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Abstract
We provide a unified overview of methods that currently
are widely used to assess the accuracy of prediction algo-
rithms, from raw percentages, quadratic error measures
and other distances, and correlation coefficients, and to
information theoretic measures such as relative entropy
and mutual information. We briefly discuss the advantages
and disadvantages of each approach. For classification
tasks, we derive new learning algorithms for the design
of prediction systems by directly optimising the correla-
tion coefficient. We observe and prove several results re-
lating sensitivity and specificity of optimal systems. While
the principles are general, we illustrate the applicability
on specific problems such as protein secondary structure
and signal peptide prediction.
Contact: pfbaldi@ics.uci.edu

Introduction and notation
With the expansion of computer methods in bioinformat-
ics and other fields, researchers are more and more fre-
quently faced with the problem of evaluating the accuracy
of a particular prediction algorithm. As several methods
aiming at solving the same problem are often available it
is also important to be able to select a particular method
based on the performance features that can be inferred
from the principles that went into its construction. Some
methods are optimized such that they produce very few
false positives, while others produce very few false nega-
tives, and so on. Normally it is of prime interest to secure,
for any type of prediction algorithm, that the method will
be able to perform well on novel data that have not been
used in the process of constructing the algorithm. That is,
the method should be able to generalize to new examples
from the same data domain.

4Also at the Department of Biological Sciences, University of California,
Irvine, USA, to whom all correspondence should be addressed.

A recurrent problem haunting method evaluation is
the redundancy of the data: if the sequence examples
used for training and testing a particular algorithm are
very similar the apparent predictive performance may
be overestimated, reflecting the ability of the method to
reproduce its own input rather than its ability to interpolate
and extrapolate. Thus, the actual level of prediction
accuracy is intimately related to the degree of similarity
between the training and test sets, or in a cross-validated
study, to the average degree of pair-wise similarity in a
data set. Here, however, we shall focus on the definition
of relevant criteria for the performance evaluation, and
not on issues that relate to the selection of data (Sander
and Schneider, 1991; Hobohm et al., 1992; Nielsen et al.,
1996).

While conceptually the evaluation issues are the same
for a wide range of different problems, for the sake of
concreteness and for historical reasons we shall in this
review concentrate on two extensively studied bioinfor-
matics problems: prediction of protein secondary structure
and secretory signal peptides.

It is often relevant to measure accuracy of prediction
at different levels. For signal peptide prediction, for
example, accuracy may be measured by counting how
many sequences are correctly classified as signal peptides
or non-secretory proteins, instead of counting how many
residues are correctly predicted to belong to a signal
peptide.

At higher levels, however, the measures tend to be more
complicated and problem-specific. In the signal peptide
example, it is also relevant to ask how many signal peptide
sequences have the position of the cleavage site correctly
predicted. In gene finding, a predicted exon can have
both ends correct, or only overlap to some extent. Burset
and Guigó (1996) have defined four simple measures
for gene finding accuracy at the exon level—sensitivity,
specificity, ‘missing exons’, and ‘wrong exons’—counting
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only predictions that are completely correct or completely
wrong. For secondary structure prediction this approach
would be too crude, since the borders of structure elements
(helices and sheets) are not precisely defined. Instead, the
segment overlap measure (SOV) can be applied; it was
first introduced by Rost et al. (1994) and later slightly
modified and applied in the third Critical Assessment of
Structure Prediction (CASP3) competition (Zemla et al.,
1999). It is a set of segment-based heuristic evaluation
measures, where a correctly predicted segment position
can give maximal score even though the prediction is
not identical to the assigned segment. The score punishes
broken predictions strongly, such as two predicted helices
where only one is observed compared with one, too small,
unbroken helix. In this manner the uncertainty of the
assignment’s exact borders is reflected in the evaluation
measure. As this example illustrates, a high-level accuracy
measure can become rather ad hoc when the precise nature
of the prediction problem is taken into consideration.

