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Abstract

The responses of a conducting polymer composite `̀ electronic nose'' detector array were used to predict human perceptual descriptors of

odor quality for a selected test set of analytes. The single-component odorants investigated in this work included molecules that are

chemically quite distinct from each other, as well as molecules that are chemically similar to each other but which are perceived as having

distinct odor qualities by humans. Each analyte produced a different, characteristic response pattern on the electronic nose array, with the

signal strength on each detector re¯ecting the relative binding of the odorant into the various conducting polymer composites of the detector

array. A `̀ human perceptual space'' was de®ned by reference to English language descriptors that are frequently used to describe odors. Data

analysis techniques, including standard regression, nearest-neighbor prediction, principal components regression, partial least squares regression,

and feature subset selection, were then used to determine mappings from electronic nose measurements to this human perceptual space. The

effectiveness of the derived mappings was evaluated by comparison with average human perceptual data published by Dravnieks. For speci®c

descriptors, some models provided cross-validated predictions that correlated well with the human data (above the 0.60 level), but none of the

models could accurately predict the human values for more than a few descriptors. # 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

Arrays of broadly responsive vapor detectors are attract-

ing increasing interest as `̀ arti®cial noses'' [1±3]. Like the

receptors in the mammalian olfactory system [4], each

detector in an `̀ arti®cial nose'' responds to more than one

analyte, and each analyte elicits a response from more than

one detector [1±3]. Pattern recognition algorithms are then

used to classify, identify, and in some cases quantify, an

analyte in the vapor phase. One motivation for studying such

arrays is eventually to learn enough about the process of

olfaction to construct a man-made, functional analogue of a

mammalian olfactory system [5].

Perhaps the ultimate challenge for an arti®cially-con-

structed olfactory system is to mimic faithfully the mapping

of an odorant-induced detector response pattern to the

quality of an odor, e.g. to its `̀ minty-ness'', as perceived

by a human. This task is dif®cult because the human

olfactory system is highly nonlinear in many respects. For

example, perceived odor intensity is a nonlinear function of

analyte concentration [6]. In addition, qualitatively different

human percepts are often produced by varying the concen-

tration of a given odorant. Cross-adaptation, masking, and

other processes involved with the human perception of odor

mixtures [7] further complicate the signal processing

involved in olfaction [8]. A further level of complexity

results because humans are variable genetically in their

perception of many odorants [9]. Thus, any static, gener-

ically-constructed, arti®cial olfactory device could at best

capture some average human perceptual processes for a

representative set of odorants. Of course, this does not

eliminate the possibility of a `̀ trainable'' device that could

be tuned to match the perceptual pro®le of a speci®c

individual, however, developing such a system poses yet

another set of challenges.

The arti®cial nose implementation that was used in this

study consists of an array of conducting polymer compo-

sites, in which each detector material of the array has regions

of a conductive material interspersed into regions of an

insulating organic polymer [10,11]. The conductive material

is typically carbon black although it could also be an
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inorganic metal or an organic electrically-conductive poly-

mer. Sorption of an odorant into the polymer produces a

swelling of the polymer ®lm, which in turn leads to an

increase in the dc electrical resistance of the detector. The

electrical output signals from an array of such detectors are

then transferred to a central processing unit for odorant

analysis and classi®cation. This implementation of an elec-

tronic nose was chosen for study because it is readily

investigated experimentally [11], allows inclusion of a

chemically diverse set of detectors [12], has been shown

to parallel mean human olfactory detection threshold beha-

vior for several classes of organic vapors [10], and has been

shown in selected test cases to parallel human and monkey

olfaction in the positive correlation between its discrimina-

tion ability and the chemical dissimilarity between members

of a pair of odorants [13].

The speci®c focus of the current study was to investigate

whether the responses of an array of such detectors could

be used to predict accurately the perceived quality of an

odorant as reported by human panelists. Only chemically

pure single-component analytes were investigated, due to

the further complications described above relating to the

human olfactory perception of odorant mixtures. Data on

human perception of odor quality for a variety of odorants

were obtained from tabulations available in the literature

[14]. Electronic nose responses were collected for a selected

subset of the same compounds. The odorants investigated

in our work included molecules that are chemically similar

but which are perceived as being different by humans, as

well as molecules that are chemically quite distinct from

each other. Successful odor quality prediction is critical

not only for meeting the intellectual challenge of construct-

ing an arti®cial olfactory system, but also for many indus-

trial quality control applications of an arti®cial nose in

which product assessments (good/bad) must be made with

respect to human perception rather than with respect to

changes in the chemical composition of the odors of concern

[15±17].

