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Abstract 

The presence of rapid guessing (RG) presents a challenge to practitioners in obtaining accurate 
estimates of measurement properties and examinee ability. In response to this concern, 
researchers have utilized response times as a proxy of RG, and have attempted to improve 
parameter estimation accuracy by filtering RG responses using popular scoring approaches, such 
as the Effort-moderated IRT (EM-IRT) model. However, such an approach assumes that RG can 
be correctly identified based on an indirect proxy of examinee behavior. A failure to meet this 
assumption leads to the inclusion of distortive and psychometrically uninformative information 
in parameter estimates. To address this issue, a simulation study was conducted to examine how 
violations to the assumption of correct RG classification influences EM-IRT item and ability 
parameter estimation accuracy and compares these results to parameter estimates from the three-
parameter logistic (3PL) model, which includes RG responses in scoring. Two RG 
misclassification factors were manipulated: type (underclassification vs. overclassification) and 
rate (10%, 30%, and 50%). Results indicated that the EMIRT model provided improved item 
parameter estimation over the 3PL model regardless of misclassification type and rate. 
Furthermore, under most conditions, increased rates of RG underclassification were associated 
with the greatest bias in ability parameter estimates from the EM-IRT model. In spite of this, the 
EM-IRT model with RG misclassifications demonstrated more accurate ability parameter 
estimation than the 3PL model when the mean ability of RG subgroups did not differ. This 
suggests that in certain situations it may be better for practitioners to: (a) imperfectly identify RG 
than to ignore the presence of such invalid responses, and (b) select liberal over conservative 
response time thresholds to mitigate bias from underclassified RG.  
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Assessing the Accuracy of Parameter Estimates in the  

Presence of Rapid Guessing Misclassifications 

For well over half a century, researchers have warned of noneffortful responding (i.e., 

responding without putting forth full effort) serving as a validity threat to score-based inferences 

(e.g., Cronbach, 1960). Although there are multiple forms of noneffortful responding (e.g., 

skipping items, random responding), one form that has received increased attention in the 

literature is rapid guessing (RG; see Wise, 2017). RG occurs when an examinee provides a 

response in so little time that they would not be able to fully read the item stem or response 

options, solve its challenge, and select an answer (Wise & Kuhfeld, 2020).  

Assuming that examinees are administered items in which they are capable of effortfully 

engaging (e.g., administering items in a language that an examinee can comprehend, examinees 

have had an opportunity to learn, sufficient time is provided to adequately engage in all 

problems), RG can occur because of two interrelated factors: (a) low task value; and/or (b) a low 

perceived probability of success (Penk & Schipolowski, 2015).1 Concerning the former, 

examinees may engage in RG owing to a belief that their test performance has little to no 

personal consequences or an unawareness of the consequences for their performance. Thus, the 

cost of expending effort is seen to be too great when compared to the perceived personal 

benefits. This has been shown to be a particular issue as cognitive fatigue sets in for examinees 

on low-stakes tests (see Wise & Kingsbury, 2016). In terms of the second factor, for a given 

item, examinees may engage in RG based on the perception that the probability of success is too 

low to warrant the cost of full effort (see Penk & Schipolowski, 2015). As an example, prior 

                                                           
1 The assumption underlying RG is that it is uninformative. However, as noted by Wise (2017), when examinees 
engage in RG because they do not have the full capability to engage in an item or task, RG can be informative to 
better understanding examinee knowledge. 
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research has shown that examinees who perceive a test to be very difficult tend to rapid guess at 

a higher rate than those who perceive the test to be easier (Rios & Guo, 2020). Across these 

factors, RG has been documented to occur for a number of low-stakes assessment contexts (e.g., 

accountability and international education studies of student knowledge) and populations that 

range in age and nationality (e.g., Goldhammer et al., 2016; Rios & Guo, 2020; Wise, 2017). 

 RG has been shown to bias measurement properties, such as reliability estimates (e.g., 

Wise & DeMars, 2009), measurement invariance (e.g., DeMars & Wise, 2010), linking 

coefficients (e.g., Mittelhaëuser et al., 2015), and item and person parameter estimates (e.g., Rios 

& Soland, 2020; van Barneveld, 2007). Furthermore, as RG is generally associated with 

underestimation of examinee ability (Silm et al., 2020), it has been documented to bias treatment 

effects (e.g., Osborne & Blanchard, 2011; Liu et al., 2015), achievement gains (e.g., Wise & 

DeMars, 2010), value-added estimates of teacher effectiveness (Wise et al., 2013), and subgroup 

comparisons (e.g., Debeer et al., 2014). These results have prompted the measurement 

community to call for test users to document test engagement in contexts where it may be a 

concern (see above; American Education Research Association et al., 2014).  

However, to mitigate the deleterious role of RG first presumes that it can be correctly 

identified.2 Such an assumption may be untenable as one can only use proxies of test-taking 

behavior to make inferences concerning RG (more detail is provided below). This has two 

implications. Firstly, knowing whether RG has occurred can never be fully realized, and 

secondly, because of this, it is plausible that any attempt to identify RG may lead to inaccurate 

                                                           
2 Recent mixture models have been proposed that estimate the probability of aberrant responding, and thus, 
identification of such behavior is not dichotomous (e.g., Wang et al., 2018). However, given the complexity of 
estimation procedures as well as the additional parameters required, these models have seen limited application in 
practice. Thus, the focus of this paper is on the dichotomous identification of RG using a response time threshold 
procedure, which is currently employed in operational settings (e.g., Wise & Kuhfeld, 2020).   
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classifications of this behavior. Focusing on the latter issue, the goal of this paper is to 

understand the impact of RG misclassifications on item and person parameter estimation 

accuracy. In the sections that follow, procedures for RG identification and modeling are 

reviewed, and a rationale for the current study is provided. 

Response Times as a Proxy for Identifying RG  

 To date, the most popular proxy for identifying RG is to use response times. The use of 

response times provides a number of advantages over competing proxies such as self-report 

measures of effort and person-fit statistics (Silm et al., 2020; Wise, 2017). First, it is an 

unobtrusive approach, as examinees are unaware that their test-taking behavior is evaluated due 

to the use of log file information.3 As such, concerns about observer effects, such as the 

Hawthorne effect (i.e., subject behavior changing due to their knowledge that they are being 

observed) and observer bias, are mitigated. Second, this approach can evaluate RG on an item-

by-item basis, which is advantageous, as prior research has demonstrated that examinee behavior 

can change throughout a test administration (e.g., Wise & Kingsbury, 2016). This provides 

several scoring advantages as valid and invalid responses within each examinee can be 

distinguished; thus, allowing for the capacity to estimate ability for examinees that have engaged 

in a certain level of RG, as opposed to listwise deletion of unmotivated/aberrant examinee data (a 

common approach for self-report and person-fit statistic approaches). The latter approaches have 

                                                           
3 One reviewer raised the concern of the ethical nature of using log file information to inform scoring when the 
examinee is unaware that their behavior is monitored. However, it is unclear whether operational testing programs 
notify examinees of this fact, potentially due to two factors. First, as noted, RG is generally a concern in testing 
contexts that are low-stakes (i.e., there is minimal to no personal consequences for examinees’ test performance), 
and as a result, utilizing response time information to improve the validity of score-based inferences has negligible 
consequences for individual examinees. Second, by making examinees aware that their time of responding is 
monitored, examinees may mask their noneffortful responding via slower responses, and thus, may mitigate the 
utility of identifying RG from response time information. Regardless, it is argued that examinees should be made 
aware of all components that will inform their scoring, particularly in contexts in which there are high-stakes 
consequences for individual examinee performance.    
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been found to be associated with a loss of as much as 25% of the sample (see Rios et al., 2014). 

