG1 and α jG2 . The parameter estimates further suggest that the estimate
of α jG1 applies to 62.3% of the population, while the estimate of α jG2

applies to the remaining 37.7%. Interestingly, the estimated effect of prior
offending in this model is virtually identical to the effect that we estimated
for the normal random effects probit Model 1 (1.035 vs 1.052).

Table III also presents the estimates associated with Model 4. This
specification is similar to Model 3 with the exception of allowing for a time
trend in the probability of offending activity. Under Model 4, we were able
to identify three discrete categories for the α j .

17 Thus, the estimate of α jG1

16For comparison, we calculated these probabilities for other time periods as well.
T2 T3 T5 T6 T7

Probability of offending in period Tj

Offended in previous period 0.036 0.198 0.178 0.159 0.106
Did not offend in previous period 0.008 0.072 0.063 0.054 0.032

Ratio of probabilities 4.50 2.75 2.82 2.94 3.31
17This yields an interesting source of common ground between the normal and the semipara-

metric random effects probit models. Recall that in the normal random effects probit model,
controls for time trends significantly increased our estimate of ρ. In the semiparametric ran-
dom effects probit model, we were able to move to a KG3 point of support model when we
controlled for time trends, whereas only a KG2 point of support model was estimable when
time trends were ignored. In both models, then, we have evidence of increased unobserved
heterogeneity when time trends are held constant.
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Table III. Investigation of State Dependence with Semiparametric Random Effects Probit
Model

Model 3. No trend controls Model 4. Trend controls

Parameter Parameter
Parameter estimate utu ratio estimate utu ratio

Random effects
α (jG1) −1.796 36.33 −3.235 27.08
α (jG2) −1.050 27.85 −2.240 7.15
α (jG3) −1.609 8.11

Support mass
π (jG1) 0.623 13.30 0.663 6.71
π (jG2) 0.377 — 0.251 5.21
π (jG3) 0.086 —

Time trend effects
δ (1) 0 —
δ (2) 0.509 10.39
δ (3) 1.449 32.04
δ (4) 1.944 41.79
δ (5) 1.380 29.04
δ (6) 1.299 27.84
δ (7) 1.049 22.33

State dependent effect
γ 1.035 49.25 0. 608 23.72

log-likelihood −27,792.80 −25,302.06

applies to 66.3% of the population, while the estimates of α jG2 and α jG3

apply to 25.1 and 8.6% of the population, respectively. The most interesting
aspect of Model 4, however, is its agreement with the results of the normal
random effects probit model with time controls (Model 2). Specifically, the
estimated effect of prior offending in Model 4 is virtually identical to the
estimated effect of prior offending in Model 2 (0.608 vs 0.611). For this
specific analysis, then, the normal and semiparametric random effects probit
models lead to the same substantive conclusions about the relationship
between prior and future criminal behavior after controlling for stable
unobserved individual differences.

4.2. Model Comparison

What we have found thus far is that the semiparametric probit model
yields estimates that square precisely with the standard random effects pro-
bit estimator that makes strong parametric assumptions about the distri-
bution of unobserved persistent heterogeneity. The problem of deciding
whether to select the semiparametric effects probit model or the standard
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normal random effects probit model may be important in some situations.
As noted earlier, the basic framework for this decision is established by
Heckman and Singer (1984). In the case when the estimates obtained from
the semiparametric model are similar to those obtained from the normal
random effects model, they advocate choosing the random effects model
because of its more efficient estimates and more parsimonious structure. In
the case when the estimates differ, Heckman and Singer advocate adopting
the semiparametric estimator because it approximates any distribution of
unobserved heterogeneity. Since the normal random effects probit model
does not have this virtue, it seems quite sensible to place more confidence
in the semiparametric estimator when the two estimators lead to different
conclusions.

