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Abstract

Standardized effect sizes and confidence intervals are useful statistical assessments for

comparing results across different studies when measurement units are not directly compa-

rable. This paper aims to describe and compare confidence interval estimation methods for

the standardized contrasts of treatment effects in ANCOVA designs. Sample size proce-

dures are also presented to assure that the resulting confidence intervals yield informative

estimation with adequate precision. Exact interval estimation approach has theoretical and

empirical advantages in coverage probability and interval width over the approximate inter-

val procedures. Numerical investigations of the existing method reveal that the omission of

covariate variables has a negative impact on sample size calculations for precise interval

estimation, especially when there is disparity in influential covariate variables. The proposed

approaches and developed computer programs fully utilize covariate properties in interval

estimation and provide accurate sample size determinations under the precision consider-

ations of the expected interval width and the assurance probability of interval width.

Introduction

The utility of effect sizes and confidence intervals has been strongly emphasized in several edi-

torial guidelines and methodological implications. The standardized mean difference between

two independent populations is the most frequently used effect size measure across virtually all

disciplines of scientific researches. Accordingly, the intuitive formula Hedges’s [1] g or com-

monly known as of Cohen’s [2] d is an estimate of the population standardized mean differ-

ence and is defined as the difference between two sample means divided by their pooled

sample standard deviation under homoscedasticity. Unlike the unstandardized contrasts, the

effect size reporting and interpretation practices suggest that the standardized effect sizes are

useful when comparing results from multiple studies using measurement instruments whose

raw units are not directly comparable. Comprehensive expositions and practical uses about

standardized mean difference and related effect size measures are available in Grissom and

Kim [3], Kline [4], Lin and Aloe [5], Takeshima et al. [6], Zhang [7], Zhang and Heyse [8], and

the references therein.
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Considerable attention has also been drawn toward the development of interval estimation

methods for standardized mean difference, see Odgaard and Fowler [9], Smithson [10], Steiger

and Fouladi [11], Tian [12], Wu, Jiang and Wei [13], and Zou [14], among others. Standardized

contrasts of treatment effects and interval procedures are presented in Kline [4], Steiger and

Fouladi [11], and Steiger [15] in the context of ANOVA. Moreover, Grissom and Kim [3], Kline

[4], Levin [16], and Olejnik and Algina [17] addressed the calculation and interpretation of stan-

dardized contrasts of treatment effects in ANCOVA. However, these studies did not discuss the

issues of interval estimation of standardized treatment contrasts. The exceptional case of Lai and

Kelley [18] presented confidence interval formula and sample size determination of standard-

ized contrast effects for ANCOVA designs with only one covariate. Particularly, Lai and Kelley

[18] focused on the special cases of ANCOVA with a single covariate and suggested that, under

randomized designs, the linear contrast of covariate means is usually close to zero. Hence, the

corresponding covariate quantity can be omitted in the sample variance of a linear contrast for

confidence interval and sample size calculations of standardized treatment contrasts. Despite

the conceptual argument and technical simplification, they did not conduct empirical study to

justify the suggested procedures regarding the influence of omitted covariate variable. Hence, it

is of methodological importance to perform detailed numerical examination for clarifying the

adequacy of the approximate confidence interval and sample size methods. Moreover, their

model setting did not cover the more involved situations with more than one covariate variable.

Thus, it is of practical importance to present more accurate interval estimation and sample size

procedures for ANCOVA studies with possibly diverse covariate configurations.

Although randomized experiments are preferred in the gold standard of research designs, it

is still possible that randomized experiments may generates imbalanced groups in terms of

sample size and baseline disparities even in large studies. The related results about the impact

of covariate imbalance on power of ANCOVA studies and randomized clinical trials can be

found in Ciolino et al. [19,20], Egbewale, Lewis and Sim [21], Kahan and Morris [22] and the

references therein. More importantly, feasible power and sample size procedures were devel-

oped in Shieh [23–25] and Tang [26–28] to accommodate covariate randomness and imbal-

ance for randomized and nonrandomized designs. It should be emphasized that a thorough

and rigorous illustration of interval estimation, precision assessment, and sample size tech-

niques for standardized contrast effects of ANCOVA has not been given in the literature.

In view of the limited findings in the literature, the goal of the current article is twofold.

First, this research examines and compares exact and approximate confidence interval proce-

dures of standardized contrast effects for ANCOVA designs with one or more covariate vari-

ables. A second aim of the present study is to extend and complement the demonstration of

unstandardized contrast effects in Shieh [29] by developing exact precision and sample size

procedures for standardized contrast effects under the assumption of multinormal covariate

variables. Extensive numerical studies for interval estimation, precision assessment, sample size

determination were conducted to illustrate the advantages of the proposed techniques over the

approximate methods. In order to facilitate data analysis and design planning, computer algo-

rithms are presented to resolve the computational issues of the suggested procedures.

Methods

Interval estimation procedures

Consider the fixed-effects ANCOVA model with G treatment groups and Pmultiple covari-

ates:

Yij ¼ mi þ S
P
k¼1
Xkijbk þ �ij; ð1Þ
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where Yij is the score of the jth subject in the ith treatment group on the response variable, μi is

the ith intercept, Xkij is the score of the jth subject in the ith treatment group on the kth covari-

ate, βk is the slope coefficient of the kth covariate, and �ij is the independent N(0, σ2) error with

i = 1,. . ., G (� 2), j = 1, . . ., Ni, and k = 1, . . ., P (� 1).

In view of the importance and utility advocated in Grissom and Kim [4], Kline [5], and

Levin [18], the current study focuses on the appraisals of standardized contrasts rather than

the conventional or unstandardized contrasts. A standardized linear contrast of adjusted

group means fm�
1
; . . . ; m�Gg is defined as

c
�
¼

c

s
; ð2Þ

where c ¼
PG

i¼1
cim�i , ci is the linear coefficient with

PG
i¼1
ci ¼ 0; m�i ¼ mi þ

PP
k¼1

�Xk��bk is the

expected group response evaluated at the grand covariate means �Xk�� ¼
PG

i¼1

PNi
j¼1
Xkij=NT ,

and NT ¼
PG

i¼1
Ni. Note that a linear contrast of adjusted group means is equivalent to a linear

contrast of intercept parameters c ¼
PG

i¼1
cim�i ¼

PG
i¼1
cimi because

PG
i¼1
ci ¼ 0.