Building off these advantages, response times are used to establish a threshold in which any 

response provided in less time than the criterion is assumed to be RG. To this end, numerous 

response time threshold procedures have been developed (for a discussion, see Wise, 2017).  

These procedures can be categorized into three distinct typologies, corresponding to 

methods that utilize: (a) no empirical data; (b) only response time information; and (c) a 

combination of response time and accuracy information. In the former class of procedures, a 

threshold can be arbitrarily set equal across all items (e.g., three seconds) or established based on 

taking the number of characters contained within a given item, and coupling this information 

with estimated reading speeds for a given test-taking population (see Wise & Kong, 2005). In the 

second category of procedures, researchers have utilized observed response time distributions, to 

establish criteria based on normative information (e.g., stipulating that a response provided 

below 10% of the mean item response time is RG; Wise & Ma, 2012) or to indicate the point at 

which examinees transition from RG to solution behavior based on the shape of a RT distribution 

(for more details, see Schnipke & Scrams, 1997; Rios & Guo, 2020). In addition, researchers 

have proposed employing both response accuracy and time information based on the assumption 

that RG responses possess accuracy rates that are approximately equal to chance (typically 

defined as the reciprocal of the number of response options), which has been supported by prior 

research (e.g., Wise & Kong, 2005). Thus, for a procedure, such as the Cumulative Proportion 

Correct (CUMP) method proposed by Guo et al. (2016), a threshold is established at the time 

point in which the correct response rate begins to be consistently greater than chance. As noted 

by Wise (2017), each procedure provides advantages and disadvantages, and to date, there is no 

clear consensus on the best threshold procedure to employ in practice.  
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Utilizing response times as a proxy for identifying RG is not without its limitations. To 

begin with, the use of response times requires the collection of log file information, which means 

that it cannot be applied to data collected from paper-and-pencil test administrations. Similar to 

the other approaches, it is limited in that response times are used as a proxy of test-taking 

behavior, and thus, requires two assumptions to be made. The first is that a quick response is 

invalid. However, it has been argued that response times are associated with individual ability 

differences (see Goldhammer, 2015). This assertion is supported by research showing that higher 

ability examinees are more likely to correctly respond to an item at a quicker rate than their 

lower ability counterparts when taking into consideration item difficulty (De Boeck & Jeon, 

2019; Loken & Beverly, 2020). Thus, concerns have been raised by some researchers that 

response time thresholds may be too liberal and incorrectly classify a valid quick response as RG 

(see Wise, 2017).  

The second assumption is that RG, by definition, is associated with quick responding. 

Such an assumption ignores the possibility of RG behavior that occurs slowly. For example, an 

examinee could disengage from an item for a prolonged amount of time due to noneffortful 

behavior (e.g., daydreaming), and then return to the item by RG. In such an instance, the log file 

information would suggest that the examinee was engaged on the item for a long period, and 

consequently, their RG response would go undetected. Due to this, one of the potential 

limitations of this approach is that thresholds may be too conservative and fail to capture slow 

RG behavior (see Wise & Kuhfeld, 2020).4  

                                                           
4 An alternative would be to establish two thresholds, which each capture fast and slow forms of noneffortful 
responding. Using the CUMP approach, the latter threshold type could be determined by examining cumulative 
proportion correct rates by time in reverse (max number of seconds to 0 seconds).   
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Taken together, these assumptions get at two sides of the same issue, which is that the use 

of response times, like all other procedures, leads to accurate identification of RG. However, as 

noted, complete accuracy may be untenable as it is impossible to be certain about examinees’ 

behavior from process data. Regardless of these limitations, it is argued that the advantages of 

using response times as a proxy of RG provides the best available solution, due to it being 

unobtrusive and possessing the capability to identify RG for individual responses. Due to these 

advantages, the use of response times as a proxy of RG has seen increased usage in the literature 

and practice (e.g., Silm et al., 2020). Below, scoring models that incorporate response times to 

specifically mitigate the deleterious impact of RG are reviewed. 

Scoring Approaches Accounting for RG that Use Response Times 

Various Item Response Theory (IRT) models have been developed that incorporate 

response times to distinguish between non-RG and RG behavior. These models can be 

categorized into two classes, those that incorporate: (a) response times; and (b) both item 

responses and response times.  

Scoring Approach Incorporating Response Times 

Concerning the former, Wise and DeMars (2006) first proposed rescoring RG via the 

Effort Moderated IRT (EM-IRT) model: 

𝑃𝑃𝑖𝑖𝑖𝑖(θ) = �𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖��(𝑐𝑐𝑖𝑖 + (1 − 𝑐𝑐𝑖𝑖)�
𝑒𝑒−1.7𝑎𝑎𝑖𝑖�θ𝑗𝑗−𝑏𝑏𝑖𝑖�

1+𝑒𝑒−1.7𝑎𝑎𝑖𝑖�θ𝑗𝑗−𝑏𝑏𝑖𝑖�
�� + �1 − 𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖� �

1
𝑑𝑑𝑖𝑖
�.                     (1) 

The EM-IRT model can be conceptualized as possessing two sub-models, which decompose the 

probability of correctly responding to an item separately for solution and RG behavior. These 

behaviors are distinguished at the item-by-examinee level using a binary indicator, 𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖, 

determined based on the adoption of a response time threshold procedure. The use of this 
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indicator allows an examinee to switch between solution and RG behavior throughout the test, 

which avoids making assumptions about how RG occurs across examinees (see Wise & 

Kingsbury, 2016). For solution behavior (𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖 = 1), 𝑃𝑃𝑖𝑖𝑖𝑖(θ) = 𝑐𝑐𝑖𝑖 + (1 − 𝑐𝑐𝑖𝑖)�
𝑒𝑒−1.7𝑎𝑎𝑖𝑖�θ𝑗𝑗−𝑏𝑏𝑖𝑖�

1+𝑒𝑒−1.7𝑎𝑎𝑖𝑖�θ𝑗𝑗−𝑏𝑏𝑖𝑖�
�, 

where 𝑎𝑎𝑖𝑖 is the discrimination parameter for item i, 𝑏𝑏𝑖𝑖 is the difficulty parameter for item i, 𝑐𝑐𝑖𝑖 is 

the lower asymptote of item i, and θ𝑗𝑗 is the ability parameter for person j (this is equivalent to the 

standard 3PL model). 5 However, if 𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖 = 0, 𝑃𝑃𝑖𝑖𝑖𝑖(θ) = 1
𝑑𝑑𝑖𝑖

, where 𝑑𝑑𝑖𝑖 is roughly equal to the 

number of response options for item i.6 When 𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖 = 0, noneffortful responses add a constant 

across all levels of the theta continuum to the log-likelihood function, and thus, do not influence 

the maximum of the function. This implies that when an examinee employs RG, their probability 

of correctly responding to item i does not depend on their underlying ability. Due to the 

uninformative nature of such responses, scoring under the EM-IRT model downweights RG 

responses to have no influence on parameter estimation (Wise & DeMars, 2006). 