This discussion highlights the natural tension between the normal ran-
dom effects model and the semiparametric estimators. The normal model is
more parsimonious but it also makes stronger assumptions about variables
that cannot be observed. The semiparametric model does not make the same
strong assumptions about unobservable variables, but it requires estimation
of more parameters, is less efficient, and it is somewhat more difficult to
interpret. In light of this tension, it would be useful to have a formal model
selection strategy which would provide researchers with guidelines about
when to choose one method over the other when the estimates are neither
obviously similar (as in our case) nor obviously dissimilar. This need is
acknowledged by Heckman and Singer, who state that ‘‘(D)evelopment of
a formal test statistic to determine how far (apart) is ‘‘too far’’ is a topic
for the future (Heckman and Singer, 1984, p. 309).18 In what follows we
present a formal test which should help researchers choose between the
semiparametric and the normal random effects methods.

The main problem is that the normal probit and semiparametric models
are nonnested, meaning that one model is not a more general specification
of the other. Model selection strategies for frequentist (a.k.a. classical) stat-
istical comparisons of nonnested models are not well developed. Bayesian
model selection strategies, on the other hand, are better developed but they
are somewhat controversial [see, for example, the recent exchange between
Raftery (1996) and Gelman and Rubin (1996)]. Furthermore, all of the stat-
istical analyses presented in this paper are based on frequentist, not Baye-
sian, ideas. Despite these issues, we believe that there is considerable value
in using Bayesian model selection strategies for this problem. Here, we
explore one approach that is easy to implement and interpret.

The selection strategy we propose involves the calculation of the so-
called Bayesian information criterion (BIC) (see, e.g., Schwarz, 1978; Kass

18We are unaware of any recent attempts by these researchers to propose a formal test statistic.
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and Raftery, 1995). This approach is rare in criminology but not unprecend-
ented. Land et al. (1996) used the BIC to identify the appropriate number
of components in a mixing distribution of a semiparametric Poisson model.
What makes our problem different is that we are not comparing two semi-
parametric models, but rather we are comparing a semiparametric model
with a normal random effects model.

To illustrate this approach, suppose that we have two models in the
model space. For convenience, we denote these two models M1 and M2 ,
respectively, and the data on which the parameters of the model are esti-
mated is denoted D. The posterior probability for M1 is given by

p(M1 uD)G
p(D uM1) ∗ p(M1)

[p(D uM1) ∗ p(M1)]C[p(D uM2) ∗ p(M2)]

A similar operation is required for calculating p(M2 uD). Wasserman (1997,
pp. 6–8) details the calculations that are required for this equation. Unfortu-
nately, some of these calculations are quite difficult. As Kass and Raftery
(1995) show, a useful approximation—when one is willing to assign equal a
priori probability to each of the two models—can be obtained by

p(M1 uD)≈
exp(q̂1)

exp(q̂1)Cexp(q̂2)

p(M2 uD)≈
exp(q̂2)

exp(q̂1)Cexp(q̂2)

where

q̂1Gl
ˆ
1A

d1

2
log(n)

q̂2Gl
ˆ
2A

d2

2
log(n)

where lj is the log of the likelihood function associated with Mj , dj is the
number of parameters estimated under Mj , and log( ) denotes the logarithm
to the base e (Kass and Wasserman, 1995).

Now the assumption underlying the BIC is that the best way to select
between two candidate models is to choose the one that has the highest
posterior probability (when the priors are equal). From Wasserman (1997),
a convenient way to investigate this is to calculate the ratio

B12G
p(M1 uD)

p(M2 uD)

and if the ratio is larger than 1.0, we know that the posterior for M1 is
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Table IV. Jeffrey’s Scale of Evidence for the Interpretation of
Bayes Factors [i.e., exp(BIC)]a

exp(BIC) ≈ Bij Interpretation

BijF0.1 Strong evidence for Model j
0.1FBijF0.33 Moderate evidence for Model j
0.33FBijF1.0 Weak evidence for Model j
1.0FBijF3.0 Weak evidence for Model i
3.0FBijF10.0 Moderate evidence for Model i
BijH10.0 Strong evidence for Model i

aTable adapted from Wasserman (1997, p. 7).