The standard results in Rencher and Schaalje [30] show that the least square estimator for

the ith intercept μi is given by

m̂i ¼
�Y i �

XP

i¼1

�Xki�b̂k; ð3Þ

where �Y i ¼
PNi

j¼1
Yij=Ni; b̂ ¼ b̂1; . . . ; b̂P

� �T
¼ S� 1

XXSXY ; SXX ¼
PG

i¼1

PNi
j¼1
ðXij �

�X iÞ

ðXij �
�X iÞ

T
, SXY ¼

PG
i¼1

PNi
j¼1

Xij �
�X i

� �
Yij � �Y i

� �T
, Xij ¼ X1ij; . . . ;XPij

� �T
,

�X i ¼
PNi

j¼1
Xij=Ni ¼ ð�X1i�; . . . ; �XPi�Þ

T
, and �Xki� ¼

PNi
j¼1
Xkij=Ni. Moreover, an unbiased estima-

tor of the adjusted group mean m�i is of the form

m̂�i ¼ m̂ i þ S
P
k¼1

�Xk��b̂k ¼
�Y i � S

P
k¼1
b̂k

�Xki� �
�Xk��ð Þ: ð4Þ

Thus, a convenient estimator ĉ for the contrast effect ψ is

ĉ ¼ SGi¼1
cim̂
�

i ¼ SGi¼1
cim̂i: ð5Þ

It can be shown that the linear contrast estimator has the distribution

ĉ � N c; t2ð Þ; ð6Þ

where t2 ¼ Var ĉ
� �

¼ s2V, V = a + Q/(NT − G),

a ¼
PG

i¼1
c2
i =Ni; Q ¼ ð

PG
i¼1
ci �X iÞ

TV � 1

XXð
PG

i¼1
ci �X iÞ, and VXX = SXX/(NT − G). Note that the

magnitude Q represents an estimate of the degree of covariate disparity in terms of the linear

contrast of standardized covariate means.

The confidence interval of the contrast effect ψ can be obtained by the standard transforma-

tion T and associated distribution:

T ¼
ĉ � c

t̂
� tðnÞ; ð7Þ

where t̂2 ¼ ŝ2V; ŝ2 ¼ SSE=n; SSE ¼
PG

i¼1

PNi
j¼1
ðYij � �Y iÞ

2
� STXYS

� 1

XXSXY , and ν = NT − G − P,

and t(ν) is the t distribution with degrees of freedom ν. Specifically, the 100(1 –α)% equal-tail
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two-sided confidence limits (ĉL; ĉU) of the contrast effect ψ are

ĉL ¼ ĉ � tn;a=2t̂ and ĉU ¼ ĉ þ tn;a=2t̂; ð8Þ

where tν,α/2 is the upper 100(α/2) percentile of the t(ν) distribution.

Confidence intervals

A natural estimator of the standardized contrast ψ� is

ĉ� ¼
ĉ

ŝ
: ð9Þ

Note that the well-known standardized mean difference index Hedges’s [1] g or Cohen’s [2]

d provides a slight overestimate of the standardized mean difference δ = (μE − μC)/σ between

the experimental and control groups. Similarly, the standardized contrast formula ĉ� is a posi-

tively biased estimator of ψ�. Following the model assumption, K ¼ nŝ2=s2 � w2ðnÞ, where

χ2(ν) is a chi-square distribution with degrees of freedom ν. Standard derivations show that E
[K–1/2] = {2−1/2Γ[(ν − 1)/2]}/Γ(ν/2) and E ¼ ½1=ŝ� ¼ ð1=sÞfðn=2Þ

1=2
G½ðn � 1Þ=2�g=Gðn=2Þ for

ν> 1 and Γ{�} is the gamma function. Because ĉ and ŝ2 are independent, an unbiased estima-

tor of ψ� can be obtained as ĉ�UB ¼ uĉ
� where u = Γ(ν/2)/{(ν/2)1/2Γ[(ν − 1)/2]} < 1.

Moreover, the standardized statistic T� has the distribution

T� ¼
ĉ

t̂
� t n; lð Þ; ð10Þ

where t(ν, λ) is a noncentral t distribution with degrees of freedom ν and noncentrality param-

eter λ = ψ�/V1/2. The fundamental properties and related applications of noncentral t distribu-

tion are available in Johnson, Kotz, and Balakrishnan [31, Chapter 31]. Then, the

noncentrality inversion procedure of Casella and Berger [32, Section 9.2.3], Mood, Graybill

and Boes [33, Section 4.2], and Venables [34] provide the exact confidence interval estimations

of ψ�.
Accordingly, the upper 100(1 –α1)% confidence interval of ψ� is of the form (ĉ�EL,1), in

which ĉ�EL satisfies

Pftðn; ĉ�EL=V
1=2Þ < T�Og ¼ 1 � a1; ð11Þ

where T�O is the observed value of T�. On the other hand, the lower 100(1 –α2)% confidence

interval of ψ� is of the form (–1, ĉ�EU) in which ĉ�EU satisfies

Pftðn; ĉ�EU=V
1=2Þ > T�Og ¼ 1 � a2: ð12Þ

Furthermore, a 100(1 –α)% two-sided confidence interval {ĉ�EL; ĉ
�
EU} of ψ� can be obtained

by jointly applying Eqs 11 and 12 with α1 = α2 = α/2 so that

Pfĉ�EL < c
�
< ĉ�EUg ¼ 1 � a: ð13Þ

The particular method has been demonstrated for obtaining exact confidence intervals of

standardized mean difference effect size in Kline [4], Odgarrd and Fowler [9], Smithson [10],

and Steiger and Fouladi [11]. Notably, the confidence interval {ĉ�EL; ĉ
�
EU} does not have a con-

venient closed-form expression. The numerical computations of exact confidence intervals

require the evaluation of the cumulative distribution function of a noncentral t variable. The
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corresponding SAS/IML and R computer programs for performing the exact confidence inter-

val calculations are available as supplementary material.

It is shown in Johnson, Kotz, and Balakrishnan [31, p. 513] for large degrees of freedom

that E[t(ν, λ)]¼
: λ and Var[t(ν, λ)]¼

:
1 + λ2/(2ν). The results suggest that T� _� Nðl; 1þ

l
2
=ð2nÞÞ for large samples. Hence, the standardized contrast estimator ĉ� ¼ V1=2T� has a

asymptotic distribution

ĉ� _� Nðc�; t�2Þ; ð14Þ

where τ�2 = V + ψ�2/(2ν). Using the asymptotic property, the approximate 100(1 –α)% equal-

tail two-sided confidence limits {ĉ�AL; ĉ
�
AU} of ψ� can be obtained as

ĉ�AL ¼ ĉ� � za=2t̂
� and ĉ�AU ¼ ĉ� þ za=2t̂

�; ð15Þ

where t̂�2 ¼ V þ ĉ�2=ð2nÞ and zα/2 is the upper 100(α/2) percentile of the standard normal

distribution. The same technique was previously recommended in Hedges [1] to construct

confidence intervals for the population standardized mean difference δ.