2. Experimental

2.1. Chemicals and data collection

Twenty-one odorants (Table 1) were evaluated in this

work. All chemicals were obtained from Aldrich Chemical

Corp. and were used as received. Sets of chemically homo-

logous odorants (for example, a series of straight-chain

alcohols, a series of aliphatic esters, a series of straight-

chain aliphatic acids, a series of benzene derivatives, etc.)

were chosen such that the odors were associated with

common, but not identical, human odor descriptors both

within a set and between sets of odorants. A total of 20

insulating polymers were used to form the carbon black/

polymer composite detectors in the electronic nose (Table 2).

Detectors were fabricated as described previously [12].

All odorant exposures were performed using a computer-

controlled vapor generation and control system that regu-

lated the identity, concentration, exposure time, and ¯ow

rate of the analyte above the detectors [18]. The experi-

mental protocol for each odorant exposure was 5 min of

clean air ¯ow, followed by 5 min of air ¯ow containing the

odorant at a partial pressure corresponding to 5% of its vapor

pressure, followed by another 5 min of clean air ¯ow. The

detectors were exposed to each odorant a minimum of 10

times. Analyte identities were varied in random order

between each exposure.

Table 1

Odorants used in this study

1 1-Butanol

2 1-Hexanol

3 1-Heptanol

4 1-Octanol

5 Ethyl propionate

6 Ethyl butyrate

7 Propyl butyrate

8 Amyl butyrate

9 Isopentyl acetate

10 Pentanoic acid

11 Hexanoic acid

12 Toluene

13 Anisole

14 Phenyl ethanol

15 Phenyl acetylene

16 Tetrahydrothiophene

17 Thiophene

18 Butanoic acid

19 Pyridine

20 Citral

21 Limonene

Table 2

Polymers contained in the detectors of the carbon black/polymer

composite electronic nose array

Detector Polymer

1 Poly(4-vinyl phenol)

2 Poly(N-vinylpyrrolidone)

3 Poly(sulfone)

4 Poly(methyl methacrylate)

5 Poly(caprolactone)

6 Poly(ethylene-co-vinyl acetate), 82% ethylene

7 Poly(ethylene oxide)

8 Poly(ethylene)

9 Poly(vinylidene fluoride)

10 Poly(ethylene glycol)

11 Poly(vinyl acetate)

12 Poly(styrene)

13 Poly(butadiene)

14 Poly(styrene-co-allyl alcohol)

15 Poly(a-methylstyrene)

16 Hydroxypropyl cellulose

17 Poly(styrene sulfonic acid)

18 Poly(carbonate bisphenol A)

19 Poly(epichlorohydrin)

20 Poly(styrene-co-butadiene)
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Only the steady-state response data were used in analysis

of the electronic nose array signals. Speci®cally, the data

were reduced to produce a DR/Rb value for each detector,

where Rb is the drift-corrected baseline response of the

detector during the analyte exposure period and DR is the

steady-state differential resistance response of the detector

with respect to the value of Rb. The data for each exposure

were then expressed as a response vector, with each com-

ponent of the vector corresponding to the DR/Rb value of a

particular detector. The results from individual exposures to

a given odorant were averaged to produce a single twenty-

dimensional vector that described the response of the detec-

tor array to each odorant. The electronic nose measurements

were, thus, reduced to a 21� 20 matrix, M, whose rows

corresponded to different odorants and whose columns

corresponded to different detectors.

The measurement data can be visualized to some extent

by performing principal components analysis (PCA) on the

raw twenty-dimensional measurement space and projecting

the data onto the two leading principal component direc-

tions. Fig. 1 shows all of the odorants in this PCA space. The

numerical label next to each point can be translated into a

chemical name using Table 1. Note, for example, that points

1±4, which correspond to straight chain aliphatic alcohols,

are well-clustered in the principal components space.

