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Assessing statistical and spatial validity of sediment

survey design and sampling densities: examples from

Lake Erie

Danielle E. Mitchell, K. Wayne Forsythe, Chris H. Marvin and

Debbie A. Burniston
ABSTRACT
Spatial interpolation methods translate sediment contamination point data into informative area-

based visualizations. Lake Erie was first sampled in 1971 based on a survey grid of 263 locations.

Due to procedural costs, the 2014 survey was reduced to 34 sampling locations mostly located in

deep offshore regions of the lake. Using the 1971 dataset, this study identifies the minimum sampling

density at which statistically valid, and spatially accurate predictions can be made using ordinary

kriging. Randomly down-sampled subsets at 10% intervals of the 1971 survey were created to

include at least one set of data points with a smaller sample size than that of the 2014 dataset.

Regression analyses of predicted contamination values assessed spatial autocorrelation between

kriged surfaces created from the down-sampled subsets and the original dataset. Subsets at 10%

and 20% of the original data density accurately predicted 51% and 75% (respectively) of the original

dataset’s predictions. Subsets representing 70%, 80% and 90% of the original data density accurately

predicted 88%, 90% and 97% of the original dataset’s predictions. Although all subsets proved to be

statistically valid, sampling densities below 0.002 locations/km2 are likely to create very generalized

contamination maps from which environmental decisions might not be justified.
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INTRODUCTION
Harmful organic and inorganic pollutants from industrial,

agricultural and urban sources have contaminated the

water, sediment and ecosystems of Lake Erie since the

mid-1800s (Evers et al. ). Non-essential heavy metals

including lead (Pb), cadmium (Cd) and mercury (Hg) are

highly toxic and persistent throughout these environments.

Heavy metal poisoning can cause severe health risks to

both human and wildlife populations through bioaccumula-

tion, or direct contact with polluted water and sediments

(Wuana & Okieimen ).

Lake Erie is the most densely populated and highly

industrialized Great Lake while also being the smallest
by volume at 484 km3 (GLIN ). Along its shoreline

are several major cities including Toledo, Ohio, Cleve-

land, Ohio, Erie, Pennsylvania and Buffalo, New York.

Since the enactment of the Great Lakes Water Quality

Agreement in 1972, efforts have been made by both the

Canadian and American governments, and environmental

agencies to remediate historical and contemporary ecosys-

tem pollution throughout the Great Lakes basin (IJC ,

). Toxic substances are more persistent in the deepest

parts of Lake Erie, which continue to contaminate the

basin’s ecosystems (Forsythe & Marvin ; Forsythe

et al. ). Historic and long-term monitoring and
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mapping of these contaminants is crucial for ongoing

remediation efforts.

Data collection

Since 1968, the Water Science and Technology Directorate

(previously the National Water Research Institute) and the

Great Lakes Surface Water Surveillance Program have col-

lected and analysed sediment samples for organic and

inorganic pollutants throughout the Great Lakes (Marvin

et al. , ; Rukavina et al. ; Forsythe et al.

a). In 1971, sediment samples were collected from

Lake Erie using a square survey grid. The survey grid was

composed of 263 sampling points spaced approximately

10 km apart. The most recent Lake Erie sediment survey

was conducted in 2014, where the sampling density was sig-

nificantly reduced due to the increased cost of sampling

procedures (Forsythe et al. ). Sampling points did not

follow the original sampling grid used in 1971; instead, a

restricted number of sampling points was randomly selected

that were mostly located in deep offshore regions of Lake

Erie, placing emphasis on non-point source pollution.

Only 34 sampling points make up the 2014 survey, almost

eight times smaller than the initial dataset from 1971.