For the sake of generality, we will therefore focus our at-
tention on single residue/nucleotide assessment measures.
For the secondary structure problem, consider an amino
acid sequence of length N . The structural data D avail-
able for the comparison is the secondary structure assign-
ments D = d1, . . . , dN . For simplicity, we will first con-
sider the dichotomy problem of two alternative classes, for
instance: α-helix versus non-α-helix. In this case, the di s
are in general equal to 0 or 1. We can also consider the
case where di has a value between 0 and 1, for example
representing the surface exposure of amino acids, or the
probability or degree of confidence, reflecting the uncer-
tainty of our knowledge of the correct assignment at the
corresponding position. The analysis for the multiple class
case, corresponding for example to three states, α-helices,
β-sheets and coil, is very similar and will be sketched in
a later section. We now assume that our prediction algo-
rithm or model, outputs a prediction of the form M =
m1, . . . , m N . In general, mi is a probability between 0 and
1 reflecting our degree of confidence in the prediction.
Discrete 0/1 outputs, obtained for instance by threshold-
ing, or ‘the-winner-takes-all’ approaches, are also possible
and fall within the theory considered here. The fundamen-
tal and general question we address is how do we assess
the accuracy of M, or how do we compare M with D?

A variety of approaches have been suggested in different
contexts and at different times and this may have created
some confusion. The issue of prediction accuracy is
strongly related to the frequency of occurrence of each
class. In protein secondary structure prediction the non-
helix class covers roughly 70% of the cases in natural
proteins, while only 30% belong to the helix class. Thus
a constant prediction of ‘non-helix’ is bound to be correct
70% of the time, although it is highly non-informative and
useless.

Thus the purpose of the next section is to review
all the approaches and clarify the connections between
them and their respective advantages and disadvantages.
A fundamental simplifying assumption underlying all
these approaches is that the amino acid positions are
weighted and treated equally (the independence and
equivalence assumption). Thus, we assume, for example,
that there is no weighting scheme reducing the influence
of positions near the N- or C-terminus, or no built-in
mechanism that takes into account the fact that particular
predictions must vary somewhat ‘smoothly’ (for instance,
if a residue belongs to the α-helix category, its neighbors
have a slightly higher chance of being also in the α-
helix category). Conversely, when predicting functional
sites such as intron splice sites, translation start sites,
glycosylation or phosphorylation sites, we assume the
prediction of a site is either true or false, so that there is
no reward for almost correctly placed sites.

Under the independence and equivalence assumption, if
both D and M are binary, it is clear that their comparison
can be entirely summarized by four numbers:

• T P = the number of times di is helix, mi is helix (true
positive)

• T N = the number of times di is non-helix, mi is non-
helix (true negative)

• F P = the number of times di is non-helix, mi is helix
(false positive)

• F N = the number of times di is helix, mi is non-helix
(false negative)

satisfying: T P + T N + F P + F N = N . When D and/or
M are not binary, then of course the situation is more
complex and four numbers do not suffice to summarize
the situation. When M is not binary, binary predictions can
still be obtained by using cut-off thresholds. The numbers
T P , T N , F P , and F N will then vary with the threshold
choice. The numbers T P , T N , F P , and F N are often
arranged into a 2 × 2 contingency matrix:

M M̄
D T P F N
D̄ F P T N

.

Even with four numbers alone, it is not immediately
clear how a given prediction method fares. This is why a
lot of the comparison methods aim at constructing a single
number measuring the ‘distance’ between D and M. But it
must be clear from the outset, that information is always
lost in such a process, even in the binary case, i.e. when
going from the four numbers above to a single one. In
general, several different vectors (T P , T N , F P , F N ) will
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result in the same distance. We now review several ways
of measuring the performance of M and their merits and
pitfalls.

Performance measures
Percentages
The first obvious approach is to use percentages derived
from T P , T N , F P , and F N . For instance, Chou and Fas-
man (1978a,b) used the percentage of correctly predicted
helices

PC P(D, M) = 100
T P

T P + F N
(1)

which is the same as the sensitivity (see Section Receiver
operating characteristics curves, sensitivity and speci-
ficity) expressed as a percentage. This number alone pro-
vides no information whatsoever about false positives. It
can be complemented by the percentage of correctly pre-
dicted non-helices

PC N (D, M) = 100
T N

T N + F P
. (2)

The average of the previous two numbers has been used
in the literature (Chou and Fasman, 1978a,b) and is often
called Qα . While Qα is a useful indicator, it can be
misleading (Wang, 1994) and can be computed only if
both D and M are binary. Intuitively, any single number
that is constructed using only two numbers out of the
four (T P , T N , F P , F N ) is bound to be highly biased in
some trivial way. If the two numbers are T P and F P for
instance, then any two situations (T P , T N , F P , F N ) and
(T P , T N ′, F P , F N ′) lead to the same score regardless of
how different they may be.