 There are two assumptions underlying this model: (a) responses classified as effortful are 

representative of the range of item characteristics and content on the test; and (b) the true 

abilities of rapid guessers are reflective of the sample distribution when estimating aggregate-

level ability. Concerning the former assumption, prior research has suggested that it may be 

untenable in practice given that RG has been found to be associated with item position, length, 

difficulty, and depth of knowledge required (e.g., Wise, 2020). However, recent evidence 

indicates that aggregate-level ability estimates may be largely robust to such a violation (Rios & 

Soland, 2020). In terms of the latter assumption, aggregate-level ability estimates will be biased 

                                                           
5 The EM-IRT model can be extended to other IRT models, such as the Rasch, one-parameter, and two parameter 
logistic models. 
6 Correct rates of noneffortful responses may be beyond the chance level due to a function of the location of the 
correct answers on the assessments (see Pastor et al., 2019).  
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either positively or negatively if noneffortful responders underlying ability is consistently higher 

or lower than the average ability of effortful responders. Evidence from operational tests have 

illustrated that noneffortful responding can occur among examinees with predominately low 

prior ability (e.g., Kuhfeld & Soland, 2020; Rios et al., 2017), and under such circumstances, 

biased ability parameter estimates can be obtained via the EM-IRT model (Rios & Soland, 

2020).  

Although meeting the assumptions underlying the EM-IRT model is a prerequisite to 

obtaining accurate item and ability parameter estimates, numerous simulation and applied studies 

have shown that the use of this model is associated with improved parameter estimation and 

convergent validity with external variables compared to naïve models that include RG responses 

in scoring (e.g., Liu et al., 2019; Rios et al., 2017; Rios & Soland, 2020; Wise & DeMars, 2006; 

Wise & Kingsbury, 2016). Furthermore, apart from establishing a response time threshold to 

classify RG, this model does not require additional parameter estimation. Due to this simplicity, 

it has become one of the most popular models used to study RG (e.g., Rios et al., 2017; Rios & 

Soland, 2020; Wise & Kingsbury, 2016), and is currently one of the only models to be employed 

in operational testing contexts to report examinees’ RG behavior to score users (see Wise & 

Kuhfeld, 2020).   

Scoring Approaches Utilizing both Item Responses and Response Times 

A second class of models has been proposed based on the theory that classifying 

examinee RG behavior can best be accomplished by incorporating both item response and 

response time data. To this end, Meyer (2010) proposed a mixture model that assigns examinees 

to one of two latent groups based on speededness (speeded or non-speeded). Item parameters and 

population mean/variances of person parameters are estimated separately for each latent class. 
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The major limitation of this model is that it divides examinees into global-level RG classes, 

which limits the ability to identify RG at the item-by-examinee level and does not account for 

differences in RG rates for examinees within the same latent class.  

To address this limitation, Wang and Xu (2015) developed a mixture hierarchical model 

that distinguishes between solution and RG behavior at the item-by-examinee level. Similar to 

the EM-IRT model, parameter estimates are calibrated based solely on the purified sample (i.e., 

examinees engaging in solution behavior) by employing a standard IRT model (e.g., 2PL model), 

while the probability of correctly answering an item for RG behavior is constrained equal to the 

item-specific guessing probability. Although conceptually similar to the EM-IRT model, this 

mixture model requires additional parameters to be estimated (e.g., a time intensity parameter for 

each item and examinee speed parameter), several constraints to be imposed (e.g., specification 

of either the mean of the speed parameter or the mean of the time intensity parameter), and a 

specialized Monte Carlo estimation procedure that is not readily available in most commercially 

available software. Given these disadvantages, Wang and Xu’s (2015) model has seen limited 

application in the research literature and practice. Thus, the remainder of this paper focuses on 

the modeling of RG using the EM-IRT model. 

Study Rationale  

 Parameter estimation accuracy is dependent on the correct identification of RG when 

employing scoring models that utilize RG information at the item-by-examinee level, such as 

 the EM-IRT model. A failure to meet this assumption leads to the inclusion of distortive and 

psychometrically uninformative information in parameter estimates (Wise, 2017). However, it is 

argued that the tenability of this assumption can never be known as current procedures are only 

indirect proxies of RG, and thus, they may lead to false negative (i.e., failing to identify a RG 
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response) and/or false positive (i.e., classifying a valid response as RG) identifications (Wise, 

2017). Therefore, it is unclear how robust parameter estimates are to differing RG 

misclassification types and percentages. To address this gap in the literature, the objective of this 

simulation study is two-fold. First, to examine the degree of bias in both item and person 

parameters when employing the EM-IRT model under incorrect identification of RG, the degree 

and type of RG misclassification is manipulated. Second, the accuracy of item and ability 

parameter estimates from the EM-IRT model with misclassified RG are compared to those 

obtained from the naïve three-parameter logistic (3PL) model (including RG responses in 

scoring). This is done to determine whether the former model provides improved parameter 

estimation when violating the assumption that RG is correctly identified. Findings from this 

study have the potential to inform practitioners about the robustness of item and ability 

parameter estimates from the EM-IRT model in the presence of RG misclassifications. 

Method 

Data Generation of Effortful Response Probabilities 

Data were generated for a unidimensional test consisting of 30 items administered to 

5,000 simulees in R, version 4.0.0 (R Core Team, 2020). The number of simulees was chosen 

based on prior researchers demonstrating that a sample size of 5,000 is expected to provide stable 

parameter estimates for the three-parameter logistic (3PL) model with 30 items (e.g., Hulin et al.,  

1982), which was the model used to create effortful item response probabilities in this 

simulation: 

 
𝑃𝑃𝑖𝑖𝑖𝑖(θ) = 𝑐𝑐𝑖𝑖 + (1 − 𝑐𝑐𝑖𝑖)�

𝑒𝑒−1.7𝑎𝑎𝑖𝑖�θ𝑗𝑗−𝑏𝑏𝑖𝑖�

1+𝑒𝑒−1.7𝑎𝑎𝑖𝑖�θ𝑗𝑗−𝑏𝑏𝑖𝑖�
�. 

(2) 

This was done by first sampling item and person generating parameters. The former were taken 

from an operational administration of the NAEP math assessment (for a full list of item 



Rapid Guessing Misclassifications  13 

parameters, see Appendix A of the supplementary file). Across all 30 items, the mean 

discrimination, difficulty, and guessing parameters were 1.15 (SD = 0.49), -0.08 (SD = 1.29), and 

0.21 (SD = 0.07), respectively. Generating ability parameters were sampled from a normal 

distribution (more detail is provided in the next section). Both the item and ability generating 

parameters were then entered into the 3PL model to obtain effortful item response probabilities.  

Substitution of RG Response Probabilities 

To simulate RG for simulees, the next step consisted of replacing effortful probabilities 

with the chance probability (.25; assuming each item possessed four response options). This was 

done by manipulating three independent variables: (a) group impact between RG and non-RG 

simulees (no impact, moderate impact, large impact); (b) the percentage of RG in the data matrix 

(10%, 20%); and (c) RG pattern (difficulty-based, progressive).  