Geovisualization of sediment contamination

Dot maps are a traditional medium used to display sediment

contamination (Largueche ; Forsythe & Marvin ;

Gawedzki & Forsythe ). Contamination patterns can

be observed in point form; however, trends and underlying

factors for contaminant distribution (i.e., bathymetry and

lake circulation patterns) are not recognizable or available

to assist with interpretation (Forsythe et al. c). Due to

advances in geospatial computation, spatial interpolation

methods, such as kriging, are now used to model estimated

contamination in a continuous data layer (Goovaerts ;

Lark & Ferguson ; Forsythe et al. b, c). Not

only are interpolated surfaces cost- and time-effective

(Simpson & Wu ), they also work to translate disjunc-

tive point data into communicable visualizations of spatial

patterns (Hessl et al. ). Doing so also expands the com-

munication of scientific research to a much broader

audience. For example, geovisualizations of trends, patterns
://iwaponline.com/wqrj/article-pdf/53/3/118/252019/wqrjc0530118.pdf
and processes are significant pieces of information in policy

development (Lark & Ferguson ; Forsythe et al. a,

b), pollution control and management (Wu et al. ;

Khosh Eghbal ), environmental science (Forsythe et al.

b, c) and risk assessment (Markus &McBratney ).

Kriging

Developed in 1951, kriging was initially used to predict ore

reserves in mines (Largueche ; Gawedzki & Forsythe

). Since then, the interpolation method has been success-

fully applied to other fields of study including soil studies

(Gotway et al. ; Yan et al. ; Simpson & Wu ),

hydrology (Olea ; De Solla et al. ), environmental

management (Chang et al. ; Lui et al. ), zoology

(Villard & Maurer ; McKenney et al. ), forestry

(Chen et al. ), horticulture (Dille et al. ) and those

specific to contamination in the Great Lakes (Forsythe &

Marvin ; Forsythe et al. c). There is however some

disagreement among researchers as to the minimum

survey samples required for kriging to produce statistically

valid and meaningful interpolated surfaces (Chang et al.

; Li & Heap ; Simpson & Wu ).

According to Webster & Oliver (), a minimum of 150

and up to 225 sampling points are required to conduct reliable

spatial interpolations, whereas Burrough&McDonnell ()

suggest between 50 and 100 sampling points. Kriging with less

than 50 sampling points was determined to create ‘erratic’ pre-

dictions (Webster & Oliver ) and at 19, kriging predicts

‘results [which] may only be an artefact’ of the actual process

(Chang et al. ). All things considered, interpolation accu-

racies are not guaranteed to improve with an exhaustive

sample density, and remind us of the cost- and time-effective-

ness of collecting limited survey samples (Simpson & Wu

). Producing a statistically valid and meaningful interp-

olated surface is not only influenced by the number of

sample points available (Webster & Oliver ; Painter

et al. ), but also the sampling density (Gotway et al.

; Ramsey ; Chang et al. ; McKenney et al. ;

Li & Heap ), sampling pattern (Villard & Maurer ;

Goovaerts ; Yan et al. ) and sampling direction

(Clark ; McBratney & Webster ; Ouyang et al. ).

Sampling surveys in other fields of research have also

been affected by the increased cost of conducting field
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work (Chang et al. ; McKenney et al. ; Lui et al.

; Yan et al. ; De Solla et al. ; Simpson & Wu

). In the interest of prolonging current and future moni-

toring efforts, researchers have attempted to determine the

smallest possible sampling densities (from which to conduct

kriging interpolation) by down-sampling their original data-

sets into randomly, or systematically, selected subsets

(Chang et al. ; McKenney et al. ; Yan et al. ).

Studies by Chang et al. (), McKenney et al. () and

Lui et al. () were not all successful in producing reliable

predictions in their respective experiments. Decreasing

sampling density to 25% or less of the original data in

McKenney et al. () resulted in low prediction accu-

racies, whereas Chang et al. () reported ‘sufficient’

results from point densities reduced by 20% and 40% of

the original dataset. There is not an absolute minimum

number of samples from which to perform kriging. Expert

knowledge of the study site and phenomena acting within

its boundaries is also essential for determining the represen-

tational accuracies of an interpolated surface (Goovaerts

; Forsythe et al. b, c).