2.2. Perceptual odor quality

Perceptual odor quality values for humans were obtained

from Dravnieks' Atlas of Odor Character Pro®les. [14]. In

Dravnieks' study, over 100 people of both sexes, spanning a

wide range of ages, and including smokers as well as non-

smokers, were evaluated. The rationale for using such a

diverse group of panelists was apparently to insure that the

reported percepts would be consistent with those of the

population at large. Each participant was asked to smell a

collection of odorants and was instructed to assign a score

from 0 through 5 to each of 146 different descriptors

(adjectives) that are used in the English language to describe

odors. For example, a panelist could give an odorant a score

of 3 in the `̀ etherish, anesthetic'' category, 4 in the `̀ minty''

category, and 0 in each of the remaining categories. Scores

are intended to re¯ect the degree to which the panelist

believes that a descriptor is appropriate for a given odorant,

with a value of 0 meaning not appropriate. As described by

Dravnieks, care was exercised in the experimental procedure

to insure that arti®cial biases were not introduced into the

results. Of the 146 descriptors considered by Dravnieks, the

seventeen descriptors listed in Table 3 were selected for use

in our study based on the frequency and extent to which they

were used by the panelists to describe our selected set of test

odorants (Table 1).

For the purposes of our study, a limitation with Dravnieks'

Atlas is that only averages across the entire group of pane-

lists are provided, so score pro®les for individual partici-

pants are not available. Also, the variance (or the

distribution) of scores given to a particular odorant±descrip-

tor pair was not reported. Instead, the available data for each

odorant±descriptor pair consist of two quantities: percentage

of usage and percentage of applicability. The usage indicates

Fig. 1. Conducting polymer composite detector response data for the 21 odorants in two-dimensional principal component space. The numerical labels

associated with each point correspond to the analytes listed in Table 1.
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the percentage of panelists who assigned a non-zero score to

the descriptor for the given odorant. This quantity can be

interpreted as a probability value. The percentage of applic-

ability is the geometric mean of the usage and the average

score level assigned by the panelists.

Dravnieks suggests that the percentage of applicability is

`̀ the most equitable indicator of the descriptor applicabil-

ity'' to human perception. However, we have observed that

the usage, score level, and applicability are all highly

correlated. For example, Fig. 2 shows a plot of the score

level versus usage for the chemicals and descriptors used in

our study. A clear functional relationship is apparent

between the score level and usage. However, because the

relationships between the quantities are nonlinear, it is not

clear which, if either, quantity will be more easily predicted

from the electronic nose measurements. Feature vectors for

the electronic nose response data and values of the organo-

leptic descriptors for the 21 odorants of Table 1 are available

at http://www-aig.jpl.nasa.gov/mls/home/burl/data/odor_-

quality/.

2.3. Data analysis

The goal is to assess the degree to which the response of

the electronic nose to a given odorant can quantitatively

predict the usage, score level, and/or applicability that would

be provided on average by a group of human panelists for

each of the seventeen descriptors. The different approaches

that have been explored towards this goal are described

below.

2.3.1. Standard regression and nearest-neighbor

approaches

2.3.1.1. Standard linear regression. With the electronic

nose measurements expressed as a 21� 20 matrix M and

the human panelist ratings for a particular descriptor/

quantity expressed as a 21� 1 vector h, the problem

reduces to finding a vector-valued function f such that the

prediction hp � f �M� is approximately equal to h. Of the

many possible classes of functions f, we restricted our

attention to linear (f �M� � Mw) and affine (f �M� � Mw
�w0) models, as well as `̀ clipped'' linear and affine models

Table 3

Scent descriptors used in this studya

1 Fruity (citrus)

2 Fruity (non-citrus)

3 Floral

4 Minty

5 Etherish

6 Gasoline

7 Sharp, pungent

8 Oily

9 Putrid, foul, decayed

10 Woody

11 Sweet

12 Herbal

13 Musty

14 Medicinal

15 Sour

16 Paint

17 Sweaty

a From [14].