greater than the posterior for M2 . If, on the other hand, the ratio is smaller
than 1.0, we know that the posterior for M2 is greater than the posterior
for M1 . From the above discussion, we also know that this ratio is difficult
to calculate. As Wasserman (1997) shows, however, it is easy to use the
approximations to calculate

B12≈ 3 exp(q̂1)

exp(q̂1)Cexp(q̂2)4ë3 exp(q̂2)

exp(q̂1)Cexp(q̂2)4
and the natural logarithm of this ratio, the BIC, can be calculated by

log(B12)≈ l
ˆ
1Al

ˆ
2C

d2Ad1

2
log(n)

which can then be exponentiated to recover B12 , as described by Kass and
Raftery (1995). Table IV, adapted from Wasserman (1997, p. 7), presents a
chart showing the interpretation of the magnitude of B12 . Evaluation of the
BIC provides a useful strategy for guiding model selection in these sorts of
situations. Specifically, Wasserman (1997, p. 14) observes that if the actual
process that generates the data is in the model space, BIC evaluation will
lead to the correct model choice as the sample size grows large. In addition,
he notes that if the process that generates the data is included in both M1

and M2 , the posterior probability for the more parsimonious model will
approach 1.0, while the posterior probability for the less parsimonious
model will approach 0.0.

We evaluated the BIC for our problem where M1 was the semipara-
metric probit model and M2 is the normal random effects probit model.
After exponentiating the approximation to log(B12), we obtained B12≈ 0.024.
Based on Table IV, this result suggests that the posterior probability of
the normal random effects probit model is much greater than the posterior
probability of the semiparametric probit model. If we were forced to choose
between the two specifications, then, the BIC would guide us to choose the
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Table V. Investigation of State Dependence with the Conditional
Fixed Effects Logistic Modela

Model 5. No trend controls

Parameter Parameter estimate utu ratio

State dependent effect
γ 1.591 38.61

log-likelihood −4627.28
aWe can transform the logistic state dependent effect so that it is
measured in ‘‘probit’’ units by dividing it by 1.6 or 1.7 (different
methodologists recommend different denominators). When we do
this, we obtain approximations of 0.994 and 0.936, respectively.

normal random effects probit model over the semiparametric model. This
is as expected. Recall that the estimates for the coefficient on lagged y were
very similar (0.611 vs 0.608, respectively) and the normal random effects
model is more efficient than the semiparametric model. Although further
work on optimal strategies for model selection in this setting would be valu-
able, our sense is that BIC provides useful information for choosing between
different estimators.

4.3. Fixed Effect Logits

Our final analysis focuses on the conditional fixed effects logit model.
Table V presents the results of this analysis (Model 5). Model 5 produces
one parameter estimate only, γ . As in the random effects probit models, γ
captures the effect of prior offending on future offending after controlling
for stable individual differences. But there are some important differences
as well.