Using the complete contamination dataset of Lake Erie

from 1971, this study aims to identify the minimum

sampling density at which statistically valid and spatially

accurate predictions can be generated. The sampling pattern

and density of the 2014 Lake Erie dataset will be scrutinized

to provide insight into whether it is adequate for performing

statistical and spatial analyses. This experiment intends to

identify the threshold below which the sampling density

of toxic contaminants in Lake Erie will produce very

generalized prediction surfaces from which policy and

environmental decisions might not be justified. In doing

so, contemporary sediment surveys could be better devel-

oped alongside historic survey designs to accommodate

evolving research objectives over time, while maintaining

the spatial reliability of sampling densities required to pro-

duce statistically valid and meaningful interpolated maps.
Table 1 | Descriptive statistics of Hg sediment contamination samples from Lake Erie

Year
Sample
count

Minimum
(μg/g)

Maximum
(μg/g)

Average
(μg/g)

Standard
deviation

1971 263 0.008 7.488 0.610 0.706

2014 34 0.004 0.777 0.159 0.164
MATERIALS AND METHODS

Sediment sampling surveys of Lake Erie were conducted by

Environment Canada in 1971, and the Great Lakes Surface

Water Surveillance Program in 2014. Contemporary
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sampling locations were randomly selected, mostly within

deep offshore regions of Lake Erie. These were identified

as having the greatest threats for sediment contamination.

When sampling locations were randomly selected close to

historic sample sites, they were relocated to that location

to allow for temporal comparisons between sites. Descrip-

tive statistics for Hg from the 1971 and 2014 surveys are

presented in Table 1.

Sediment samples were collected as mini-box cores; for

a complete outline of this sampling procedure, see Painter

et al. () and Marvin et al. (). Using this method,

the top 3 cm of sediment was collected, stored in pre-

washed jars and frozen for transportation to the lab for

analysis (Painter et al. ). The top 3 cm of the lake bed

is considered the active layer, where the greatest amount

of chemical and biological activity occurs (Dalia et al.

). As the upper limits of the lake bottom, it is also a ‘sub-

stance exchange’ zone between the lake sediment and the

lake water (Dalia et al. ).

Sediment samples from 1971 measured Hg contami-

nation between 0.008 μg/g and 7.488 μg/g. The maximum

contamination recorded is an outlier of the dataset but

was not removed since it would defy the principles of ran-

domized sampling. Extreme sediment contamination

values also identify highly polluted areas and should not

be discarded or ignored when creating estimated contami-

nation surfaces (Lui et al. ; Li & Heap ; Wu et al.

).

Ordinary kriging is the most commonly used technique

among kriging interpolators, namely, for its valuable output

of prediction errors and surfaces (Ouyang et al. ;

Forsythe & Marvin ). This method was used to estimate

the amount of Hg sediment contamination at unsampled

locations throughout Lake Erie. The 1971 dataset was best

modelled using a Gaussian distribution with a major range

of 100,000 m, a minor range of 50,000 m and an anisotropic

direction of 90�; the data were assumed to be anisotropic in
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nature due to the influence of lake currents and circulation

patterns on contamination distribution (Forsythe & Marvin

). These parameters were determined through exper-

imentation using various models and evaluating the cross-

validation statistics against the conventions for statistically

significant distributions. Geographic weight was applied to

a maximum of five and minimum of one neighbours. The

same parameters were used on all down-sampled subsets

to ensure consistency of the modelling technique.

Cross-validation statistics assess the accuracy, or amount

of error, between an estimated value and the actual value at a

sampled location (Ouyang et al. ; Li & Heap ). The

resulting estimation errors indicate the strength of the model

and semivariogram to predict all unsampled locations

(McBratney & Webster ; Forsythe & Marvin ;

Forsythe et al. ). The fit of a semivariogram model is

accepted as accurate and unbiased when the mean predic-

tion error (MPE) is close to 0, the average standard error

(ASE) is as small as possible (<20), the standardized root-

mean-squared prediction error (SRMSPE) is close to 1, and

there is minimal difference between the root mean square

prediction error (RMSPE) and ASE (Johnston et al. ;

Simpson & Wu ; Forsythe et al. a, b, c).
Figure 1 | Point density maps of (a) 90%, (b) 80%, (c) 70%, (d) 60%, (e) 50%, (f) 40%, (g) 30%,

://iwaponline.com/wqrj/article-pdf/53/3/118/252019/wqrjc0530118.pdf
When the MPE is close to 0, there is a marginal average

difference between measured and predicted values at

the same location; a MPE greater than zero indicates

underestimation of the predicted values, whereas prediction

errors less than zero show that values were estimated to be

higher than they actually are (Osburn ; Forsythe &

Marvin ). Additionally, a SRMSPE greater than or less

than 1 represents under- and overestimation of variability,

respectively (Johnston et al. ; Forsythe et al. b,

c).