The functional relationship between the unstandardized and standardized contrast effects ψ
and ψ� = ψ/σ suggests approximate confidence interval of ψ� can be immediately obtained by

dividing the confidence limits {ĉL; ĉU} of ψ by the standard error estimate ŝ. This direct divi-

sion gives a approximate 100(1 –α)% equal-tail two-sided confidence interval {ĉ�DL; ĉ
�
DU} of ψ�

where

ĉ�DL ¼ ĉ� � tn;a=2V
1=2 and ĉ�DU ¼ ĉ� þ tn;a=2V

1=2: ð16Þ

The identical procedure was proposed in Bird [35] and Fidler and Thompson [36] for find-

ing the confidence interval of δ from the confidence limits of mean difference μE − μC, and in

Kline [4] for obtaining confidence interval of standardized treatment contrast from the inter-

val endpoints of treatment contrast in ANOVA.

It should be noted that the exact two-sided interval estimates {ĉ�EL; ĉ
�
EU} are not equidistant

from the standardized contrast estimate ĉ� except for the special case ĉ� ¼ 0. However, the

two approximate confidence intervals {ĉ�AL; ĉ
�
AU} and {ĉ�DL; ĉ

�
DU} are equidistant around

the estimate ĉ�. The two intervals {ĉ�AL; ĉ
�
AU} and {ĉ�AL; ĉ

�
AU} have the half-width HA ¼

za=2fV þ ĉ�2=ð2nÞg
1=2

andHD = tν,α/2V1/2, respectively. Note that the difference between zα/2

and tν,α/2 is usually trivial for large ν. Hence, it is generally true thatHD�HA and the interval

{ĉ�DL; ĉ
�
DU} is practically within the interval {ĉ�AL; ĉ

�
AU} even when the estimate ĉ� is nearly

zero. To contribute to the understanding of interval estimation of the standardized contrast

effects, numerical appraisals are presented next to investigate the estimation behavior of the

three different confidence intervals.

An example

Fleiss [37, Section 7.2] described a study comparing three methods of treating the learning

disabilities of children with respiratory diseases. The response variable is the number of correct

answers to a test with 15 questions, and the covariate variable is the number of correct answers

to a similar test with 7 questions. It is noted that the proportions of correct answers were not

close to zero or one. Hence, no further transformation was applied to transform the discrete

data for satisfying the normal assumption. The adjusted mean estimates and group sample

sizes are fm̂�
1
; m̂�

2
; m̂�

3
g ¼ 5:7408; 8:5512; 7:8950f g and {N1, N2, N3} = {19, 20, 20},
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respectively. Also, the covariate coefficient estimate is b̂ ¼ 1:2946 and the sample variance is

ŝ2 ¼ 3:2728. The omnibus F test of no treatment effect is F� = 12.52 with a p-value < 0.0001.

Accordingly, the null hypothesis of treatment effects is rejected and there exists statistically sig-

nificant differences among the three treatments at α = 0.05.

For illustration, standardized contrast analysis is presented here to complement the con-

ventional unstandardized contrast assessments. With {c1, c2, c3} = {–1, 1/2, 1/2}, the unstan-

dardized and standardized contrast estimates are ĉ ¼ 2:4853 and ĉ� ¼ 1:3721, respectively.

It can be shown that the linear contrast of standardized covariate means or the covariate dis-

parity index is Q = 0.2131 and the factor V of the variance of the linear contrast is V = 0.0814.

The 90% confidence intervals of the exact approach, asymptotic method, and direct division

are {0.8504, 1.8827}, {0.8558, 1.8885}, and {0.8947, 1.8496}, respectively. Moreover, the corre-

sponding 95% confidence intervals of the three procedures are {0.7519, 1.9820}, {0.7568,

1.9874}, and {0.8002, 1.9440}. These results suggest that the exact approach and asymptotic

method give very similar confidence limits and they evidently differ from the narrowest inter-

val constructed by direct division.

The computations of the exact confidence intervals can be performed with the supplemen-

tal SAS/IML and R programs. Researchers only need to provide the desired key settings to

replace the prescribed exemplifying values in the computer codes. Specifically, the program-

ming lines of the SAS supplemental file A for computing confidence interval of standardized

contrast are as follows:

PROC IML;

�USER SPECIFICATION PORTION;

�DESIGNATED ALPHA;ALPHA = 0.10;

�NUMBER OF GROUPS;G = 3;

�NUMBER OF COVARIATES;P = 1;

�TOAL SAMPLE SIZE;NT = 59;

�CONTRAST ESTIMATE;PSIH = 2.4823;

�SAMPLE VARIANCE;SIGSQH = 3.2728;

�FACTOR FOR THE VARIANCE OF A LINEAR CONTRAST TAUSQ;V = 0.081437;

�END OF USER SPECIFICATION PORTION;

The R supplemental program D has similar specifications:

ancova.scie.apx1.fun(alpha=0.1, g=3, p = 1, nt = 59, psih = 2.4823, sigsqh = 3.2728,

v = 0.081437).

Empirical comparisons

To provide a more thorough evaluation, simulation studies were performed to examine the

coverage performance of the interval procedures. On the other hand, the more involved preci-

sion assessments and sample size determinations of standardized contrast effects are presented

in the Results section. For ease of explication, the model and parameter configurations of the

learning disabilities study are modified and extended in this numerical examination. Specifi-

cally, Monte Carlo simulation studies of 10,000 iterations were performed with the normal dis-

tribution of the linear contrast ĉ � Nðc; t2Þ and the chi-square distribution of the model

PLOS ONE Assessing standardized contrast effects in ANCOVA

PLOS ONE | https://doi.org/10.1371/journal.pone.0282161 February 24, 2023 6 / 18

https://doi.org/10.1371/journal.pone.0282161


variance K ¼ nŝ2=s2 � w2ðnÞ. Note that the variance of a linear contrast has the simple

form τ2 = σ2V and V ¼ S3

i¼1
ci=Ni þ Q=ðNT � 3Þ. Accordingly, the error variance estimate and

covariate statistic of the learning disabilities data are set as the variance component σ2 = 3.2728

and covariate disparity Q = 0.2131. The contrast effect ψ for the contrast coefficients {c1, c2, c3}

= {–1, 1/2, 1/2} has four different magnitudes so that ψ = ψ� = ψ/σ = 0, 1, 2, and 3. Also, the

designated balanced designs with G = 3 have the group sample size N = 5, 10, and 20. For each

replicate, the lower and upper confidence limits {ĉ�EL; ĉ
�
EUg; fĉ

�
AL; ĉ

�
AU} and {ĉ�DL; ĉ

�
DU} were

computed for the 95% and 97.5% one-sided confidence intervals. These interval limits are then

combined to construct the 90% and 95% equal-tail two-sided confidence intervals. The simu-

lated coverage probability was the proportion of the 10,000 replicates whose confidence inter-

val contained the population standardized contrast effect. The adequacy of the one- and two-

sided interval procedures is determined by the error between the simulated coverage probabil-

ity and the nominal coverage probability. The results of the 12 combinations of total sample

size and standardized contrast effect are summarized in Tables 1 and 2 for the two-sided confi-

dence coefficient 1 –α = 0.90 and 0.95, respectively.