Group Impact between RG and non-RG Simulees  

 RG was simulated for conditions in which group impact was and was not present. To 

accomplish this, ability parameters were sampled separately by RG group (simulees engaging in 

RG and those that did not). Specifically, for non-RG simulees, ability parameters across all 

conditions were randomly sampled from a standard normal distribution. In contrast, RG simulees 

were sampled differently based on the presence of group impact. For instance, to mimic no 

impact, RG simulees’ ability parameters were randomly sampled from a standard normal 

distribution to parallel the ability distribution of the non-RG simulees. In conditions in which 

group impact was present, RG simulees’ ability parameters were randomly sampled from a 

normal distribution with a variance of 1 and a mean that was either -0.50 or -1. The former mean 

was chosen based on findings by Rios et al. (2017), who found an average performance 

difference on a prior ability measure between RG and non-RG examinees equal to approximately 
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0.50 standard deviations (SDs; favoring non-RG examinees). The latter mean served as an 

extreme ability difference between non-RG and RG simulees. 

Percentage of RG in Data Matrix  

Two percentages of RG were examined: 10% and 20%. Although previous researchers 

have constrained the number of rapid guesses (RGs) equal across RG simulees (e.g., Rios et al., 

2014), it is argued that such an approach is not reflective of operational settings, as prior research 

has shown that examinees can engage in a wide range of RGs across a test administration (e.g., 

Wise & Kingsbury, 2016). To better reflect this reality, the number of RGs for simulees in the 

RG subgroup was allowed to vary from 1 to 30. Across RG simulees, the number of RGs added 

up to either 10% or 20% of item responses in the data matrix (refer to Appendix B in online 

supplementary information for a distribution of RGs by condition). These two percentages are 

within the range of RG observed in operational settings (e.g., Goldhammer et al., 2016; Rios & 

Guo, 2020).  Across conditions, the percentage of RG simulees was constrained to 30%. This 

percentage is within the range of examinees engaging in RG observed in operational settings 

(DeMars, 2007; DeMars & Wise, 2010) and of those examined in prior simulation studies (Rios 

et al., 2017; Wise & DeMars, 2006).  

RG Pattern  

Two RG patterns were manipulated: (a) difficulty-based; and (b) progressive RG. The 

former reflects the situation in which examinees who perceive an item to be too difficult engage 

in RG based on the perception that the probability of success is too low to warrant the cost of full 

effort (see Penk & Schipolowski, 2015; hereon referred to as difficulty-based RG). To simulate 

this form of RG, the true item probabilities for each RG simulee were rank ordered in descending 

order (ties were randomly ordered). Based on the number of RGs within each RG simulee, the 
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items with the lowest probabilities of success were replaced with the chance rate (.25). The 

second RG pattern reflected simulees progressively engaging in RG as the test progresses, due to 

cognitive fatigue (hereon referred to as progressive RG; see Wise & Kingsbury, 2016). To reflect 

effort progressively decreasing, for each RG simulee, the number of known RGs were assigned 

to items based on descending item order. For instance, if a simulee possessed five RGs, their true 

probabilities would be replaced with the chance rate for the last five of 30 items on the 

assessment. As the number of RGs within each RG simulee was allowed to vary from 1 to 30, 

this assignment process resulted in a greater number of RGs toward the end of the assessment, 

thus, simulating cognitive fatigue.  

Manipulation of RG Misclassifications 

Once RG behavior was generated, misclassifications were generated in the data by 

treating a response probability (could be either effortful or RG based on the misclassification 

type noted below) as missing, which reflects the approach taken by the EM-IRT model (i.e., all 

RG responses are indicative of uninformative information). Two independent variables were 

used to manipulate misclassifications: (a) misclassification type (underclassification and 

overclassification); and (b) rate of misclassifications (10%, 30%, 50%). These variables were 

fully crossed with those used to create noneffortful responses (i.e., group impact, percentage of 

RG, and RG pattern) producing 72 total conditions, with each condition replicated 100 times.  

Misclassification Type  

Two types of RG misclassifications were investigated: underclassification and 

overclassification.7 Although both reflected misidentification issues, the former was included to 

imitate the occurrence of false negative classifications of true RGs. As noted by Wise (2017), 

                                                           
7 Although it is possible that current RG classification methods can both over- and underclassify RG, such a 
condition was not simulated in this study, as it is argued that it would largely lead to a cancellation effect. 
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this misclassification type may be common in practice as many of the current response time 

threshold procedures for identifying RG tend to adopt conservative thresholds. To simulate this 

condition, a percentage of known RGs for RG simulees were randomly selected and treated as 

observed RGs, while the remaining percentage of true RGs were included in parameter 

estimation.  

In contrast, overclassification reflected false positive RG classifications. This 

misclassification type may occur in practice due to a threshold procedure that is overly liberal 

(i.e., setting a high item response time threshold), which results in capturing both RGs and valid 

responses. To mimic this scenario, two approaches were taken. First, 100% of true RGs from RG 

simulees were identified based on the assumption that true RGs would be represented with short 

response times, and thus, would be detected by a procedure using a liberal threshold. Second, a 

proportion of valid responses (based on the misclassification rate noted below) were incorrectly 

identified as RGs. This was done by misclassifying responses for the easiest items answered by 

simulees with ability parameters in the top 30th percentile. The latter decision was employed 

based on prior literature, which has suggested that the time intensity (i.e., the time required to 

correctly solve a problem) for easy items is reduced for higher ability examinees (see 

Goldhammer, 2015; Kyllonen & Zu, 2016), which has been supported by recent research (Loken 

& Beverly, 2020). In this simulation study, the number of misclassified item responses for each 

high ability simulee (i.e., simulees in the top 30th percentile) was allowed to vary (ranging from 0 

to 10).  

Misclassification Rate  

Three levels of RG misclassification rates were examined. These rates were meant to 

reflect small (10%), moderate (30%), and large (50%) degrees of misclassification. In the context 
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of this simulation, the percentage of misclassifications were in relation to the overall percentage 

of RG in the data. For example, when there were 20% true RGs, a 50% underclassification rate 

would suggest that only 10% of the true RGs were identified, while a 50% overclassification rate 

would mean that all 20% of the true RGs were identified, with an additional 10% of valid 

responses classified as RGs. 

Data Analysis 

From these manipulations, two datasets were created. The first consisted of item response 

probabilities of combined effortful and noneffortful responses (i.e., no inclusion of RG 

misclassifications; hereon referred to as the true RG dataset), while the second consisted of the 

same, with the addition of RG misclassifications based on manipulating misclassification type 

and rate (hereon referred to as RG misclassification dataset). The creation of the two datasets 

allowed for examining the biasing effects due to known RG and RG misclassifications. Across 

datasets, item response probabilities were compared to a random number sampled from a 

uniform distribution ranging from 0 to 1. If the random number was less than a given item 

response probability, a correct response was assigned, otherwise, the response was treated as 

incorrect.  