Down-sampled survey density

The 1971 dataset is the most extensive survey of Lake Erie

available for analysis, and for that reason acts as the ideal

sampling density in this research (hereinafter referred to as

the ‘complete dataset’). Since the 2014 dataset only includes

34 locations (13% of the 1971 survey), experimental subsets

were down-sampled at 10% intervals to include at least one

set of data points with a smaller sample size than the 2014

dataset. Down-sampled subsets (Figure 1) were selected by

a stratified random sampling method using SPSS (IBM

Corporation ).
(h) 20% and (i) 10% randomly down-sampled subsets from the complete 1971 dataset.
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Random selection of sampling locations was intentional

to replicate (as closely as possible) the 2014 survey design.

Descriptive and spatial statistics of the complete 1971 data-

set and nine down-sampled subsets are presented in Table 2.

The smallest down-sampled subset at 10% of the complete

dataset includes 26 points, eight locations less than the

2014 dataset and is used as the lower sampling limit in

this research.

Cross-validation statistics were analysed for statistical

validity of the kriging model and parameters used for each

subset (Table 3). Predicted sampling values from each

subset were compared against predicted sample values of

the complete dataset using a linear regression analysis

(Table 3). This process was performed in McKenney et al.

(), where slopes and correlation coefficients of 1 identify
Table 2 | Descriptive statistics of Hg sediment contamination from the complete 1971 and do

Subset (%) No. of samples Min. (μg/g) Max. (μg/g) Ra

100 263 0.008 7.488 7.

90 237 0.008 7.488 7.

80 210 0.010 2.929 2.

70 184 0.008 2.929 2.

60 158 0.008 7.488 7.

50 132 0.008 2.929 2.

40 105 0.008 7.488 7.

30 79 0.008 2.929 2.

20 53 0.008 1.881 1.

10 26 0.056 2.817 2.

Table 3 | Kriging cross-validation statistics of the complete 1971 dataset and all down-sample

% Data MPE RMSPE SRMSPE

100 �0.001 0.580 1.216

90 0.001 0.611 1.255

80 0.001 0.384 0.909

70 0.002 0.354 1.019

60 0.003 0.703 1.188

50 0.002 0.448 0.998

40 0.000 0.907 3.138

30 �0.006 0.391 0.963

20 0.005 0.367 1.058

10 �0.007 0.339 0.794
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identical predictions between two datasets. Slopes greater

than 1 identify underestimation of the subset prediction to

the complete dataset, and slopes less than 1 show that the

down-sampled subsets overpredict values in comparison to

the complete dataset (McKenney et al. ).

Density change detection

Contamination maps utilizing the threshold effect level

(TEL) and probable effect level (PEL) were created from

each down-sampled subset. The TEL refers to the concen-

tration below which adverse biological effects are expected

to occur rarely, while the PEL defines the level above

which adverse effects are expected to occur frequently

(CCME ). The TEL and PEL for Hg are 0.17 μg/g and
wn-sampled subsets

nge (μg/g) Average (μg/g) Standard deviation Variance

48 0.610 0.706 0.498

48 0.620 0.722 0.521

919 0.594 0.579 0.335

921 0.559 0.558 0.311

48 0.616 0.775 0.601

921 0.632 0.564 0.318

48 0.714 0.879 0.773

921 0.552 0.563 0.317

873 0.520 0.476 0.227

761 0.873 0.779 0.607

d subsets

ASE RMSPE-ASE Adjusted r2 Slope

0.479 0.101 n/a n/a

0.489 0.122 0.996 0.988

0.423 �0.039 0.924 0.971

0.350 0.004 0.926 0.943

0.596 0.106 0.950 1.049

0.449 �0.001 0.873 1.046

0.292 0.616 0.726 0.602

0.403 �0.011 0.799 0.866

0.364 0.002 0.847 1.202

0.482 �0.105 0.908 0.754
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0.486 μg/g, respectively. The maps were reclassified to rep-

resent the spatial extent of Hg values in three categories:

<TEL, �TEL to <PEL and �PEL (Table 4).