Hamming distance
In the binary case, the Hamming distance between D and
M is defined by

H D(D, M) =
∑

i

|di − mi |. (3)

This sum is obviously equal to the total number of
errors F P + F N . Thus it is equivalent to a single
percentage measure. This distance does not take into
account the proportion of examples that belong to a given
class. It becomes less and less useful as this proportion
moves away from 50%. In the purely non-binary case,
the Hamming distance is called the L1 distance and is
discussed below.

Quadratic ‘distance’
The quadratic or Euclidean or least means square (LMS)
‘distance’ is defined by

Q(D, M) = (D − M)2 =
∑

i

(di − mi )
2. (4)

Strictly speaking, a proper distance is defined by taking
the square root of the above quantity (see the L2 distance
below). In the binary case, the quadratic distance reduces
to the Hamming distance and is again equal to F P + F N .
This quantity has the advantage of being defined for non-
binary variables, and it is often associated with a negative
log-likelihood approach for a Gaussian model of the form

P(di |mi ) = 1

σ
√

2π
e−(di −mi )

2/2σ 2
(5)

where σ acts as a scaling factor with respect to Q(D, M).
For binary variables, the quadratic distance is identical
to the Hamming distance. The main drawback is that
the Gaussian model is often not relevant for prediction
problems and the value of the quadratic distance again
poorly reflects the proportion of positions that belongs to a
given class. Another problem, discussed later in the paper,
is that the LMS distance has a limited dynamic range due
to the fact that mi and di are between 0 and 1. This is not
ideal for learning algorithms where large error signals can
be used to accelerate the learning process. A logarithmic
variation on the LMS distance discussed in the Appendix
that obviates this problem is given by

L Q(D, M) = −
∑

i

log[1 − (di − mi )
2]. (6)

This modified error function has been used in several
neural network implementations, see for example (Brunak
and Engelbrecht, 1996; Hebsgaard et al., 1996; Hansen et
al., 1998).

L p distances
More generally, the L P distance is defined by

L P(D, M) =
[∑

i

|di − mi |p

]1/p

(7)

Such a distance applies of course to any numerical values.
When p = 1 we find the Hamming distance, and when
p = 2 we find the proper Euclidean distance. When p →
∞, the L∞ distance is the sup distance: maxi |di − mi |.
This distance provides an upper bound associated with
the worst case, but is not very useful in assessing the
performance of a protein secondary structure prediction
algorithm. Other values of p are rarely used in practice,
and are of little help for assessing prediction performance
in this context. In the binary case, the L p distance reduces
to (F P + F N )1/p. For p = 1, this reduces again to the
Hamming distance.

Correlation
One of the standard measures used by statisticians is the
correlation coefficient also called the Pearson correlation
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coefficient

C(D, M) =
∑

i

(di − d̄)(mi − m̄)

σDσM
(8)

where d̄ = ∑
di/N and m̄ = ∑

mi/N are the averages,
and σD, σM the corresponding standard deviations. In the
context of secondary structure prediction, this is also
known as the Matthews correlation coefficient in the
literature since it was first used in Matthews (1975). The
correlation coefficient is always between −1 and +1 and
can be used with non-binary variables. It is a measure
of how the normalized variables (di − d̄)/σD and (mi −
m̄)/σM tend to have the same sign and magnitude. A
value of −1 indicates total disagreement and +1 total
agreement. The correlation coefficient is 0 for completely
random predictions. Therefore, it yields easy comparison
with respect to a random baseline. If two variables are
independent, then their correlation coefficient is 0. The
converse in general is not true.

In vector form, the correlation coefficient can be rewrit-
ten as a dot product between normalized vectors

C(D, M) = (D − d̄1)(M − m̄1)√
(D − d̄1)2

√
(M − m̄1)2

= DM − Nd̄m̄√
(D2 − Nd̄2)(M2 − Nm̄2)

(9)

where 1 denotes the N -dimensional vector of all ones. As
such, C(D, M) is related to the L2 distance, but is not a
distance itself since it can assume negative values. If the
vectors D and M are normalized, then clearly Q(D, M) =
(D − M)2 = 2 − 2DM = 2 − 2C(D, M). Unlike some
of the previous measures, the correlation coefficient has a
global form rather than being a sum of local terms.