Item and Ability Parameter Estimation 

Item and ability parameters were estimated for the true RG and RG misclassification 

datasets based on the 3PL and EM-IRT models respectively using the mirt R package (Chalmers, 

2012). Both datasets were fit using a maximum likelihood confirmatory item factor analysis 

model for dichotomous data under the IRT paradigm, with an expectation-maximization (EM) 

algorithm. The EM convergence threshold was .0001 using the Broyden-Fletcher-Goldfarb-

Shannon optimization algorithm with the maximum number of cycles set to 500. Ability 



Rapid Guessing Misclassifications  18 

parameters were obtained via expected a posteriori (EAP) proficiency estimation using the 

standard normal distribution.8 This estimator was chosen based on the work of Kim and Moses 

(2016), who showed EAP to be one of the most robust IRT estimators to atypical response 

behaviors (Kim & Moses, 2016).  

Outcome Variables 

Upon estimating model parameters (both item and person parameters were estimated 

simultaneously), accuracy for both datasets was evaluated based on bias and root mean square 

error (RMSE). Bias was calculated as:   

 Bias = ∑ �𝑦𝑦�𝑖𝑖  − 𝑦𝑦�𝑛𝑛
𝑖𝑖=1 , (3) 

where 𝑦𝑦� is the estimated parameter, 𝑦𝑦 is the known parameter, and n is the number of 

replications. The root mean square error (RMSE) was calculated as:  

 
RMSE:�∑ (𝑦𝑦�𝑖𝑖−𝑦𝑦)2𝑛𝑛

𝑖𝑖=1
𝑛𝑛−1

. 
(4) 

In terms of item parameter recovery, both bias and RMSE were calculated for the a, b, and c 

parameters. Similarly, ability parameter recovery was evaluated by calculating both bias and 

RMSE for the mean theta of the total sample as well as RG and non-RG subgroups. As the trends 

between bias and RMSE tended to be very similar, only the former is reported in the results 

section; however, the RMSE results are available upon request from the author.  

To examine the primary research objectives of the simulation study, two linear regression 

models were estimated for each dependent variable (a, b, c, total sample theta, RG subsample 

                                                           
8 The choice to assume a standard normal distribution was based on the fact that free estimation of the latent mean 
may be largely inaccurate for the EM-IRT model due to the combination of large standard errors caused by missing 
data (due to treating RG responses as missing) and inaccurate response patterns (due to misclassifying RG 
responses), To mitigate this bias, a standard normal distribution was assumed; however, this likely led to bias under 
impact conditions, given that the total sample’s ability distribution was not standard normal, but instead had a 
slightly lower mean. Given that practitioners will not know the underlying ability trait distribution of examinees, this 
degree of bias introduced is likely reflective of what would be seen in operational settings.  
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theta bias) using the lm function in R. The first model was implemented to understand the 

robustness of item and ability parameter estimates in the presence of RG misclassifications when 

using the EM-IRT model. Therefore, bias for the parameter estimate of interest from the EM-IRT 

model served as the dependent variable (five dependent variables), while the five factors 

investigated (group impact, percentage of RG in the data matrix, RG pattern, misclassification 

type, and rate of misclassifications) were included as main effects. Specifically, each main effect 

was treated as a categorical variable, with the no impact, 10% RG, progressive RG pattern, 

underclassification, and 10% misclassification rate levels serving as the reference groups. In 

addition, the following interaction effects that consisted of RG item response and 

misclassification characteristics (the main effect for impact between RG and non-RG subsamples 

was controlled for as a covariate) were added to the model: (a) percentage of RG x 

misclassification type; (b) percentage of RG x misclassification rate; (c) RG pattern x 

misclassification type; (d) RG pattern x misclassification rate; and (e) misclassification type x 

misclassification rate.  

The purpose of the second model was to investigate whether there were differences in 

bias between the EM-IRT model in the presence of RG misclassifications and the naïve 3PL 

model, which includes RG responses in scoring. To do this, the above model with the addition of 

a dichotomous variable for IRT model (the EM-IRT served as the reference) was fit separately 

for each outcome (a, b, c, total sample theta, and RG subsample theta bias).  

Across models, variance-explained was evaluated based on the adjusted R2 value. 

Further, statistical significance for factors with more than two levels was evaluated based on the 

Wald Test, and post-hoc comparisons between levels was investigated using multiple contrasts. 

Familywise error rate was controlled using the Benjamini-Hochburg procedure by testing for 
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statistical significance based on a false discovery rate of 10% (for details of this procedure, 

readers are referred to Benjamini & Hochberg, 1995).  

Results 

 Across all conditions, model convergence was met for the 3PL model; however, non-

convergence issues were noted for the EM-IRT model when RG overclassifications were equal 

to 50%, with convergence rates ranging from 89% to 100%. Replications that did not converge 

were removed from the final analyses.9  

Parameter Estimation Bias for the EM-IRT Model in the Presence of RG Misclassifications 

Table 1 provides the model results of regressing item and ability parameter bias when 

employing the EM-IRT model on study factors. Below the findings are presented independently 

for a, b, and c item parameters, while outcomes related to ability parameter bias are described for 

the total sample and RG subsamples respectively.  

Item Parameter Estimates 

Descriptive results indicated that the degree of bias observed for the c parameter across 

conditions was near zero for every condition, indicating that the investigated factors had no 

significant impact. Therefore, results are reported only for the a and b item parameters. 

 A Parameter. After controlling for the significant main effect of ability differences 

between RG and non-RG subsamples (i.e., bias was slightly greater when the RG subsample 

possessed a mean ability lower than the non-RG subsample), significant interaction effects were 

observed between: (a) RG percentage and percentage of misclassifications; and (b) 

misclassification type and percentage (see Table 1). The former finding indicated that bias in the 

a parameter increased as the percentage of misclassifications as a function of RG in the data 

                                                           
9 Replications that did not converge were re-run to ensure that all conditions were based on the same total number of 
replications (n =100). 



Rapid Guessing Misclassifications  21 

matrix increased. For instance, bias in the a parameter rose by 0.16 units when the percentage of 

misclassifications in relation to the total number of responses increased from 1% to 10%. The 

latter interaction effect suggested that the degree of bias grew at a higher rate when the 

percentage of overclassifications increased relative to underclassifications. Examination of 

Figure 1, which provides a ridgeline plot of a parameter bias by misclassification type and 

percentage separately across impact conditions, further elucidates this relationship. Specifically, 

this figure shows that the average biases for the overclassification conditions were slightly higher 

by 0.03, 0.04, and 0.07 units respectively for 10%, 30%, and 50% misclassification rates 

compared to the underclassification conditions. Taken together, these interaction effects partly 

accounted for an additional 13% of variance over the main effects model (i.e., the interactions 

model accounted for 69% of variance in a parameter bias).  

 B Parameter. The investigated main and interaction effects were found to only explain 

8% of variance in the b parameter bias, with two significant effects. Specifically, when the RG 

subsample possessed a mean ability that was 0.5 and 1 SD lower than the non-RG subsample, b 

parameter estimate bias was on average greater by 0.11 and 0.18 units than under no impact. 