Each map was transformed into a raster dataset (500 m

cell size, 0.05% of the 10 km grid) to perform calculations

between the complete and subset datasets. Contamination

categories of the complete dataset were renamed as 1

(<TEL), 2 (�TEL to <PEL) and 3 (�PEL). Subset categories

were renamed as 100 (<TEL), 200 (�TEL to <PEL) and 300

(�PEL). The Raster Calculator tool in ArcGIS (Esri )

was used to add the reclassified contamination categories

of the complete dataset to each subset individually. This

resulted in the creation of new numeric categories which

identify the degree and location of change between the com-

plete dataset and each down-sampled subset. Change

categories 101, 202 and 303 represent no change in contami-

nation classifications between the complete (original 1971)

and subset datasets. Change categories 102, 103 and 203

identify classification discrepancies where subset datasets

predicted lower Hg contamination values than was pre-

dicted by the complete dataset. In contrast, change

categories 201, 301 and 302 identify classification discrepan-

cies where subset datasets predicted higher Hg

contamination values than was predicted by the complete

dataset.
RESULTS AND DISCUSSION

All subsets had a MPE close to 0, SRMSPE close to 1, and

low RMSPE and ASE. MPE values close to 0 showed a

strong agreement between actual and predicted Hg contami-

nation values, meaning the kriging model made reasonable

estimations at unsampled locations. The highest SRMSPE

values were present in subsets which randomly included
Table 4 | Hg contamination intervals, and respective thresholds, used for the density

change detection analysis

Contamination
intervals <TEL (μg/g)

Contamination intervals
�TEL to <PEL (μg/g)

Contamination
intervals �PEL (μg/g)

0.000–<0.057 0.170–<0.275 0.486–<0.591

0.057–<0.113 0.275–<0.381 0.591–<0.697

0.113–<0.170 0.381–<0.486 �0.697
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the 7.488 μg/g outlier (100%, 90%, 60% and 40%). With

SRMSPE greater than 1, down-sampled subsets at 90%,

60% and 40% of the complete dataset had underestimated

the variability of predictions made by the kriging model;

not uncommon considering that kriging commonly underes-

timates predictions of high values (Webster & Oliver ).

Estimated values from each subset were individually

plotted against the estimated values from the complete data-

set to further assess the correlation between prediction

densities (slope and r2 values presented in Table 3). Subset

predictions were moderately (0.726) to strongly (0.996) cor-

related with predictions made using the complete dataset. At

60%, 50% and 20% of the complete dataset, slopes >1 ident-

ified underestimation of the subset’s prediction to estimates

made from the complete data. Despite the differences in

data density, locations, and pattern, predicted values of

each down-sampled subset were statistically valid according

to cross-validation statistics and correlation coefficients.

Predicted Hg sediment contamination using the com-

plete 1971 dataset is presented in Figure 2. Isolines

demarcate the spatial boundaries of threshold effect levels

(0.17 μg/g) and probable effect levels (0.486 μg/g) of Hg con-

tamination (CCME ). Most sediment contamination

<TEL (2,679.72 km2, or 10.39% of the Lake Erie analysis

area) is located in the central basin, along the Ontario shore-

line extending out into the centre of the lake. Sediment

contamination �TEL and <PEL is located throughout the

central and eastern basins representing 9,366.5 km2, or

36.3% of the analysis area. Contamination �PEL represents

the greatest spatial extent of sediment contamination

(12,941.95 km2, or 50.16% of the Lake Erie analysis area).

Subsets at 90%, 80% and 70% of the complete dataset

produced very similar Hg contamination patterns through-

out Lake Erie (Figure 3(a)–3(c)); exact spatial extents for

all contamination categories are presented in Table 5. Con-

tamination <TEL remains located along the Ontario

shoreline near the eastern extent of the central basin. Sedi-

ment contamination �TEL to <PEL is consistently found

across the central basin into the eastern basin, although

the extent of this category grows towards the Niagara

region at 80% and 70% subsets. The spatial extent of sedi-

ment contamination �PEL has consistent coverage in the

western basin, as well as near the Ohio and New York

shorelines. Overall, subset densities of 90%, 80% and 70%



Figure 2 | Kriging predictions of Hg sediment contamination in Lake Erie based on the complete 1971 dataset.
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of the complete dataset represent highly comparable pat-

terns of Hg contamination throughout Lake Erie.