Fig. 2. Plot of the average human-assigned score level vs. percent usage for each chemical/descriptor pair in our study. The two quantities are clearly highly

correlated, with s approximately equal to 0:33u� 0:58u2.
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that incorporate a nonlinearity on the output to confine

predictions to the range [0, 1], the same range as for the

human perceptual data. Note that the affine form can be

reduced to the linear case by augmenting the measurement

matrix M with an additional column of ones and increasing

the dimensionality of the weight vector by one. Hence, the

linear form can be focused on without loss of generality.

The weight vector that minimizes the mean squared error

between the predictions and the targets is well known:

w � �M0M�ÿ1M0h (1)

Given a 1� 20 measurement vector m for an odorant whose

quality descriptors are to be predicted, the regression model

predicts: hp � mw. Note that for numerical calculations the

weight vector w is generally obtained by solving the equa-

tion �M0M�w � M0h via LU decomposition and backsub-

stitution, rather than by computing the inverse of �M0M� [19].

2.3.1.2. Nearest neighbor models. A different type of

predictor is based on the idea of nearest neighbors. If two

odorants have similar electronic nose patterns, then it might

be expected that the descriptors provided by human

observers for these two odorants would also be very

similar. The nearest neighbor model makes a prediction

for a test odorant having an electronic nose signature m
by first finding the row in M that is most similar to m (e.g.

using a Euclidean distance metric). The human perceptual

value for this nearest neighbor is then taken as the prediction

for the test odorant. The reference library of electronic nose

measurements imparts a partitioning of the measurement

space into distinct regions in which a single library example

will be the nearest neighbor of any example that falls into the

region. The predictions for any example falling in this region

will be the same as for the library example.

2.3.2. Basic testing procedure

A leave-one-out cross-validation procedure was used to

evaluate the performance of the predictors. In this approach,

the electronic nose signals for one odorant were withheld for

use in testing. The remaining N ÿ 1(�20) odorants were

then used to train the model (i.e. to determine the weight

vector w in the regression approach or to serve as the

reference library in the nearest neighbor approach). This

process was repeated N times, with each odorant serving a

turn as the holdout example. The predictions of both models

for all odorants were then compared to the actual human

target data for the odorants of interest.

3. Results

3.1. Performance of standard regression and nearest

neighbor approaches

Fig. 3a shows the correlation coef®cients between the

predictions of the clipped linear regression model and the

odor targets. The integer-valued x-coordinates (values from

1 to 17) represent the particular descriptors indicated in

Table 3. The y-axis shows the correlation coef®cient

achieved for each descriptor/quantity (u � usage; s �
score; a � applicability). Overall, the regression predictor

performed poorly. Only 3 of the 17 descriptors (`̀ ¯oral'',

`̀ sour'', and `̀ paint'') have at least one quantity predicted

above the 0.60 level. The median correlation coef®cient

across all descriptors/quantities for this model is 0.21. The

predictability of usage, score, or applicability were all fairly

similar, having median values of 0.21, 0.21, and 0.22,

respectively.

Fig. 3b presents the correlation coef®cients between

the predictions of the nearest neighbor model and targets.

Overall, this predictor also performed poorly. Only 3 of

the 17 descriptors (`̀ fruity non-citrus'', `̀ woody'', and

`̀ sweet'') have at least one quantity predicted above the

0.60 level. It is interesting to note that the descriptors

that are predicted well by the regression model do not

intersect with the descriptors that are predicted well by

the nearest-neighbor model. The median correlation coef®-

cient for the nearest neighbor model across all descriptors/

quantities is 0.25.

Several variations in the preprocessing of the electronic

nose measurements were explored, including normalization

of each chemical signature to remove concentration infor-

mation, and auto-scaling the detector values to remove

means and equalize variances. Concentration normalization

resulted in a slight increase in the performance of the

regression model (median � 0:32) and a modest decrease

in the performance of the nearest neighbor model

(median � 0:07; only one descriptor above 0.60). Auto-

scaling does not affect the regression model, but resulted

in degraded performance for the nearest neighbor model

(median � 0:07).