Furthermore, biased estimates of item difficulty were also associated with a significant 

interaction between misclassification type and percentage. A closer inspection of Figure 2 shows 

that compared to overclassification conditions, when RG responses were underclassified by 10%, 

30%, and 50%, average bias was greater respectively by 0.05, 0.16, and 0.15 units across impact 

conditions. Overall, it is clear from Figure 2 that as the percentage of misclassifications 

increased, the average bias also increased across misclassification types, with greater 

pronouncements observed as impact grew; however, across conditions, overclassifying RGs was 
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associated with less bias. With that said, model results should be interpreted with caution given 

the large residual standard error of the regression (0.45). 

Ability Parameter Estimates 

Below results of ability parameter estimation bias are reported separately for the total 

sample and RG subsamples. 

Total Sample. The main effects model accounted for 99% of variance in ability 

parameter estimate bias for the total sample. As shown in Table 1, ability differences between 

RG and non-RG subsamples were found to be associated with the greatest amount of differences 

in bias. Specifically, when there were no ability differences, the average theta estimate was 

underestimated by 0.45 SDs; however, this negative bias decreased by 0.15 and 0.30 standard 

deviations (SDs) when the RG subsample possessed a mean ability that was 0.5 and 1 SD lower 

than the non-RG subsample, respectively. The percentage and patterns of RG were not 

associated with bias. Similarly, neither misclassification type nor rate were found to be 

significantly associated with bias, suggesting that mean ability parameter estimates were robust 

to RG misclassifications in the data. 

 RG Subsample. The main and interaction effects investigated accounted for a total of 

98% of variance in ability bias for the RG subsample. The main effect for group impact was 

found to be associated with significant levels of bias. Specifically, compared to conditions in 

which no impact was present, the mean ability for the RG subsample was overestimated by 0.30 

and 0.62 SDs respectively for impact conditions of 0.5 and 1 SD. After controlling for this 

variable, significant interaction effects were observed for: (a) RG percent and misclassification 

type; and (b) misclassification percentage and type. Concerning the former, bias was on average 

greater by 0.22 SDs across conditions when the RG percent was equal to 20% and RG responses 
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were overclassified versus the condition in which RG responses comprised 10% of the data 

matrix and RG responses were underclassified.  

This result is further corroborated by the significant interaction between misclassification 

type and percentage; however, as shown in Figure 3, this result was largely moderated by group 

impact. Specifically, under no impact, the observed influence of misclassification type on ability 

bias was as expected. For instance, for RG overclassification, under no impact, bias was 

approximately zero across RG misclassification rate conditions, as RG was correctly identified 

with 100% accuracy. Concerning RG underclassification, Figure 3 shows bimodal distributions 

representing descriptive differences between RG response patterns, with greater negative bias 

observed for progressive RG responding. As item difficulty was randomly assigned across the 

test form, greater negative bias was observed as simulees engaged in RG on items in which they 

had a high probability of success. Once aggregating results across conditions by RG percentage 

and pattern, under no impact, negative bias increased from -0.08 SDs to -0.33 SDs for 

misclassification percentages of 10% and 50%, respectively. The increase observed was 

associated with a greater rate of RGs from above average simulees in the RG subsample, which 

led to incorrect responses to items in which they possessed a high probability of success.  

As the difference in mean ability between the two subsamples increased, the RG 

subsample’s ability bias was overestimated across nearly every misclassification percentage and 

type. For example, for overclassification conditions, bias increased to 0.63 SDs for an average 

theta difference of 1 SD between RG subgroups, while bias decreased from 0.54 SDs to 0.35 SDs 

as the percentage of underclassifications increased from 10% to 50%, respectively (see Figure 3). 

This latter result indicated that an RG subsample predominately comprised of below average 

ability simulees generally benefited from RG correctly across items in which the item difficulty 
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parameter estimates were overestimated; however, as the rate of RG that went undetected 

increased, ability parameter estimates were less overestimated, due to the overall proportion 

correct for RGs approaching the chance level.  

 Non-RG Subsample. The main and interaction effects investigated accounted for 95% of 

variance in the ability bias for the non-RG subsample. A significant main effect for group impact 

was noted. Although smaller than observed for the RG subsample, compared to no impact, non-

RG ability was overestimated by an average of 0.09 and 0.16 SDs when the non-RG subsample 

possessed a true ability that was 0.5 and 1 SD higher than the RG subgroup. Accounting for this 

main effect, a significant interaction between misclassification type and percentage was 

observed. As is shown in Figure 4, the degree of bias differed between misclassification types. In 

particular, average bias was lower when overclassifying RG, with a consistent overestimation of 

0.08 SDs across impact conditions, regardless of the misclassification percentage. This result is 

to be expected as overclassifications occurred for simulees with true ability in the top 30th 

percentile receiving the easiest items. Thus, misclassifying valid responses to such items 

provided little bias, as these items were largely uninformative to estimating these simulees’ true 

ability.  

Comparatively, non-RG subsample bias was greater when underclassifications occurred 

(i.e., misclassifications were only present for the RG subsample). For instance, the degree of 

non-RG subsample ability bias averaged across group impact conditions was 0.12, 0.17, and 0.21 

SDs with underclassification rates of 10%, 30%, and 50%, respectively. This overestimation in 

non-RG subsample ability was likely due to biased item difficulty parameter estimates in which 

items appeared to be more difficult than they were. Consequently, correct responses to such 
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items were deemed to represent a higher proficiency, which led to high ability simulees 

appearing to be more proficient than they were in truth.  

Comparison between the 3PL and EM-IRT Models 

 Results comparing the two models are presented separately for item and ability parameter 

estimates. Table 2 presents the regression results comparing the 3PL and EM-IRT models on 

item and ability parameter estimate bias after controlling for the main and interaction effects. 

Item Parameter Estimates  

Due to the minimal bias observed for the c parameter, the description of findings focuses 

on all other item parameter outcomes. Overall, results indicated significant differences between 

the two models for the a and b item parameters, with the 3PL respectively overestimating each 

parameter by an average of 0.21 and 0.23 units compared to the EM-IRT model. Figures 1 and 2 

further elucidate these findings by showing the bias for the 3PL model. Across these figures, the 

ridgeline plots show a multimodal distribution for the 3PL model reflecting descriptive 

differences between RG pattern, with greater bias observed for progressive RG responding. 

Regardless, for both item parameters, bias was consistently lower for the EM-IRT model 

irrespective of misclassification type, misclassification percentage, and the presence of group 

impact.  

Ability Parameter Estimates  

In terms of ability parameter estimates for the total sample, no significant model 

differences were found; however, across conditions, significant model differences were observed 

for RG and non-RG subsample ability estimates (Table 2). Concerning the former, compared to 

the EM-IRT model, the average bias was lower for the 3PL model by 0.37 SDs. A closer 

examination of Figure 3 shows that the absolute degree of bias for the EM-IRT model was 
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smaller across conditions when RG was overclassified (regardless of percent misclassified) 

under no impact. Furthermore, although bias was smaller for the EM-IRT model when 

underclassifying RG by 10%, the 3PL model provided similar degrees of bias as 

underclassification rates grew under no impact conditions. This was likely due to higher ability 

simulees RG on items to which they would be expected to correctly answer based on their true 

ability.  