Predictions made using 60% and 40% of the complete

data density also produced contamination patterns similar

to those predicted using the complete dataset as seen in

Figure 4(d) and 4(f) and Table 5. It is important to note,

however, the unusually high SRMSPE of 3.138 produced

using the 40% subset that highlights an underestimation of

the predicted dataset. Isolines predicted using the 50%

subset (Figure 4(e)) are especially abnormal for contami-

nation <TEL, as well as areas �TEL to <PEL. These

patterns are likely the result of a small sampling density

which randomly omitted the 7.488 μg/g outlier. Overall,

the range of Hg contamination expands to include minimum

contamination values of <0.057 μg/g at these densities. The

spatial extent of sediment contamination <TEL closely
om http://iwaponline.com/wqrj/article-pdf/53/3/118/252019/wqrjc0530118.pdf
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resembles the same extent of <TEL contamination as pre-

dicted by the complete dataset, with the exception of the

50% subset. Conversely, contamination predictions through-

out the western basin remain consistent with predictions

made with subsets at greater sampling densities.

The overall spatial extent of prediction maps made from

30%, 20% and 10% subsets are noticeably smaller (Figure 5

(g)–5(i) and Table 5). At 30% of the complete data density,

the area of contamination �PEL is noticeably different

from the complete dataset. Contamination �TEL to <PEL

represents most of the eastern basin and encroaches on

the expected �PEL monopoly in the western basin. At

20% of the complete PEL isolines demarcate increasingly

more generalized contamination patterns in comparison to

those created using the complete dataset. Due to the small

sampling density in the 20% and 10% subsets, sediment



Figure 3 | Kriging predictions of Hg sediment contamination in Lake Erie based on (a) 90%, (b) 80% and (c) 70% subsets of the complete 1971 dataset.
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Table 5 | Spatial extent (km2) of predicted Hg contamination by subset

Subset <TEL �TEL to <PEL �PEL Total analysis area No data

90% 2,497.62 9,489.27 13,001.47 24,988.36 811.63

80% 2,423.21 10,285.14 12,186.13 24,894.48 905.52

70% 2,881.99 10,295.58 11,810.79 24,988.36 811.63

60% 2,137.80 10,983.36 11,772.25 24,893.41 906.59

50% 760.12 10,883.36 13,250.99 24,894.47 905.52

40% 3,292.16 8,833.13 12,727.37 24,852.66 947.34

30% 2,413.04 11,426.09 9,447.82 23,286.95 2,513.06

20% 3,255.45 12,071.81 8,815.36 24,142.62 1,657.38

10% n/a 8,841.77 11,340.78 20,182.55 5,617.45
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samples were not located near the Ohio shoreline. This

leaves the Sandusky and Cleveland areas of Lake Erie

void of sediment contamination predictions. The 10%

subset least resembles the contamination patterns created

from kriging the complete dataset.

Categorical change detection analysis

Kriging of Hg contamination was best predicted using the

90%, 80% and 70% subsets. Less than 8% of pixels rep-

resented over- or underestimation of contamination

thresholds (Table 6). Change detection using the 90%

subset reported no change in 97% of the pixels. Over-

(1%) and underestimations (2%) were typically found at

the boundary of two contamination thresholds; this pattern

was common at the boundaries between <TEL, and �TEL

to <PEL using 80% and 70% subsets as well. Predictions

made using the 80% and 70% subsets reported no change

in 90% and 88% of pixels, respectively. Underestimations

of �TEL to <PEL, and �PEL were common along the

PEL isoline in the eastern basin, and nearest the Ohio

shore. The locations and extent of over- and underestima-

tions made by the 90%, 80% and 70% subsets are likely

representative of the transition zones between contami-

nation thresholds and the size of the raster cell used to

detect categorical change.