3.2. More sophisticated regression and feature selection

approaches

The poor predictive abilities of the standard linear regres-

sion and nearest neighbor models should not be surprising

given that the number of examples (odorants) is comparable

to the number of dimensions (detectors). In fact, under the

leave-one-out cross validation procedure, 20 examples and

20 dimensions were present. Assuming that the 20� 20

measurement matrix is non-singular, the regression model,

thus, provides a unique weight vector that exactly maps the

training measurements to the training targets. However,

since the measurements (and targets) include noise, this

will clearly lead to over®tting and poor generalization on

new examples. There are several approaches available for

such situations: (1) ridge regression to improve the con-

ditioning of the M0M matrix; (2) principal components

regression to orthogonalize the measurements and discard

noise; (3) partial least squares regression (PLS), also used to

ignore redundant detector measurements and to discard
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noise; and (4) feature subset selection algorithms to reduce

the number of features used by the predictor.

3.2.1. Ridge regression

One view of standard regression is that the matrix M0M is

a covariance matrix (if the mean value of each detector is

®rst removed from M). The standard regression solution,

therefore, attempts to estimate the covariance between

detectors based on data from a very limited number of

examples. Such estimates can often be improved by shrink-

ing toward the identity matrix [20]. Mathematically, M0M
is replaced by �1ÿ g�M0M � g tr�M0M�=nsI, where ns is the

number of detectors and g a free parameter that controls

the amount of regularization.

To select the proper value of g, the following nested cross-

validation procedure was used:

Fig. 3. (a) Correlation between clipped linear regression predictions and human target values. The symbols `̀ u'', `̀ s'', and `̀ a'' represent usage, score, and

applicability, respectively. Only descriptors 3, 15, and 16 (floral, sour, paint) are predicted above the 0.6 level. (b) Correlation between nearest neighbor

predictions and human target values. Only descriptors 2, 10, and 11 (fruity non-citrus, woody, sweet) are predicted above the 0.6 level.
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for x � 1: nx (% holdout example x for final testing)

% Perform selection of g�

for g � 0: dg:_1

for y � 1: nxÿ1

Perform cross-validated evaluation with

parameter g using all examples excluding x.

end

end

Choose g� � best g_value based on inner loop

results.

Train regularized regression model using g� and all

examples excluding x.

Use regularized regression model to predict human

value for example x.

end

Compare predicted values with targets.

Experimentally, a value of dg � 0:01 was used. Due to the

small number of examples available in the inner loop, the g
loop was started at g � dg rather than at 0. The inner loop

cross-validation generally selected g� values of 0.01 or 0.02,

with one value as high as 0.04; however, the outer loop

performance using the g� regularized regression model

turned out to be slightly worse than using the standard

regression model with g � 0.

3.2.2. Principal components regression

When the measurements from different detectors are

highly correlated or are noisy, the presence of the inverse

in Eq. (1) often precludes obtaining a good weight vector

through standard linear regression. One approach to resolve

this problem is to perform a principal components analysis

on M0 to determine the directions that have the most

variance. The data are then projected onto this reduced

dimensional subspace, and directions with smaller variance

are presumed to correspond to noise and are discarded. The

target values are then predicted from the projected subspace

rather than from the original data. In the chemometrics

literature, this approach is known as principal components

regression (PCR), and the projected data are commonly

referred to as the `̀ score matrix''. In many cases, PCR

provides an alternative solution to the regression problem

that may be better-behaved than standard regression.

For the data of concern in this work, however, the PCR

approach performed poorly. In fact, the median cross-vali-

dated correlation coef®cient across all descriptors/quantities

was worse than for the raw 20-dimensional data for all

values of k, except k � 18, for which the result obtained

using PCR was better by a small amount than that obtained

using standard regression.

3.2.3. Partial least squares regression

Partial least squares regression (PLS) is another method

that provides an alternative solution to the regression pro-

blem. The PLS method is similar to PCR, except that both

the target vector and the measurements are used to determine

a lower-dimensional subspace from which the predictions

will be made. Determination of the subspace is accom-

plished through an iterative procedure as described in the

literature [21].