Across conditions in which group impact was present, the findings painted a more 

complex picture. Specifically, when impact was equal to 0.5 SDs, underclassifying RGs with the 

EM-IRT model largely led to better estimates of RG responder mean ability than the 3PL model, 

particularly as the percentage of misclassifications increased. This result reflects the fact that the 

benefits of RG dissipate as simulees engage in higher rates of RG (i.e., as RGs increase, the 

average probability of success more closely reflects chance), and thus, underclassifying such 

behaviors leads to relatively accurate theta estimates for low ability simulees. However, this 

applies only to a certain degree. That is, when RG responders were of very low ability (i.e., 

group impact was equal to 1 SD), attempting to identify RGs and apply the EM-IRT model was 

associated with overestimation of ability, regardless of misclassification type. In such 

circumstances, results indicated that including RGs in scoring by applying the 3PL model led to 

the least degree of overall bias. The reason for this is that many of the simulees engaging in RG 

possessed low probabilities of correctly responding to items, and thus, their ability estimates 

were positively biased (i.e., RG improved their scores), but the degree of bias was less than the 

EM-IRT model. However, as reflected in the multimodal distributions of the 3PL model shown 

in Figure 3, the degree of bias for this model was associated with the overall percentage of RGs 
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in the data matrix (i.e., larger percentages of RG were associated with greater bias) and RG 

pattern (i.e., greater bias was observed for progressive RG).  

In addition, the models differed in ability parameter estimate bias of the non-RG 

subsample. Specifically, the 3PL model on average possessed a bias that was 0.16 SDs higher 

than the EM-IRT model across conditions. Figure 4 illustrates this finding by showing that the 

EM-IRT model produced bias that was lower for all conditions, including those in which a high 

degree of group impact was present and misclassification rates were as large as 50%.  

Discussion 

The objective of this study was to examine the impact of RG misclassifications on item 

and ability parameter estimates when employing the EM-IRT model. Overall, the findings from 

the simulation analysis indicate that the EM-IRT model is susceptible to non-convergence issues 

when the degree of overclassified RG reaches rates of 30% or higher. For those models that did 

converge, a and b parameter estimates from the EM-IRT model were found to be susceptible to 

bias in the presence of RG misclassifications, while the c parameter was not observed to be 

impacted. Although the parameter estimates from the EM-IRT model were negatively influenced 

by RG misclassifications, this model outperformed the naïve 3PL model across all conditions 

examined.  

Concerning ability parameter estimates, the EM-IRT model produced unbiased theta 

estimates for the total sample similar to the 3PL model. The lack of difference in models is likely 

because total sample estimates of ability have been shown to be robust to high RG rates (e.g., 

Rios & Soland, 2020; Wise et al., 2020). As a result, misclassifications of RG were shown to 

have no impact. However, when examining the non-RG subgroup’s ability parameter estimate 
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bias, the EM-IRT model was found to outperform the 3PL model across misclassification type, 

misclassification rates, and subgroup impact conditions.  

In terms of the RG subsample, ability estimates for the EM-IRT model were more 

accurate than the 3PL model when RG was correctly classified with 100% accuracy (i.e., RG 

was overclassified) or underclassified by 10% and no group impact was present. As expected, 

under no group impact, bias for the EM-IRT model was found to increase as the degree of 

underclassification increased, as many of the item responses to which above average simulees 

guessed on had a high probability of a correct response. Furthermore, although group impact was 

also associated with increased bias for the non-RG subsample, its effect on the RG subgroup’s 

ability estimates was large. This finding supports prior research in showing that aggregate-level 

ability parameter estimation accuracy is greatly undermined when violating the EMIRT model’s 

assumption that the true abilities of rapid guessers are reflective of the sample distribution (e.g., 

Rios et al., 2017; Rios & Soland, 2020). Thus, in most contexts where group impact is present, 

the 3PL model can provide more accurate estimates for examinees that have engaged in RG 

compared to the EM-IRT model.   

Limitations and Future Research 

 In interpreting the findings from this study, several limitations should be noted. First, this 

study examined only one approach to handling RG. As noted, a number of models have been 

developed, however, this study focused solely on the EM-IRT model due to its popularity in the 

literature as well as its current use in operational settings. Future research should examine the 

comparative utility between the EM-IRT model and other response time models (e.g., Wang and 

Xu’s [2015] mixture hierarchical model). In addition, there may be alternative scoring 

procedures that could be employed to handle RG that do not rely on response times, which may 
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be of particular importance for assessments that are administered via paper-and-pencil. For 

instance, one could employ a modification to maximum likelihood estimation equations by 

downweighting observations that are prone to response disturbances using Huber-Type weights 

(see Schuster & Yuan, 2011). This approach would allow for practitioners to handle potential RG 

when log-file information is not readily available, and could also loosen the restrictions on 

sample size requirements observed for complex mixture models when response times are 

accessible. Future research should evaluate such an approach compared to alternatives.  

Second, in this study, ability estimation for both the EM-IRT and 3PL models relied on 

EAP scoring. As a consequence, the results may have been biased as ability estimates using this 

scoring procedure are shrunk toward the mean. That is, in general, greater shrinkage is observed 

as the degree of missing data increases. This may have been one reason why RG 

misclassification rates had little impact on the total sample mean ability estimate, particularly for 

conditions in which RG misclassification rates were large. Future research should examine this 

issue by comparing model results when using EAP and maximum likelihood scoring. An 

additional limitation related to estimation was that both item and person parameters were jointly 

estimated. As a result, bias in item parameters were associated with increased bias in ability 

estimates, over and above the bias associated with RG misclassifications. This may have been a 

particular concern under group impact conditions as the assumption that the trait levels followed 

a standard normal distribution was violated. To mitigate this issue, future research should 

examine the utility of fixed item parameter ability estimation in the presence of RG. This could 

be done by first estimating item parameters based on a filtered sample (i.e., either removing RGs 

or down-weighting potential aberrant responses as noted above), and then treating these item 

parameter estimates as fixed to estimate ability for the entire sample.   
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Implications 

 In light of the limitations, this study provides implications for practitioners confronted 

with the decision of choosing a response time threshold. As noted by Wise (2017), when 

practitioners are making this decision, they must often weigh whether to adopt a conservative 

approach to limit false positives (i.e., identifying a valid response as RG), while increasing the 

potential for false negatives (i.e., classifying RG as a valid response), or adopt a liberal approach 

that has the opposite effect. Assuming that false positives of RG occur due to high ability 

examinees responding very quickly to easy items, the findings from this simulation analysis 

indicate that adopting conservative response time threshold procedures may be associated with 

greater bias in item difficulty and ability parameter estimates than procedures that overclassify 

RG when employing the EM-IRT model for scoring. Therefore, it may be preferable in many 

cases to adopt liberal response time threshold procedures to limit false negative classifications of 

RG.  