First, the conditional fixed effects logit model does not allow all indi-
viduals to contribute to the likelihood function. Instead, only individuals
with outcome patterns that keep γ in the probability mass function for the
outcome set, yi , actually contribute to the likelihood function. In this case,
only 2,547 of the 13,160 individuals in the analysis had outcomes that
allowed them to contribute to the likelihood function. While this does not
induce any bias into the estimate of gamma, there is some loss of efficiency.
In exchange for this loss of efficiency, we gain very strong nonparametric
control over persistent unobserved heterogeneity. Second, at its current
stage of development, there is no way to introduce any controls for time
trends (or, for that matter, anything else) into the model. Thus, with a fixed
effects logit specification, we are confined to an analysis that does not
include any covariates except prior offending activity.
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The results obtained from estimating γ in Model 5 suggest, once again,
that there is a pronounced relationship between prior and future criminal
behavior once stable individual differences have been controlled. Since γ is
measured in logistic distribution units rather than normal distribution units,
its magnitude is not directly comparable to the estimates obtained in the
probit models. If we divide the logit-based estimate of γ by 1.6, however,
we get an approximation to the probit-based estimate of γ (see, e.g., Ame-
miya, 1981). In this case, the transformation yields an approximation of
γ ≈ 0.994. Since Model 5 does not include controls for time trends, we com-
pare it to the normal random effect probit (Model 1) and the semipara-
metric probit (Model 3) (γ G1.052 and γ G1.035, respectively). All three of
these models converge on virtually the same conclusion about the strength
of the relationship between prior and future criminal behavior net of stable
individual differences. Unfortunately, there is no formal test by which we
can compare the three models.19 However, we believe that the fixed effect
model provides a nice baseline upon which to establish the other two mod-
els, which have greater flexibility. If the semiparametric and fixed effect
models are very similar in the simplest models, we then have reason to
believe that the semiparametric model’s assumption about a discrete mixing
distribution is not binding. This should not change as the model specifica-
tion becomes more complex. In a sense, this comparison goes one step
beyond Heckman and Singer, because it provides a way to loosen one
additional assumption.

5. CONCLUSIONS

There is an ongoing stream of research initiated in 1991 by Nagin and
Paternoster which attempts to measure the role of state dependence in the
offending process, while controlling for observed and unobserved persistent
heterogeneity. This research has utilized the random effects probit model,
which the authors noted at the time could be highly sensitive to distri-
butional assumptions about the mixing distribution (the way unobserved
criminal propensity is distributed in the population). This observation had
been originally made by Heckman and Singer (1984). While Heckman and
Singer proposed alternative, semiparametric models, now estimated in the
field of criminology by Nagin and Land (1993), we do not believe that their
original intent was to advocate against the use of fully parametric models.
Rather, they suggested in their paper that researchers could increase their
confidence in fully parametric models by comparing the results obtained

19The BIC will not work in this case because the fixed effects model has a logistic distribution,
rather than a normal distribution like the other two models.
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with less restrictive nonparametric (or semiparametric) models. This paper
is based on that philosophy. We compare the results from a fully parametric
random effects probit model with those from a semiparametric probit model
with panel data from the 1958 Philadelphia cohort. Furthermore, we com-
pared these two sets of results with those from a model which makes no
assumptions whatsoever about the mixing distribution—the fixed effects
logit model. The analysis produced several key findings.

First, and most important, all five models we estimated using the three
methods suggest that there is a strong positive relationship between prior
and future criminal behavior even after stable unobserved individual differ-
ences have been held constant. Several major contemporary theories of
crime (see, e.g., Wilson and Herrnstein, 1985; Gottfredson and Hirschi,
1990) identify stable individual differences as the primary source of vari-
ation in criminal activity over the life span. It is difficult to reconcile such
theoretical explanations with the results we obtained in this analysis. These
substantive findings lead us to conclude that some kind of state dependence
process is at work, at least in the 1958 Philadelphia cohort data.

Second, given the first finding, it is also important to note that the
magnitude of the observed effect is much smaller than what we would have
measured in the absence of controls for unobserved heterogeneity. We
believe that this evidence provides strong support for the claim that any
future work on panel models which aims to estimate accurately the magni-
tude of the impact of time-varying components on offending must make use
of methods which control for stable unobserved differences.

Third, the use of any one method to ‘‘control’’ for stable unobserved
differences might reasonably be viewed with some suspicion. If we had used
only the normal random effects probit model, we could have been criticized
for ignoring the possibility that differences in crime-proneness are not nor-
mally distributed. If we had used only the semiparametric random effects
probit model, we could have been criticized for ignoring the possibility that
differences in crime-proneness are drawn from a continuous rather than a
discrete probability distribution. If we had used only the conditional fixed
effects logit model, we could have been criticized for limiting the model
unnecessarily and throwing away a large proportion of our data. Instead, we
used all three methods. And all three methods generated virtually identical
estimates of the relationship between prior and future criminal activity after
controlling for persistent unobserved heterogeneity. In attacking the data
with three approaches we are reasonably confident that the substantive con-
clusions discussed in the preceding paragraph are robust.