The simulated coverage performance in Tables 1 and 2 suggest that the exact approach is

excellent in attaining the nominal confidence levels for all one- and two-sided situations.

Although the sample size configurations are not large, the asymptotic method provides sur-

prisingly accurate results and is only slightly inferior to the exact procedure. Note that the

small discrepancies of the exact and asymptotic procedures are generally within the 95% simu-

lation variability of 0.006, 0.004, and 0.003 for the nominal coverage probability of 0.90, 0.95

and 0.975, respectively. However, the simulated coverage rates of the direct division are sys-

tematically lower than the nominal level, especially for large ψ� > 1. The exact interval proce-

dure generally yields asymmetric confidence intervals for ψ�. Consequently, the equidistant

confidence limits of the direct division technique tend to have undesirable effects. For the

model configurations examined here, the lower confidence limits of the one-sided upper 95%

and 97.5% confidence intervals are substantially less accurate than the counterparts or upper

confidence limits of the one-sided lower 95% and 97.5% confidence intervals. The only excep-

tions that the direct division gives acceptable coverage performance are those associated with

Table 1. The error between simulated coverage probability and nominal coverage probability of the 90% two-sided and 95% one-sided confidence intervals for the

number of groups G = 3, one covariate P = 1, contrast coefficients {–1, 1/2, 1/2}, error variance σ2 = 3.2728, and balanced designs with NT = 15, 30, and 60.

Exact approach Asymptotic method Direct division

NT ψ� Upper

95% CI

Lower

95% CI

Two-sided

90% CI

Upper

95% CI

Lower

95% CI

Two-sided

90% CI

Upper

95% CI

Lower

95% CI

Two-sided

90% CI

15 0 –0.0008 –0.0019 –0.0027 –0.0045 –0.0044 –0.0089 –0.0008 –0.0019 –0.0027

1 0.0037 –0.0011 0.0026 –0.0001 –0.0006 –0.0007 –0.0297 0.0129 –0.0168

2 0.0004 0.0031 0.0035 –0.0046 0.0062 0.0016 –0.0815 0.0087 –0.0728

3 –0.0006 0.0013 0.0007 –0.0040 0.0060 0.0020 –0.1325 –0.0155 –0.1480

30 0 –0.0035 –0.0038 –0.0073 –0.0047 –0.0057 –0.0104 –0.0035 –0.0038 –0.0073

1 –0.0024 0.0000 –0.0024 –0.0055 0.0003 –0.0052 –0.0294 0.0055 –0.0239

2 –0.0021 0.0005 –0.0016 –0.0065 0.0032 –0.0033 –0.0669 –0.0080 –0.0749

3 –0.0010 0.0018 0.0008 –0.0040 0.0062 0.0022 –0.1090 –0.0342 –0.1432

60 0 –0.0021 –0.0039 –0.0060 –0.0026 –0.0048 –0.0074 –0.0021 –0.0039 –0.0060

1 0.0008 –0.0012 –0.0004 –0.0010 0.0000 –0.0010 –0.0195 0.0001 –0.0194

2 –0.0039 –0.0012 –0.0051 –0.0067 0.0013 –0.0054 –0.0542 –0.0169 –0.0711

3 0.0001 0.0001 0.0002 –0.0021 0.0027 0.0006 –0.0972 –0.0460 –0.1432

https://doi.org/10.1371/journal.pone.0282161.t001
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ψ� = 0. Note that the three confidence intervals for the standardized contrast effect are asymp-

totically equivalent. However, when the magnitude is not zero, the direct method is substan-

tially less accurate than the other two procedures even for large sample sizes. In view of these

findings, the exact confidence interval estimation is recommended. When no statistical soft-

ware is available, the asymptotic method provides a viable alternative for hand computation.

However, the direct division procedure is too simple to be useful and is not appropriate for

general applications. Additional assessments were conducted to demonstrate the intrinsic

implications and the results suggest the same performance situations as reported here.

Results

Precision assessments and sample size determinations

Within the context of ANCOVA, Hochberg and Varon-Salomon [38] showed that the condi-

tional (on the covariates) confidence interval procedure compares favorably with the uncondi-

tional method based on the joint distribution of the response and covariate variables. Thus, the

inferential procedures of hypothesis testing and interval estimation are the same under both

fixed and random formulations. The distinction between the two modeling setups, however,

becomes crucial when testing power, coverage probability, and corresponding sample size cal-

culations are to be made. To exhibit the unique and distinct precision characteristics of confi-

dence intervals, two useful criteria have been considered in Kupper and Hafner [39] for one-

and two-sample problems. The suggested precision assessments maintain the expected magni-

tude of interval widths and the assurance probability of interval widths within a pre-assigned

threshold.

Precision assessments

When planning and conducting ANCOVA research, the actual values of the continuous mea-

surements of response and covariate variables for each subject are available only after the

observations are obtained. In addition to the randomness of normal responses, the stochastic

nature of covariate variables has to be taken into account in precision analysis under the

general and unconditional context of ANCOVA. It is convenient and useful to consider the

Table 2. The error between simulated coverage probability and nominal coverage probability of the 95% two-sided and 97.5% one-sided confidence intervals for

the number of groups G = 3, one covariate P = 1, contrast coefficients {–1, 1/2, 1/2}, error variance σ2 = 3.2728, and balanced designs with NT = 15, 30, and 60.