The same leave-one-out cross-validation testing scheme

described above was used to evaluate the effectiveness of

PLS regression in predicting the values of the human-

provided descriptors from the conducting polymer compo-

site vapor detector measurements. On average, the PLS

predictor performed slightly better than standard regression,

producing median correlation values for usage, score, and

applicability of 0.30, 0.29, and 0.30, respectively. However,

as shown in Fig. 4, only one descriptor (#10, `̀ woody'') was

predicted above the 0.60 level.

3.2.4. Feature subset selection

A different approach to possibly improve predictions

based on models derived from limited data is to consider

subsets of the raw detectors. For 20 detectors, there are

nfs � �2̂ 20� ÿ 1 (slightly over 1 million) possible subsets.

Various feature subset selection algorithms that use heur-

istics to guide the search for good subsets have been devel-

oped in the machine learning and pattern recognition

communities [22,23]. In our study, however, we have

avoided the use of such techniques and instead have used

large amounts of computation to exhaustively evaluate every

subset of features. By doing so, we avoid the uncertainty

inherent in not knowing whether the search heuristics lead to

signi®cant degradations in achievable performance. In other

words, exhaustive subset evaluation is an academic

approach that will enable us to study the prediction problem

without adding confusion from approximations. However,

for signi®cantly larger array sizes and/or with limited com-

putational resources, the heuristic approaches may be the

only feasible way to proceed.

To evaluate a particular subset of features, the following

nested cross-validation procedure was considered:

for x � 1: nx (% holdout example x for final testing)

% Perform feature selection

for fs � 1: nfs (%)

for y � 1: nxÿ1 (%)

Perform cross-validated evaluation of feature

set f using all examples excluding x.

end

end

Choose feature set fs� based on some selection

criteria.

Train regression model using feature set fs� and all

examples excluding x.

Use regression model to predict human value for

example x based on feature set fs�.
end

Compare predicted values with targets.

Clearly, the computational requirements of this procedure

are quite demanding. To make the execution feasible, the
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outer x-loop was parallelized across a dozen or so SUN Ultra

60 (dual CPU) and SUN Ultra 2 (single CPU) workstations,

with each processor handling one pass through the body of

the loop. Results were saved to disk at the end of the fs-loop

and later merged.

The inner-most cross-validation loop (the y-loop) requires

the computation of �M0xyMxy�ÿ1M0xyHxy, where Mxy consists

of all the measurements excluding examples x and y and Hxy

consists of the corresponding human values. Hxy is a matrix

with each column containing the human data for a particular

descriptor/quantity; thus Hxy has 51 � 17� 3 columns.

Each pass through the y-loop appears to require an inversion

of the matrix M0xyMxy, requiring work proportional to the

third power of the number of features involved. However, the

Sherman±Morison±Woodbury formula, which speci®es

how a rank one correction to a matrix affects the inverse,

can be applied so that only one inversion is required, rather

than nxÿ1 inversions. The main idea is to compute the

inverse of M0xMx (measurements excluding example x) once

before the y-loop and then note that M0xyMxy is related to

M0xMx by a rank one correction involving example y. A

correction can also applied to the quantity M0xHx to obtain

M0xyHxy with less work than recomputing on each pass

through the loop. This procedure greatly reduced the

computational complexity.

A number of possible selection criteria could be applied at

the conclusion of the loop over feature sets. The most

straightforward criterion is to choose for each descriptor/

quantity the feature set fs� that results in the best inner-loop

(y-loop) cross-validated correlation. Other inner-loop

assessment metrics such as mean square error, maximum

absolute error, and maximum relative error can also be

considered. Intuition suggests, however, that models based

on a smaller number of features may generalize better to new

examples, so it seems reasonable to bias the feature selection

strategy towards feature sets having smaller numbers of

features. For example, rather than choosing the feature set

providing the best inner loop performance, the best feature

set having exactly (or at most) a predetermined number of

features was chosen. Similar biasing rules such as selecting

the smallest-sized feature set whose performance on the

inner loop exceeds a given threshold, or whose performance

on the inner loop is `̀ close enough'' to the best performance

achieved by any feature set, may also be considered.