If the results had differed, the safe approach would have been to rely
most heavily on the results reported with the most general model estimated.
Because both the fixed effect and the semiparametric methods place fairly
restrictive demands on the data (because they make fewer parametric
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assumptions), researchers will occasionally find themselves unable to esti-
mate one or both models. In the case when only the random effects model
can be estimated, the results should be interpreted with a fair degree of
caution. Although we have illustrated this multiple-method approach with
a dichotomous dependent variable, it can be generalized to models with
count data and continuous data as well. The same approach can also be
taken in models without a lagged dependent variable.

Fourth, on a more technical note, our analysis suggests that controls
for time trends are particularly important whenever one wishes to investi-
gate the sources of the relationship between prior and future criminal
activity. Since we are not currently able to estimate fixed effect models that
allow for time trends, we are confined to random effects models. The two
random effects models that we specified provided evidence that (1) time
trend controls allow the estimator to identify greater levels of heterogeneity
in crime proneness and (2) models with time trend controls yield attenuated
estimates of the effect of prior criminal activity on future criminal activity.
Clearly, then, it is possible for very general temporal shifts in the probability
of offending activity to masquerade as genuine state dependence effects.
Fortunately, the addition of time controls to random effects models is a
very simple task.

Fifth, we discovered some reasons to believe that this pattern of results
will not be obtained in every case. For example, we conducted a Monte
Carlo simulation study to examine the effect of a nonnormal distribution
of crime proneness on the accuracy of conclusions drawn from the normal
random effects probit model. We found that increasing levels of positive
skew in the distribution of crime-proneness were associated with increased
bias in the estimated effect of prior criminal activity on future criminal
activity. Since there is no reason to believe, a priori, that the results of our
substantive analyses are generalizable beyond the specific data set that we
used, we think that multiple-method strategies for investigating questions
such as the one addressed here (as well as other questions that involve the
study of longitudinal data) are necessary.

Finally, we were able to implement a formal Bayesian model compari-
son technique to compare the semiparametric probit model with the random
effects probit model. This tool should help researchers make intelligent
choices between models when the results are more ambiguous than those
reported in this paper. The application of Bayesian modeling techniques to
compare nonnested models is an interesting approach that should be
explored further in future research.

APPENDIX A: SIMULATION PROTOCOL

We conducted two sets of simulations to evaluate the performance of
the random effects probit estimator that assumes normal unobserved
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heterogeneity. For both sets of simulations, we generated 100 data sets with
iG1, 2, . . . , NG1000 observations for tG1, 2, . . . , TG5 discrete time
periods. The data generating process is

y*it Gδ tCγ yitA1Cα iCνit

where the α i were drawn from the lognormal distribution. To construct the
lognormal variates, we exponentiated draws from the normal distribution.
The lognormal distribution can be usefully viewed as the natural logarithm
of a corresponding normal distribution with some mean, µ, and variance,
σ2.

For the first set of simulations, we used the unit normal as the corre-
sponding distribution for the lognormal variate, α i . In this case, the mean
of a lognormal variate corresponding to a unit normal variate is
exp((0C1)y2)G1.649 and the standard deviation of the lognormal variate
is (exp(0C2)Aexp(1))1y2G2.161. The skewness associated with α i for the
first set of simulations is given by20

(exp(1)C2)B(exp(1)A1)1/2G6.185

For the second set of simulations, we used the normal with zero mean
and 0.5 standard deviation as the corresponding distribution. In this case,
the mean is exp((0C0.25)y2)G1.133 and the standard deviation is
(exp(0C0.5)Aexp(0C0.25)1y2G0.604. The skewness associated with α i for
this set of simulations is (exp(0.25)C2)B(exp(0.25)A1)1y2G1.750.