Exact approach Asymptotic method Direct division

NT ψ� Upper

97.5% CI

Lower

97.5% CI

Two-sided

95% CI

Upper

97.5% CI

Lower

97.5% CI

Two-sided

95% CI

Upper

97.5% CI

Lower

97.5% CI

Two-sided

95% CI

15 0 –0.0009 –0.0023 –0.0032 –0.0032 –0.0041 –0.0073 –0.0009 –0.0023 –0.0032

1 0.0005 –0.0009 –0.0004 –0.0016 –0.0011 –0.0027 –0.0222 0.0098 –0.0124

2 0.0002 –0.0002 0.0000 –0.0001 0.0015 0.0014 –0.0655 0.0082 –0.0573

3 0.0006 0.0004 0.0010 0.0010 0.0025 0.0035 –0.1127 –0.0039 –0.1166

30 0 –0.0008 –0.0005 –0.0013 –0.0023 –0.0014 –0.0037 –0.0008 –0.0005 –0.0013

1 0.0005 –0.0003 0.0002 –0.0012 0.0001 –0.0011 –0.0210 0.0049 –0.0161

2 –0.0017 –0.0018 –0.0035 –0.0023 0.0002 –0.0021 –0.0536 –0.0035 –0.0571

3 0.0011 0.0027 0.0038 0.0005 0.0045 0.0050 –0.0928 –0.0197 –0.1125

60 0 –0.0025 –0.0027 –0.0052 –0.0028 –0.0033 –0.0061 –0.0024 –0.0027 –0.0051

1 0.0015 –0.0012 0.0003 0.0006 –0.0010 –0.0004 –0.0129 0.0003 –0.0126

2 –0.0030 0.0003 –0.0027 –0.0041 0.0011 –0.0030 –0.0457 –0.0089 –0.0546

3 0.0010 0.0013 0.0023 0.0003 0.0033 0.0036 –0.0821 –0.0314 –0.1135

https://doi.org/10.1371/journal.pone.0282161.t002
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covariate variables have the independent multinormal distributions

Xij � NP μXi; ΣXð Þ ð17Þ

where μXi is a P × 1 vector and SX is a P × P positive-definite variance-covariance matrix for

i = 1,. . ., G, and j = 1, . . ., Ni. The quantity V in Var ĉ
� �

¼ s2V can also be expressed as V = a

(1 + bFX), where a ¼
PG

i¼1
c2
i =Ni, b = P/(ν + 1), and FX = Q/{ab(NT − G)}. The multivariate

results in Anderson [40, Section 5.2.2] and Muirhead [41, Section 3.2.3] show that FX has the

distribution

FX � FðP; nþ 1; xÞ; ð18Þ

where F(P, ν + 1, ξ) is the noncentral F distribution with degrees of freedom P and ν + 1 and

noncentrality parameter x ¼ ð
PG

i¼1
ciμXiÞ

T
ðaΣXÞ

� 1
ð
PG

i¼1
ciμXiÞ. It is noted in Anderson [40]

that for large samples the distribution of FX given by Eq 18 is approximately valid even if the

parent distribution of covariates is not normal. In addition, the robust features of the F and

Hotelling’s statistics have been examined empirically and theoretically in Chase and Bulgren

[42], Everitt [43], Holloway and Dunn [44], Hopkins and Clay [45], and Kariya [46,47].

Hence, the noncentral F distribution provides a robust approximation for general use.

A useful population covariate disparity index can be defined as

y ¼ ð
PG

i¼1
ciμXiÞ

TΣ� 1

X ð
PG

i¼1
ciμXiÞ. However, it is a common assumption for a randomized

design that the covariate characteristics are identical for all treatment groups with μX1 = . . . =

μXG = μX, and the noncentrality parameter and covariate disparity reduce to ξ = θ = 0. Accord-

ingly, the scaled quantity f2� = ξ/NT = θ/(aNT) = θ/a� has a similar role as the signal to noise

ratio f2 in ANOVA where a� ¼
PG

i¼1
c2
i =pi and pi = Ni/NT for i = 1, . . ., G. Thus, the conven-

tional benchmark of Cohen [2] for small, medium, and large effects of f = 0.10, 0.25, and 0.40

may serve as a general guideline for the magnitude of covariate disparity when no better basis

is available. However, the merit of a specific size of disparity should be assessed and interpreted

by directly comparing with the findings in related prior studies.

In order to accommodate the stochastic properties of the covariate and response variables

through the joint distribution of FX and T�, the expected width is evaluated for the interval

widthW ¼ ĉ�EU � ĉ
�
EL as

O ¼ E W½ � ¼ EFET W½ �; ð19Þ

where EF[�] and ET[�] are taken with respect to the noncentral F distribution of FX and the non-

central t distribution of T�, respectively. An alternative approach to precision appraisal of con-

fidence intervals is the assurance probability of interval widthW is not wider than the

designated bound ω (> 0):

G ¼ PfW � og ¼ EFET G½ �; ð20Þ

where G = 1 ifW� ω and G = 0 ifW> ω.

Sample size determinations

In planning research design, optimal sample size determinations need to be conducted to

achieve the designated precision requirement in interval estimation. For the current problem

of precise interval estimation of standardized contrasts, it is desirable to determine the mini-

mal sample sizes such that the expected width of a 100(1 – α)% confidence interval is within
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the selected bound ω (> 0):

O � o: ð21Þ

Also, one may compute the minimal sample sizes needed to guarantee, with a given assur-

ance probability 1 – γ (< 1), that the interval width of a 100(1 – α)% confidence interval will

not exceed the chosen threshold ω:

G � 1 � g: ð22Þ

Note that Lai and Kelley [18] presented approximate sample size formulas for interval esti-

mation of standardized contrasts for balanced ANCOVA with one covariate (Ni = N and

P = 1). They assumed that, under a randomized design, the linear contrast of covariate means
PG

i¼1
ci �Xi is usually close to zero and the sample variance of a linear contrast can be approxi-

mated as τ2¼
: aσ2. Extending such a simplification to the general case of ANCOVA designs

with one or more covariates, the distribution of T� ¼ ĉ=t̂ given in Eq 10 is simplified as

T� _� tðn; laÞ; ð23Þ

where λa = ψ�/a1/2. The expected width and assurance probability of interval widths are modi-

fied as

Oa ¼ ETa W½ � andGa ¼ ETa G½ �; ð24Þ

respectively, where ETa[�] is taken with respect to the approximate noncentral t distribution

t(ν, λa) of T�. These two simplified precision functions Oa and Γa provide alternative sample

size calculations for standardized contrast analysis. For comparative purposes, these approxi-

mate methods are also investigated to reveal the impact of omitted covariate effects on sample

size determinations.

Numerical illustrations

The underlying behavior and relative performance of the exact and approximate procedures

for precision and sample size calculations are demonstrated in the following empirical study.

First, the minimum sample sizes for the expected width and assurance probability criteria are

computed by the exact and approximate distribution functions under the designated model

configurations. Second, the accuracy of the precision and sample size procedures is examined

through Monte Carlo simulation study to clarify the influence of covariate features under a

wide range of model scenarios.