Table 4 shows the results of the feature selection experi-

ment. For each iteration of the outer loop, the inner loop

cross-validated correlation scores were used to select the

best set of k detectors. Thus, nx best detector sets could

potentially be identi®ed for a given k value. The median

inner-loop correlation values over these best detector sets are

shown in column 2 of the table, where the median is taken

over all descriptors/quantities as well as over the best

detector sets. The score of the best inner loop models when

applied to the outer loop holdout examples is shown in

column 3 (median across all descriptors/quantities).

The best cross-validated correlation score that could have

been achieved by a single feature set of size k is shown in

column 4. Note that these scores were obtained by evaluat-

ing all feature sets of size k on the outer loop task; then the

set that produced the best results was chosen and its results

were reported in column 4 (i.e. feature subset selection was

based on the test set).

Fig. 4. Correlation between partial least squares predictions and human target values. The symbols `̀ u'', `̀ s'', and `̀ a'' represent usage, score, and

applicability, respectively. Only descriptor 10 (woody) is predicted above the 0.6 level.

156 M.C. Burl et al. / Sensors and Actuators B 72 (2001) 149±159



The fact that the column 4 numbers are large is interest-

ing, because it indicates that certain linear regression models

using subsets of features can accurately predict the human

data in cross-validation tests. For example, Table 5 shows

the smallest models that yielded cross-validated correlation

above 0.6 for the usage quantity of each descriptor. How-

ever, in Table 4 the large margin between column 2 and

column 3 casts doubt on whether the models that produced

column 4 will generalize well to new data. More speci®cally,

column 2 represents the expected performance based on the

models that worked best in the inner-loop cross-validation

(train on nxÿ2 examples, test on 1). Column 3 indicates the

performance of these `̀ good'' inner-loop models when

applied to the outer-loop holdout example. Clearly, the

performance of the models was highly degraded under these

conditions. Even though a good inner-loop model could be

obtained, the existence of such a model did not insure that

the same model would work well in the outer-loop cross-

validation. Analogously, some models worked well on the

outer-loop cross-validation, but this does not insure that the

same models will work well for new data.

4. Discussion

This study considered single-component odorants con-

sisting of simple organic vapors without signi®cant aroma

activity (arguably the simplest case). For speci®c descrip-

tors, some models provided cross-validated predictions that

correlated well with the human data (above the 0.60 level),

but none of the models could accurately predict the human

values for more than a few descriptors.

The models based on feature subset selection were

especially intriguing. Relatively small subsets of detectors

(e.g. as listed in Table 5) in some cases provided good

cross-validated predictions of most of the human descrip-

tors. However, because these subsets could not be identi®ed

through a rigorous model selection procedure, the results

may not generalize to new data. Further evidence for

this conclusion is given by the model selection procedure

itself. The large discrepancy between the inner loop cross-

validated correlation values and the resulting outer loop

cross-validated correlation values (i.e. comparison of col-

umn 2 and column 3 in Table 4) indicates that at least

some `̀ good'' inner-loop models perform poorly on new

data.

The term `̀ over®tting'' is typically applied to describe the

situation in which models or parameters are adjusted to ®t a

training set to the best degree possible. In our case, the

feature subset selection procedure uses the criteria `̀ ®nd the

best subset of features smaller than size k'', which provides a

bias toward smaller models, i.e. the decision as to which

feature subset to choose is not based solely on optimizing the

predictions to the targets. Hence, we are not strictly over-

®tting during the subset selection. The poor generalization

results, however, may indicate that the bias is inadequate to

lead the model selection procedure to good subsets that will

generalize.

Once a feature subset is selected, the standard regression

solution attempts to ®nd the best set of weights that ®ts the

training set, i.e. it is over®tting. It does not appear that this

weight over®tting is catastrophic, however, because it also is

present for column 4 of Table 4.