We generated the νit from the unit normal distribution and simulated
a linear time trend by setting δ tG1G−3.0, δ tG2G−2.9, δ tG3G−2.8, δ tG4G

−2.7, δ tG5G−2.6. The state dependent effect, γ , was set equal to 0.3. At
each time period, each observation was assigned yitG0 if y*ito0 and yitG1
if y*itH0. In order to meet the initial conditions assumption, yi0 was set to
zero for all iG1, 2, . . . , N observations.

APPENDIX B: THE FIXED EFFECTS LOGIT ESTIMATOR

The heart of the fixed effects logit model involves conditioning on the
group of sufficient statistics, Σyt , yi1 , and yiT . The conditioning collects the
outcomes into sets, or triples, which share the same values of the sufficient
statistics. Then, we can assign the probability of a given outcome given that

20Note that the skewness of any symmetric distribution is zero.
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the outcome belongs to a given triple. We illustrate this procedure with a
series of steps.

Step 1

It helps to identify the number of triples in the outcome set. There will
be 4B(TA1) triples. For example, when TG5, there will be 16 triples, or
unique combinations of sufficient statistics. Then we can identify each of
the triple of outcomes by its unique set of sufficient statistics. This is easiest
to do in table form. Create three columns, one for each statistic—Σyt , yi1 ,
and yiT—and 4(TA1) rows. Each statistic has a set of possible outcomes,
which need to be considered in combination with the other statistics. They
are as follows: Σyt∈{0, . . . , T}, yi1∈{0, 1} and yiT ∈{0, 1}, where 0 indicates
no offense and 1 indicates an offense. Start with Σyt and map the possible
values of yi1 and yiT for each sum. The triples follow some consistent
patterns.

(A) ΣytG0: no offenses were committed. There is only one possible
combination of yi1 and yiT which will sum to 0, that is, yi1G0 and
yiTG0.

(B) ΣytG1. There are three triples in this group—the triple for those
outcomes which have both yi1G0 and yiTG0, the triple for those
outcomes which have yi1G0 and yiTG1, and the triple for those
outcomes which have yi1G1 and yiTG0. Note that there will be no
triple for those outcomes which have both yi1G1 and yiTG1, since
the sum of all outcomes is only 1.

(C) ΣytGn, where 1FnFTA1. There are four possible triples of out-
comes in each case—the triple for those outcomes which have both
yi1G0 and yiTG0, the triple for those outcomes which have yi1G

0 and yiTG1, the triple for those outcomes which have yi1G1 and
yiTG0, and the triple for those outcomes which have both yi1G1
and yiTG1.

(D) ΣytGTA1. As in the case where ΣytG1, there are only three
triples. The missing triple in this case will be the situation where
yi1G0 and yiTG0, since it is not possible to have this situation and
ΣytGTA1.

(E) ΣytGT. This triple mirrors the case where TG0, where instead of
all zeros, there are now all ones—an offense was committed in each
period. The only possible triple is the case where yi1G1 and
yiTG1.
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Example: TG5

Σyt yi1 yiT

0 0 0
1 0 0
1 1 0
1 0 1
2 0 0
2 1 0
2 0 1
2 1 1
3 0 0
3 1 0
3 0 1
3 1 1
4 1 0
4 0 1
4 1 1
5 1 1

Step 2

In this step we want to identify the total number of outcomes in each
triple. The key statistic to compute is the number of ‘‘free’’ offenses ( f ).
Free offenses are the number of offenses remaining after subtracting the
number of offenses that occur in either the first or the last period from the
total number of offenses. For example, if ΣytG1 and yi1G1 and yiTG0,
there are no free offenses. However, if ΣytG3 and yi1G1 and yiTG0, then
there are two free offenses.

Go through the table and compute the number of free offenses. Then,
in the next column, compute the number of outcomes by the following
rules.

(A) All cases that have no free offenses will have only one outcome.
The offenses are all assigned to either the first or the last period,
so the TA2 middle periods will have no offenses. All cases for
which fGTA2 will also have only one outcome because the TA2
middle periods must all have an offense.