Accordingly, the balanced ANCOVA models with three treatment groups G = 3, and one to

five (P = 1, . . ., 5) normal covariate variables are used as the basis for numerical assessments.

The model configurations have the designated settings: the intercept parameters {μ1, μ2, μ3} =

{0.5, 0, 0}, contrast coefficients {c1, c2, c3} = {1, –0.5, –0.5}, and error variance σ2 = 1. Note that

the resulting standardized contrast effect is ψ� = 0.5. Because the covariate distribution func-

tion FX depends on the group mean values and variance-covariance matrix of the multinormal

covariate distributions through the covariate disparity index θ. Without loss of generality, the

corresponding mean values are set as μX1 = {θ1/2, 0, . . ., 0}, μX2 = μX3 = 0 where 0 is a P × 1 null

column vector, and SX = IP is the identity matrix of dimension P. Three different magnitudes

of covariate disparity are considered: θ = 0, 0.25 and 0.50 to represent potential covariate char-

acteristics in randomized and nonrandomized designs. Throughout this numerical demon-

stration, only balanced designs with sample size ratios {r1, r2, r3} = {1, 1, 1} are considered and

the confidence level is fixed as 1 –α = 0.95. The computed total sample sizes for homogeneous
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covariates θ = 0 with the expected width threshold ω = 1.00, 1.25 and 1.50, and P = 1, . . ., 5 are

presented in Table 3, while the corresponding total sample sizes associated with θ = 0.25 and

0.50 are summarized in Tables 4 and 5, respectively. The optimal total sample sizes for assur-

ance probability 1 – γ = 0.80 with ω = 1.00, 1.25 and 1.50 of bounded confidence intervals are

summarized in Tables 6–8 for θ = 0, 0.25 and 0.50, respectively.

Table 3. Computed sample size, estimated expected width, and simulated expected width for 95% confidence interval of standardized contrast when the number of

groups G = 3, standardized contrast effect ψ� = 0.5, and covariate disparity θ = 0.

The proposed approach The approximate method

ω Number of

covariate(s)

Total sample

size

Estimated expected

width

Simulated expected

width

Difference Total sample

size

Estimated expected

width

Simulated expected

width

Difference

1.00 1 75 0.9845 0.9844 0.0001 72 0.9982 1.0053 –0.0071

2 75 0.9912 0.9914 –0.0002 72 0.9984 1.0129 –0.0145

3 75 0.9932 0.9989 –0.0058 72 0.9987 1.0204 –0.0217

4 78 0.9854 0.9854 0.0000 72 0.9990 1.0288 –0.0298

5 78 0.9927 0.9926 0.0001 72 0.9993 1.0368 –0.0375

1.25 1 48 1.2392 1.2392 0.0000 48 1.2257 1.2393 –0.0136

2 51 1.2139 1.2140 –0.0001 48 1.2263 1.2540 –0.0276

3 51 1.2241 1.2275 –0.0034 48 1.2269 1.2687 –0.0418

4 51 1.2420 1.2417 0.0003 48 1.2276 1.2853 –0.0577

5 54 1.2166 1.2177 –0.0011 48 1.2283 1.3018 –0.0735

1.50 1 36 1.4410 1.4411 –0.0001 33 1.4841 1.5091 –0.0250

2 36 1.4646 1.4645 0.0001 33 1.4854 1.5359 –0.0505

3 36 1.4875 1.4896 –0.0021 33 1.4869 1.5663 –0.0794

4 39 1.4468 1.4461 0.0007 33 1.4885 1.5968 –0.1083

5 39 1.4708 1.4706 0.0001 33 1.4902 1.6309 –0.1407

https://doi.org/10.1371/journal.pone.0282161.t003

Table 4. Computed sample size, estimated expected width, and simulated expected width for 95% confidence interval of standardized contrast when the number of

groups G = 3, standardized contrast effect ψ� = 0.5, and covariate disparity θ = 0.25.

The proposed approach The approximate method

ω Number of

covariate(s)

Total sample

size

Estimated expected

width

Simulated expected

width

Difference Total sample

size

Estimated expected

width

Simulated expected

width

Difference

1.00 1 78 0.9916 0.9915 0.0001 72 0.9982 1.0332 –0.0350

2 78 0.9985 0.9982 0.0003 72 0.9984 1.0407 –0.0422

3 81 0.9851 0.9856 –0.0005 72 0.9987 1.0484 –0.0497

4 81 0.9925 0.9922 0.0003 72 0.9990 1.0573 –0.0583

5 81 0.9994 0.9989 0.0004 72 0.9993 1.0655 –0.0662

1.25 1 51 1.2348 1.2345 0.0003 48 1.2257 1.2750 –0.0493

2 51 1.2484 1.2484 0.0000 48 1.2263 1.2895 –0.0632

3 54 1.2231 1.2232 –0.0001 48 1.2269 1.3055 –0.0785

4 54 1.2371 1.2362 0.0009 48 1.2276 1.3221 –0.0945

5 57 1.2131 1.2134 –0.0003 48 1.2283 1.3382 –0.1099

1.50 1 36 1.4828 1.4830 –0.0002 33 1.4841 1.5526 –0.0685

2 39 1.4426 1.4426 0.0000 33 1.4854 1.5800 –0.0945

3 39 1.4642 1.4648 –0.0006 33 1.4869 1.6127 –0.1258

4 39 1.4885 1.4879 0.0006 33 1.4885 1.6435 –0.1551

5 42 1.4474 1.4486 –0.0013 33 1.4902 1.6783 –0.1881

https://doi.org/10.1371/journal.pone.0282161.t004
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It can be seen from the results of the proposed approach in Tables 3–8 that larger sample

sizes are required for smaller expected width threshold ω and the results for ω = 1 are almost

twice as those of ω = 1.5 in the same table. Also, the assurance probability principle demands

larger sample sizes than the expected width criterion for the settings examined here. It is

expected that the necessary sample sizes will increase for higher assurance probability levels

1 – γ> 0.80. The computed sample sizes of the approximate method also have similar patterns

with respect to the width threshold and precision criteria. However, because the omission of

Table 5. Computed sample size, estimated expected width, and simulated expected width for 95% confidence interval of standardized contrast when the number of

groups G = 3, standardized contrast effect ψ� = 0.5, and covariate disparity θ = 0.50.