Greater discrepancies in predictions were made using

the 60%, 50% and 40% subsets than those at higher

sampling densities; however, over- and underpredictions

remained largely along the boundaries between
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contamination thresholds. Using the 60% subset, 86% of

pixels reported seeing no change from predictions made

using the complete dataset. Over- and underestimation of

predictions were recorded in 8% and 6% of pixels, respect-

ively, most of which densely surrounded the

contamination threshold boundaries. Predictions made

using the 50% and 40% subsets predicted 75% and 79%

agreement between predictions made using the complete

dataset, respectively. The 50% subset overpredicted (�TEL

to <PEL) nearly the entire region identified as <TEL by

the complete dataset. Using this subset, over- and underesti-

mations are no longer confined to contamination threshold

boundaries as seen previously at higher sampling densities.

Severe underestimation occurs using the 40% subset

where a small section (147.5 km2) of Hg contamination is

predicted to be <TEL when previously identified as �PEL.

An even smaller region (2.5 km2) of Lake Erie was classified

to represent severe overestimation where the 40% subset

predicted contamination �PEL when previously reported

as <TEL in predictions made by the complete dataset.

Interpolation of the 30%, 20% and 10% subsets resulted

in the greatest instances of over- and underestimation of

contamination versus the complete dataset. Predictions

made using the 30% subset predicted 78% agreement

between predictions made using the complete dataset.

Agreements between datasets decreased to 75% using the

20% subset, and 51% using the 10% subset. Severe over-

(269.75 km2) and underestimations (81 km2) were recorded

in predictions made using the 10% subset. Over- and under-

estimations continued to be estimated below the TEL isoline



Figure 4 | Kriging predictions of Hg sediment contamination in Lake Erie based on (d) 60%, (e) 50% and (f) 40% subsets of the complete 1971 dataset.
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Figure 5 | Kriging predictions of Hg sediment contamination in Lake Erie based on (g) 30%, (h) 20% and (i) 10% subsets of the complete 1971 dataset.
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Table 6 | Percent change in pixels classified to represent no change, over- and underes-

timations of Hg sediment contamination from kriging predictions based on 90%,

80%, 70%, 60%, 50%, 40%, 30%, 20% and 10% subsets of the complete 1971

dataset

%
Subset

% No
change

%
Overestimation

%
Underestimation

% No
data

90 97 1 2 0

80 90 6 4 0

70 88 8 3 1

60 86 8 6 0

50 75 8 17 0

40 79 11 9 1

30 78 13 7 2

20 75 18 3 4

10 51 7 22 20
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in the central basin, below the PEL isoline in the central

basin above the PEL isoline in the eastern basin.

Smaller sampling densities and their spatial patterns can

influence the coverage of predictions made throughout the

lake. This change detection analysis also accounted for the

proportion of pixels representing ‘no data’ as predicted sur-

faces made from subsets became increasingly smaller than

that made from the complete dataset. The spatial extent of

sampling points from the 90%, 80%, 70%, 60%, 50% and

40% subsets recorded ‘no data’ in �1% of pixels. Prediction

surfaces made using the 30%, 20% and 10% subsets

recorded ‘no data’ in 2%, 4% and 20% of the study area,

respectively.
CONCLUSION

Prediction errors measure the legitimacy of interpolated sur-

faces. Although each down-sampled subset was deemed

statistically valid by cross-validation statistics, spatial analy-

sis of each predicted surface identified significant deviations

from contamination patterns of the complete dataset, which

is considered to be the most accurate representation of Hg

contamination in Lake Erie. In some cases, statistical

validity may not translate into spatially reliable contami-

nation maps. For example, while the cross-validation

statistics of the 2014 Hg dataset are satisfactory (MPE of

�0.009, RMSPE of 0.166, SRMSPE of 1.446 and ASE of
://iwaponline.com/wqrj/article-pdf/53/3/118/252019/wqrjc0530118.pdf
0.106), predictive contamination maps at sampling densities

of 0.001 samples/km2 may not produce reliable or meaning-

ful representations of contamination patterns throughout

Lake Erie (Figure 6).