An additional implication is that due to the overestimation of item difficulty due to RG 

misclassifications, practitioners may consider replacing joint estimation of item and ability 

parameters with fixed item parameter ability estimation to mitigate the influence of biased item 

parameters on ability estimates. As noted, further research is needed to evaluate the 

improvements of this latter approach over the traditional joint estimation procedure. Lastly, 

although the EM-IRT model was found to provide improved estimation of item, and in many 

cases, ability parameters, increased bias was generally observed when subgroup impact was 

present. As a consequence, it is recommended that practitioners make every effort to evaluate the 

tenability of the assumption that RG is unrelated to examinees’ true ability prior to using the 

EM-IRT model. This may be done by utilizing prior achievement measures to investigate ability 
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differences between RG and non-RG subsamples (see Rios et al., 2017). If such information is 

unavailable, the multidimensional approach to estimating the covariance between RG behavior 

and performance estimates proposed by Liu et al. (2019) may be helpful.    
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Table 1 

Model Results for Regressing Item and Ability Parameter Bias for the EM-IRT Model on Study Factors  
 Item Parameter Estimate Ability Parameter Estimate  
Factor A 

Parameter 
R2 = .69 

B 
Parameter 

R2 = .08 

C 
Parameter 

R2 = .26 

Total 
Sample 
R2 = .99 

RG 
Subsample 

R2 = .98 

Non-RG 
Subsample 

R2 = .95 

 

Intercept .14* (.02) -.69* (.18) -.14* (.01) -.45* (.00) -.17* (.02) -.57* (.01)  
Impact: -0.5 .04* (.00) .11* (.01) .02* (.00) .15* (.00) .30* (.00) .09* (.00)  
Impact: -1 .09* (.00) .18* (.01) .02* (.00) .30* (.00) .62* (.00) .16* (.00)  
RG % -.26* (.01) -.07 (.07) .03* (.00) -.00 (.00) -.16* (.00) .06* (.00)  
RG Pattern .02 (.01) .07 (.07) -.00 (.00) -.00 (.00) -.00 (.00) .00* (.00)  
Misclassify Type -.07* (.01) .28* (.08) .01 (.00) -.00 (.00) -.52* (.00) .22* (.00)  
Misclassify %: 30% -.06* (.01) .18 (.07) .05* (.00) -.00 (.00) -.17* (.00) .07* (.00)  
Misclassify %: 50% -.20* (.01) .18 (.07) .08* (.00) -.00 (.00) -.32* (.00) .13* (.00)  
RG % x Misclassify Type .02* (.00) -.09* (.02) -.01* (.00) .00 (.00) .22* (.00) -.09* (.00)  
RG % x Misclassify %: 30% .06* (.00) .07 (.03) .00 (.00) .00 (.00) -.05* (.00) .03* (.00)  
RG % x Misclassify %: 50% .16* (.00) .14* (.03) .00 (.00) .00 (.00) -.09* (.00) .04* (.00)  
RG Pattern x Misclassify Type .00 (.00) .02 (.02) -.01* (.00) .00 (.00) -.04* (.00) .02* (.00)  
RG Pattern x Misclassify %: 
30% 

-.01 (.00) -.03 (.03) -.00* (.00) .00 (.00) .01 (.00) -.00 (.00)  

RG Pattern x Misclassify %: 
50% 

-.00 (.00) -.05 (.03) -.00 (.00) .00 (.00) .01* (.00) -.00* (.00)  

Misclassify Type x Misclassify 
%: 30% 

.02* (.00) -.11* (.03) -.01* (.00) -.00 (.00) .12* (.00) -.05* (.00)  

Misclassify Type x Misclassify 
%: 50% 

.05* (.00) -.11* (.03) -.02* (.00) -.00 (.00) .22* (.00) -.09* (.00)  

Note. Standard errors are noted in parentheses. * p <.001 
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Table 2 

Comparison of Parameter Estimation Bias between EM-IRT and 3PL Models  
 Item Parameter Estimate Ability Parameter Estimate 
Factor A Parameter 

R2 = .63 
B Parameter 

R2 = .19 
C Parameter 

R2 = .31 
Total 

Sample 
R2 = .99 

RG 
Subsample 

R2 = .87 

Non-RG 
Subsample 

R2 = .77 
Intercept -.18* (.03) -.58* (.09) .01 (.01) -.45* (.00) -.20* (.04) -.54* (.02) 
Impact: -0.5 -.00 (.00) .07* (.01) -.01* (.00) .15* (.00) .32* (.00) .08* (.00) 
Impact: -1 .03 (.00) .09* (.01) .01* (.00) .30* (.00) .69* (.00) .14* (.00) 
RG % .02 (.01) .12* (.04) -.01* (.00) -.00 (.00) -.26* (.02) .11* (.00) 
RG Pattern .10* (.01) .10 (.04) .02* (.00) -.00 (.00) -.16* (.02) .07* (.00) 
Misclassify Type -.03 (.01) .15* (.04) .02* (.00) -.00 (.00) -.26* (.02) .11* (.00) 
Misclassify %: 30% -.03 (.01) .10 (.04) .02* (.00) -.00 (.00) -.08* (.02) .03* (.00) 
Misclassify %: 50% -.09* (.01) .10 (.04) .01* (.00) -.00 (.00) -.16* (.02) .06* (.00) 
RG % x Misclassify Type .01 (.00) -.05* (.01) -.00* (.00) .00 (.00) .11* (.00) -.04* (.00) 
RG % x Misclassify %: 30% .03* (.00) .03 (.01) .00 (.00) .00 (.00) -.03* (.00) .01* (.00) 
RG % x Misclassify %: 50% .08* (.00) .07* (.01) .00 (.00) .00 (.00) -.05* (.01) .02* (.00) 
RG Pattern x Misclassify 
Type 

.00 (.00) .02 (.01) .00* (.00) .00 (.00) -.02* (.01) .01* (.00) 

RG Pattern x Misclassify %: 
30% 

-.00 (.00) -.02 (.01) .00* (.00) .00 (.00) .00 (.01) -.00 (.00) 

RG Pattern x Misclassify %: 
50% 

-.00 (.00) -.03 (.01) -.00 (.00) .00 (.00) .01 (.01) -.00 (.00) 

Misclassify Type x 
Misclassify %: 30% 

.01 (.00) -.06* (.01) -.00* (.00) -.00 (.00) .06* (.01) -.03* (.00) 

Misclassify Type x 
Misclassify %: 50% 

.02 (.00) -.06* (.01) -.01* (.00) -.00 (.00) .11* (.01) -.05* (.00) 

Model .21* (.00) .23* (.01) .01* (.00) -.00 (.00) -.37* (.00) 0.16* (.00) 
Note. Standard errors are noted in parentheses. * p <.001 



Rapid Guessing Misclassifications  39 

Figure 1 

A Parameter Bias based on Misclassification Type and Percentage 

  
Note. Results presented are based on aggregating conditions across group RG percentage and 
RG pattern. The vertical line in each distribution represents the median value.  
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Figure 2 
 
B Parameter Bias based on Misclassification Type and Percentage 

  
Note. Results presented are based on aggregating conditions across group RG percentage and RG 
pattern. The vertical line in each distribution represents the median value. 
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Figure 3 

Ability Parameter Bias for Rapid Guesser Subgroup by Misclassification Type and Percentage  

 
Note. Results presented are based on aggregating conditions across group RG percentage and RG 
pattern. The vertical line in each distribution represents the median value. 
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Figure 4 
 
Ability Parameter Bias for Non-Rapid Guesser Subgroup by Misclassification Type and 
Percentage  

 
Note. Results presented are based on aggregating conditions across group RG percentage and RG 
pattern. The vertical line in each distribution represents the median value. 