The proposed approach The approximate method

ω Number of

covariate(s)

Total sample

size

Estimated expected

width

Simulated expected

width

Difference Total sample

size

Estimated expected

width

Simulated expected

width

Difference

1.00 1 81 0.9982 0.9975 0.0007 72 0.9982 1.0604 –0.0622

2 84 0.9860 0.9867 –0.0007 72 0.9984 1.0680 –0.0695

3 84 0.9923 0.9931 –0.0008 72 0.9987 1.0760 –0.0773

4 84 0.9989 0.9987 0.0002 72 0.9990 1.0852 –0.0862

5 87 0.9867 0.9862 0.0005 72 0.9993 1.0938 –0.0945

1.25 1 54 1.2306 1.2308 –0.0002 48 1.2257 1.3095 –0.0838

2 54 1.2433 1.2421 0.0012 48 1.2263 1.3243 –0.0979

3 57 1.2201 1.2213 –0.0012 48 1.2269 1.3407 –0.1138

4 57 1.2327 1.2324 0.0003 48 1.2276 1.3577 –0.1301

5 57 1.2454 1.2458 –0.0004 48 1.2283 1.3740 –0.1457

1.50 1 39 1.4599 1.4588 0.0010 33 1.4841 1.5952 –0.1112

2 39 1.4820 1.4821 –0.0001 33 1.4854 1.6235 –0.1381

3 42 1.4431 1.4428 0.0003 33 1.4869 1.6576 –0.1707

4 42 1.4640 1.4631 0.0009 33 1.4885 1.6891 –0.2006

5 42 1.4866 1.4881 –0.0014 33 1.4902 1.7246 –0.2345

https://doi.org/10.1371/journal.pone.0282161.t005

Table 6. Computed sample size, estimated assurance probability, and simulated assurance probability for 95% confidence interval of standardized contrast when

the number of groups G = 3, standardized contrast effect ψ� = 0.5, assurance probability 1 –γ = 0.80, and covariate disparity θ = 0.

The proposed approach The approximate method

ω Number of

covariate(s)

Total

sample size

Estimated assurance

probability

Simulated assurance

probability

Difference Total

sample size

Estimated assurance

probability

Simulated assurance

probability

Difference

1.00 1 75 0.8293 0.8299 –0.0006 75 0.9114 0.8312 0.0802

2 78 0.9125 0.9128 –0.0003 75 0.9121 0.7145 0.1976

3 78 0.8420 0.8358 –0.0118 75 0.9082 0.5980 0.3102

4 81 0.9186 0.9214 –0.0028 75 0.8992 0.4761 0.4231

5 81 0.8686 0.8680 0.0006 75 0.9000 0.3540 0.5460

1.25 1 51 0.9312 0.9297 0.0015 48 0.8479 0.7135 0.1344

2 51 0.8572 0.8586 –0.0014 48 0.8432 0.5510 0.2922

3 54 0.9240 0.9312 –0.0072 48 0.8309 0.4012 0.4297

4 54 0.8715 0.8709 0.0006 48 0.8337 0.2591 0.5746

5 57 0.9324 0.9278 0.0046 48 0.8290 0.1671 0.6619

1.50 1 36 0.8898 0.8830 0.0068 36 0.9604 0.8903 0.0701

2 39 0.9451 0.9451 0.0000 36 0.9542 0.7751 0.1791

3 39 0.8868 0.8841 0.0027 36 0.9473 0.6468 0.3005

4 39 0.8084 0.8084 0.0000 36 0.9464 0.4969 0.4495

5 42 0.9001 0.8980 0.0021 36 0.9388 0.3710 0.5678

https://doi.org/10.1371/journal.pone.0282161.t006
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covariate features, the computed sample sizes do not vary with the number of covariates P and

the covariate disparity θ. The estimated expected width and estimated assurance probability of

the exact and approximate procedures are also listed in Tables 3–8.

In the second stage, simulated values of expected width and assurance probability associ-

ated with the reported sample sizes and selected parameter configurations are computed

through a Monte Carlo study of 10,000 independent data sets. For each replicate, NT sets of

Table 8. Computed sample size, estimated assurance probability, and simulated assurance probability for 95% confidence interval of standardized contrast when

the number of groups G = 3, standardized contrast effect ψ� = 0.5, assurance probability 1 –γ = 0.80, and covariate disparity θ = 0.50.

The proposed approach The approximate method

ω Number of

covariate(s)

Total

sample size

Estimated assurance

probability

Simulated assurance

probability

Difference Total

sample size

Estimated assurance

probability

Simulated assurance

probability

Difference

1.00 1 87 0.8576 0.8571 0.0005 75 0.9114 0.1765 0.7349

2 87 0.8194 0.8162 0.0032 75 0.9121 0.1285 0.7836

3 90 0.8766 0.8808 –0.0042 75 0.9082 0.0880 0.8202

4 90 0.8437 0.8411 0.0026 75 0.8992 0.0595 0.8397

5 90 0.8052 0.8080 –0.0028 75 0.9000 0.0395 0.8605

1.25 1 57 0.8382 0.8447 –0.0065 48 0.8479 0.1986 0.6493

2 60 0.8867 0.9009 –0.0042 48 0.8432 0.1340 0.7092

3 60 0.8608 0.8651 –0.0043 48 0.8309 0.0920 0.7389

4 60 0.8167 0.8187 –0.0020 48 0.8337 0.0536 0.7801

5 63 0.8817 0.8859 –0.0042 48 0.8290 0.0276 0.8014

1.50 1 42 0.8800 0.8781 0.0019 36 0.9604 0.4908 0.4696

2 42 0.8308 0.8314 –0.0006 36 0.9542 0.3787 0.5755

3 45 0.8972 0.8957 0.0015 36 0.9473 0.2845 0.6628

4 45 0.8560 0.8645 –0.0085 36 0.9464 0.1956 0.7508

5 45 0.8033 0.8100 –0.0067 36 0.9388 0.1369 0.8019

https://doi.org/10.1371/journal.pone.0282161.t008

Table 7. Computed sample size, estimated assurance probability, and simulated assurance probability for 95% confidence interval of standardized contrast when

the number of groups G = 3, standardized contrast effect ψ� = 0.5, assurance probability 1 –γ = 0.80, and covariate disparity θ = 0.25.