(B) All other triples will have more than one outcome which satisfies
the sufficient statistics. Combinatorics can help determine a priori
how many possible outcomes there are. The formula is simply
(TA2)!yf !(TA2Af )!, where f is the number of free offenses. For
example, consider the case when TG5, ΣytG3, yi1G1, and yiTG

0. There are two free offenses since one of the total three offenses
is committed to occur in the first period. The remaining two
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offenses can occur in any of the TA2(3) middle time periods which are not
determined by the sufficient statistics. So in this case, there will be (5A2)!y
2!1!G3!y2!G3 possible outcomes. In fact, in the case
when TG5, if the triple is not limited to 1 outcome, there must be three
outcomes. As shown above, if there are two free outcomes, there are
three outcomes. If there is one free outcome, then once again, there will
be three possible outcomes, since 3!y1!2!G3.

As a check on this step, count the total of outcomes to make sure they
sum to the expected total, which is simply 2T. For example, when TG5,
there will be 25G32 total outcomes.

Example TG5

Σyt yi1 yiT f No. outcomes

0 0 0 0 1
1 0 0 1 3
1 1 0 0 1
1 0 1 0 1
2 0 0 2 3
2 1 0 1 3
2 0 1 1 3
2 1 1 0 1
3 0 0 3 1
3 1 0 2 3
3 0 1 2 3
3 1 1 1 3
4 1 0 3 1
4 0 1 3 1
4 1 1 2 3
5 1 1 3 1

Total 32

Step 3

Simply calculate each of the unique outcomes for each triple. Start with
the triples which have only one outcome. These are straightforward. Next,
move to the triples with more than one outcome. Simply write down all
possible unique orderings of the offenses for the ‘‘free’’ middle periods. As
T gets large, this can be tedious, but knowing how many unique outcomes
to expect should make the process easier. Then calculate the likelihoods
according to eq. 8 in the text.
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Example TG5

No. Prob(outcomeuΣyt , yi1 , yiT )
Σyt yi1 yiT f outcomes Outcome(s) Σyt yitA1 Gexp(γ Σyt yitA1)yD a

0 0 0 0 1 00000 1
1 0 0 1 3 01000, 00100, 00010 0, 0, 0 1byD, 1yD, 1yD

DG3
1 1 0 0 1 10000 1
1 0 1 0 1 00001 1
2 0 0 2 3 01100, 00110, 01010 1, 1, 0 exp(γ )yD, exp(γ )yD, 1yD

DG2 exp(γ )C1
2 1 0 1 3 11000, 10100, 10010 1, 0, 0 exp(γ )yD, 1yD, 1yD

DGexp(γ )C2
2 0 1 1 3 01001, 00101, 00011 0, 0, 1 1yD, 1yD, exp(γ )yD

DG2Cexp(γ )
2 1 1 0 1 10001 1
3 0 0 3 1 01110 1
3 1 0 2 3 11100, 10110, 11010 2, 1, 1 exp(2γ )yD, exp(γ )yD,

exp(γ )yD
DGexp(2γ )C2 exp(γ )

3 0 1 2 3 00111, 01101, 01011 2, 1, 1 exp(2γ )yD, exp(γ )yD,
exp(γ )yD

DGexp(2γ )C2 exp(γ )
3 1 1 1 3 11001, 10101, 10011 1, 0, 1 exp(γ )yD, 1yD, exp(γ )yD

DG2 exp(γ )C1
4 1 0 3 1 11110 1
4 0 1 3 1 01111 1
4 1 1 2 3 10111, 11011, 11101 2, 2, 2 exp(2γ )yD, exp(2γ )yD,

exp(2γ )yD
DG3 exp(2γ )

5 1 1 3 1 11111 1

a D is just the sum of the exp(γ Σyt yitA1) for each triple of outcomes.
bexp(0)G1.
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