Herein lies some evidence regarding the potential confi-

dence given by cross-validation statistics. Returning to the

foundation of kriging, locations closer together are expected

to record similar levels of contamination than those further

apart (Verly et al. ). Sampling densities and location pat-

terns are highly influential to the underlying data structure

from which kriging is performed (Li & Heap ). As the

sampling density decreases in smaller subsets, the search

neighbourhood expands much wider to find a maximum

of five and minimum of one nearby sampling locations.

The average distance between nearest neighbours in the

90% subset is <1 km difference from the average nearest

neighbours in the complete dataset. Nearest neighbours in

the 10% subset are, on average, 6 km further apart than

those in the complete dataset. Sparse data density is

known to produce more generalized interpolated surfaces

(Li & Heap ), which is noticeable in kriged maps cre-

ated with subsets <20% of the complete dataset. Isolines

demarcating the boundaries of sediment contamination

<TEL, �TEL to <PEL and �PEL become smoother, alter-

ing their shape, size and locations throughout the lake.

Visualizations of Hg contamination in Lake Erie convey

very different stories at subsets <20% of the complete data-

set. From a decision-making perspective, the representations

of sediment contamination, especially from the 10% subset

could lead to them being of limited usefulness regarding

the state of contamination in Lake Erie.

Exploratory data analysis revealed an outlier in the

1971 Hg contamination dataset (7.488 μg/g) which was

not removed from the dataset when randomly down-

sampling subsets were created. This is simply due to that

fact that extreme outliers are particularly important pieces

of information in contamination datasets (Li & Heap

). The 7.488 μg/g outlier, located in the north-east

corner of the eastern basin, was randomly selected to

remain in the 90%, 60% and 40% subsets. The relatively

high sample density of the 90% subset did not allow the out-

lier to drastically influence the interpolation method nor the

resultant contamination map. Cross-validation statistics for

the 60% and 40% subset indicate slight underestimation of



Figure 6 | Kriging predictions of Hg sediment contamination in Lake Erie based on the 2014 dataset.
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variability in their respective datasets (Johnston et al. ;

Forsythe et al. a) relative to the rest of the subsets. The

categorical change detection analysis identified both

severe underestimation (103; subset (<TEL) underestimated

complete dataset (�PEL)) and severe overestimation (301;

subset (�PEL) overestimated complete dataset (<TEL)) of

predicted contamination using the 40% subset in the eastern

basin. The outlier appeared to have no extraneous influence

on predictions made using the 60% subset, producing simi-

lar contamination values as were made by the complete

dataset. In subsets without the outlier, substantial portions

of the eastern basin are underestimated (�TEL to <PEL)

in comparison to the complete dataset (�PEL).

One goal of these experiments was to determine if the

34 samples collected in the 2014 survey are sufficient to

produce statistically valid and spatially meaningful contami-

nation maps. It is, however, not the number of samples but
om http://iwaponline.com/wqrj/article-pdf/53/3/118/252019/wqrjc0530118.pdf
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rather the density and spatial distribution of sampling

locations which should have been questioned. The sampling

density of the 2014 survey is approximately 0.001 samples/

km2, similar (albeit slightly higher) to that of the 10%

subset of the 1971 dataset. Predicted contamination levels

at this density likely created very generalized contamination

maps in comparison to estimations made from the complete

1971 dataset.

This experiment with randomly down-sampled subsets

showed how interpolated surfaces became increasingly gen-

eralized with smaller sampling densities. Increased

procedural expenses have influenced survey design method-

ology for contamination sampling in Lake Erie. The 34-point

survey from 2014 focused its resources on offshore regions

of the lake in an effort to analyse non-point source pollution

patterns. Small data densities created from biased data col-

lection will likely produce exponential bias through data
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interpolation. Lake-wide spatio-temporal analyses were

affected by the small sampling density of the most recent

survey and it perhaps does not provide accurate interpolated

sediment contamination patterns for the whole of Lake Erie

from which environmental and policy decisions might be

justified. Moving forward, a method to improve the survey

design of sediment sampling could include smaller defined

study areas within Lake Erie, in which kriging could be per-

formed at smaller sampling densities and surface areas. In

addition, resampling at as many points as possible from

the original 1971 survey grid may improve the reliability of

contamination maps over time while applying greater

emphasis on non-point source pollution analyses.
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