The proposed approach The approximate method

ω Number of

covariate(s)

Total

sample size

Estimated assurance

probability

Simulated assurance

probability

Difference Total

sample size

Estimated assurance

probability

Simulated assurance

probability

Difference

1.00 1 81 0.8345 0.8271 0.0074 75 0.9114 0.4243 0.4871

2 84 0.8948 0.8932 0.0016 75 0.9121 0.3300 0.5821

3 84 0.8560 0.8571 –0.0011 75 0.9082 0.2468 0.6614

4 84 0.8101 0.8139 –0.0038 75 0.8992 0.1776 0.7216

5 87 0.8767 0.8805 –0.0038 75 0.9000 0.1239 0.7761

1.25 1 54 0.8661 0.8623 0.0038 48 0.8479 0.3882 0.4597

2 54 0.8070 0.8093 –0.0023 48 0.8432 0.2874 0.5558

3 57 0.8816 0.8795 0.0021 48 0.8309 0.1917 0.6392

4 57 0.8340 0.8371 –0.0031 48 0.8337 0.1162 0.7175

5 60 0.8995 0.8973 0.0022 48 0.8290 0.0693 0.7597

1.50 1 39 0.8740 0.8713 0.0027 36 0.9604 0.6804 0.2800

2 39 0.8066 0.8103 –0.0037 36 0.9542 0.5581 0.3961

3 42 0.8874 0.8921 –0.0047 36 0.9473 0.4390 0.5083

4 42 0.8337 0.8360 –0.0023 36 0.9464 0.3165 0.6299

5 45 0.9042 0.9072 –0.0030 36 0.9388 0.2251 0.7137

https://doi.org/10.1371/journal.pone.0282161.t007
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covariate values are generated from the prescribed multinormal distribution. These values

of covariates, treatment effects, and error variance σ2, in turn, determine the mean

responses for generating NT normal outcomes of the ANCOVA model. Because the covari-

ate coefficients are nuisance parameters, they are set as β1 = . . . = βP = 0.5 in the precision

analysis. According to the differences between the estimated and simulated precision quan-

tities of O and Γ in Tables 3–8, the exact approach results in outstanding performance for all

90 cases. In contrast, the approximate method does not provide accurate sample size calcu-

lations for most of the cases. Note that the simplified precision assessments Oa and Γa are

presumed valid under the assumption of randomized designs, such as the situations with

covariate disparity θ = 0 in Tables 3 and 6. However, the estimated expected width Oa is

consistently less than the simulated expected width for all the cases in Table 3. The results in

Table 6 reveal that the assurance probability calculation Γa is substantially larger than the

simulated assurance probability. Therefore, the approximate method generally underesti-

mates the sample sizes and the deficiency phenomenon is more prominent and noticeably

problematic for the cases with covariate disparity θ = 0.25 and 0.50 in Tables 4, 5, 7 and 8.

Consequently, the usefulness of the approximate procedures is extremely limited and the

exact techniques are recommended for precision assessments and sample size determina-

tions. Additional numerical assessments were also conducted for non-normal error t(10)

and non-normal covariates: Exponential(1), Gamma(5, 5−1/2), Laplace(0, 1), Log normal(0,

1/4), and Uniform(0, 1). The results show that the precision outcomes for expected width

and assurance probability are marginally affected by the violations of normal assumption.

Overall, the suggested confidence interval and sample size procedures preserve reasonably

good performance under various non-normal error and covariate situations. To facilitate

the execution of the suggested sample size procedures, SAS/IML and R computer algorithms

are presented in the supplemental file. For example, the user specifications of the supple-

mental SAS file B for performing sample size calculations to obtain designated expected

width are as follows:

PROC IML;

�USER SPECIFICATION PORTION;

�DESIGNATED ALPHA;ALPHA = 0.05;

�NUMBER OF GROUPS;G = 3;

�NUMBER OF COVARIATES;P = 5;

�VARIANCE;SIGSQ = 1;

�GROUP RATIOS;RVEC = J(1,G,1);

�CONTRAST COEFFICIENTS;CVEC = {1–0.5–0.5};

�STANDADIZED CONTRAST;PSIS = 0.5;

�COVARIATE DISPARITY;THETA = 0;

�DESIGNATED WIDTH;OMEGA = 1.5;

�END OF USER SPECIFICATION PORTION;

Moreover, the user specifications of the supplemental SAS file C, for performing sample

size calculations to ensure adequate assurance probability of achieving the desired width, are

listed as
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PROC IML;

�USER SPECIFICATION PORTION;

�DESIGNATED ALPHA;ALPHA = 0.05;

�NUMBER OF GROUPS;G = 3;

�NUMBER OF COVARIATES;P = 5;

�VARIANCE;SIGSQ = 1;

�GROUP RATIOS;RVEC = J(1,G,1);

�CONTRAST COEFFICIENTS;CVEC = {1–0.5–0.5};

�STANDADIZED CONTRAST;PSIS = 0.5;

�COVARIATE DISPARITY;THETA = 0;

�DESIGNATED WIDTH;OMEGA = 1.5;

�ASSURANCE PROBABILITY;AP = 0.80;

�END OF USER SPECIFICATION PORTION;

The corresponding specifications of R programs for expected width and assurance proba-

bility are presented in supplemental files E and F, respectively:

ancova.scie.apx2.fun(alpha=0.05, g = 3, p = 1, sigsq = 1, rvec = c(1,1,1), cvec = c(1,-0.5,-0.5),

psis = 0.5, theta = 0, omega = 1.5)

and

ancova.scie.apx3.fun(alpha = 0.05, g = 3, p = 1, sigsq = 1, rvec = c(1,1,1), cvec = c(1,-0.5,-0.5),

psis = 0.5, theta = 0, omega = 1.5, ap = 0.8).

It should be emphasized that the analytic complexity requires computer algorithms to com-

pute the exact confidence intervals and optimal sample sizes under various design configura-

tions. The developed computer programs substantially facilitate the recommended confidence

interval and sample size techniques in practical applications. Users can easily alter the exempli-

fying settings in the programs with their designated model specifications.

Conclusions

Measures of effect size and confidence intervals are extremely useful for comparing quantita-

tive information across different studies. This research describes and compares exact and

approximate confidence intervals for standardized contrast effects in ANCOVA. The theoreti-

cal and numerical findings show that the exact approach has analytic support and empirical

advantage over the other two approximate methods using asymptotic theory and direct divi-

sion. The advanced aspects of precision appraisals and sample size calculations are also investi-

gated for interval estimation of standardized contrasts. The existing study provided a shortcut

under the speculation that covariate disparity is unlikely to exist in randomized designs. How-

ever, the approximate technique actually does not give reliable precision and sample size out-

comes even when there is no covariate disparity. The proposed exact approach has the distinct

utility of accommodating the full distributional information of normal covariates, especially

the potential disparity of unequal means for both random and nonrandom ANCOVA designs.

Overall, the described results of interval estimation, precision assessment, and sample size
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planning for standardized contrasts update and expand upon current work of ANCOVA in

the literature.

Supporting information

S1 File. SAS programs for standardized contrast effects in ANCOVA designs.

(PDF)

S2 File. R programs for standardized contrast effects in ANCOVA designs.

(PDF)
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