There are several plausible explanations for why human

perception of odor quality could not be predicted reliably

from the conducting polymer composite electronic nose

Table 4

Results of feature selection experiments

Number of

detectors (k)

Median inner

loop score

Outer loop

score

Idealized outer

loop score

1 0.37 0.19 0.40

2 0.48 0.10 0.50

3 0.55 0.10 0.57

4 0.61 0.10 0.63

5 0.65 0.13 0.65

6 0.70 0.12 0.74

7 0.74 0.11 0.77

8 0.76 0.13 0.77

9 0.77 0.15 0.78

10 0.82 0.21 0.82

11 0.86 0.25 0.87

12 0.88 0.30 0.90

13 0.90 0.26 0.90

14 0.91 0.25 0.91

15 0.92 0.26 0.88

16 0.93 0.17 0.86

17 0.96 0.21 0.82

18 0.99 0.08 0.84

19 0.39 0.09 0.63

20 0.02 0.18 0.25

Table 5

Smallest models yielding a cross-validated correlation above 0.6 for the

descriptor usage quantity

Descriptor k Modela

1 Fruity citrus 15 5, 7, 11, 16, 19

2 Fruity non-citrus 5 5, 12, 13, 15, 18

3 Floral 8 2, 3, 5, 10, 12, 14, 17, 19

4 Minty 9 2, 4, 7, 9, 10, 11, 14, 18, 20

5 Etherish 4 1, 5, 6, 13

6 Gasoline 3 1, 5, 13

7 Sharp, pungent 2 4, 14

8 Oily 2 16, 20

9 Putrid, foul, decayed 5 1, 6, 15, 18, 20

10 Woody 4 11, 13, 15, 19

11 Sweet 4 7, 12, 15, 17

12 Herbal 2 6, 14

13 Musty 2 6, 20

14 Medicinal 7 3, 4, 5, 7, 8, 11, 12

15 Sour 6 1, 2, 5, 15, 16, 18

16 Paint 4 3, 6, 13, 14

17 Sweaty 2 2, 20

a Underlined values indicate excluded detectors.
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signals. First, the number and diversity of receptors in the

arti®cial nose was signi®cantly (1±2 orders of magnitude)

more limited than in humans. Second, linear and af®ne

models may be too simplistic to enable human percepts

of even single component organic vapor odorants to be

predicted well from conducting polymer composite electro-

nic nose signals. This may re¯ect the fact that these data

models have no physically-based relationship to the neuro-

nal connections and signal processing involved in olfactory

perception. A third possibility is that the form of the data

models may be adequate for the limited task considered, but

the parameters of these models could not be estimated

reliably enough from the amount of data available. A fourth

possibility is that the feature subset selection procedure did

not have enough data to identify feature subsets that would

provide good generalization ability.

In any case, it is clear that the situation would be

signi®cantly worse for odorants that are mixtures of pure

compounds, because human odor perception of mixtures is

often not linearly related to the mole fraction of the indi-

vidual components of the mixture. Similarly, for mixtures of

odorants that contain aroma-active compounds which are

detectable at very low concentration levels in the human

nose but which would not even produce signals above the

noise level of the current conducting polymer composite

detectors, no correlation would be expected between the

conducting polymer composite vapor detector response and

that of human odor perception.

Given the complex, nonlinear characteristics of human

olfaction, it is not surprising that the analogy between the

electronic nose and the human olfactory system only extends

to the design principle that both systems utilize arrays of

broadly responding, cross-reactive detectors. Hence, the

primary contribution of the present study is to advance

the idea of formulating, developing, and testing models of

olfactory perceptual processing using arti®cial data sets such

as those generated by the electronic nose in place of spike

train data measured only with great dif®culty on biological

olfactory receptors. In this respect, one advantage of the

conducting polymer composite-based electronic nose used

in this study is that characteristic response patterns that are

essentially independent of the concentration of the analyte

presented to the detectors can be obtained. Thus, one degree

of freedom (choice of analyte concentration) can be elimi-

nated, unlike the situation for metal-oxide detectors, dye-

impregnated polymers on optical ®bers, and other detectors

that exhibit response patterns that are a function of con-

centration of the analyte of interest [3]. A secondary con-

tribution is that the results based on simple numerical

models provide a benchmark against which more sophisti-

cated models can be judged, and strongly suggest that

signi®cant system architecture changes and highly increased

data analysis algorithm complexity are needed before any

arti®cial model could provide a robust predictive ability for

human odor quality descriptors on even a simple set of test

odorants. The correlation between the predictions for certain

odor descriptors and the human perceptual data are de®-

nitely interesting, but more extensive experiments would be

required to assess the validity of these predictors for other

odorants.
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