In the case where D and M consist of binary 0/1 vectors,
we have D2 = T P + F N , M2 = T P + F P , DM = T P ,
etc. With some algebra the sum above can be written as

C(D, M) = T P − Nd̄m̄

N
√

d̄m̄(1 − d̄)(1 − m̄)
. (10)

Here the average number of residues in the helix class
satisfies d̄ = (T P + F N )/N , and similarly for the
predictions m̄ = (T P + F P)/N . Therefore,

C(D, M) = N × T P − (T P + F N )(T P + F P)√
(T P + F N )(T P + F P)(T N + F P)(T N + F N )

= T P × T N − F P × F N√
(T P + F N )(T P + F P)(T N + F P)(T N + F N ).

(11)

The correlation coefficient uses all four numbers (T P ,
T N , F P , F N ) and may often provide a much more

balanced evaluation of the prediction than, for instance,
the percentages. There are situations, however, where
even the correlation coefficient is unable to provide a
completely fair assessment. The correlation coefficient
will, for example, be relatively high in cases where a
prediction algorithm gives very few or no false positives,
but at the same time very few true positives. One simple
observation that will be useful in a later section is that C
is symmetric with respect to F P and F N .

One interesting property of the correlation coefficient
is that there is a simple approximate statistical test for
deciding whether it is significantly better than zero, i.e.
whether the prediction is significantly more correlated
with the data than a random guess with the same m̄
would be. If the chi-squared test is applied to the 2 × 2
contingency matrix containing T P , T N , F P , and F N to
decide, it is easy to show that the test statistic is χ2 =
N × C2(D, M).

Approximate correlation
Burset and Guigó (1996) defined an ‘approximate correla-
tion’ measure to compensate for an alleged problem with
the Matthews correlation coefficient: that it is not defined
when any of the sums T P + F N , T P + F P , T N + F P , or
T N + F N reaches zero, for example if there are no posi-
tive predictions. Instead, they use the average conditional
probability (AC P) which is defined as

AC P = 1

4

[
T P

T P + F N
+ T P

T P + F P
+ T N

T N + F P

+ T N

T N + F N

]
(12)

if all the sums are non-zero; otherwise, it is the average
over only those conditional probabilities that are defined.
Approximate correlation (AC) is a simple transformation
of the AC P:

AC = 2 × (AC P − 0.5). (13)

Like C , AC gives 1, 0, and −1 for perfect, random, and
all-false predictions, respectively; and Burset and Guigó
observe that it is close to the real correlation value.

However, the problem that they intend to solve does
not exist, since it is easy to show that C approaches 0 if
any of the sums approaches 0. This also makes intuitive
sense, since a prediction containing only one category is
meaningless and does not convey any information about
the data. On the contrary, it can be shown that the AC
approach introduces an unfortunate discontinuity in this
limit because of the deletion of undefined probabilities
from the expression for AC P , so it does not give 0
for meaningless predictions. Furthermore, since there is
no simple geometrical interpretation for AC , it is an
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unnecessary approximation and we see no reason to
encourage its use.

Relative entropy
The relative entropy, or cross entropy, or Kullback–
Leibler (KL) contrast between two probability vectors
X = (x1, . . . , xM ) and Y = (y1, . . . , yM ) with xi , yi ≥ 0
and

∑
xi = ∑

yi = 1 is defined as

H(X, Y) =
M∑

i=1

xi log
xi

yi
= −H(X) −

∑
i

xi log yi (14)

where H(X) = − ∑
xi log xi is the usual entropy. It has

its roots in information theory (Kullback, 1959; Kullback
and Leibler, 1986; Baldi and Brunak, 1998). It is well
known that H(X, Y) is always positive, convex in both its
variables, and equal to 0 if and only if X = Y. Strictly
speaking it is not a distance, for instance because it is
not symmetric. It is easy to construct a distance using a
symmetrized version. In practice, this is rarely necessary
and the form above is sufficient. If Y = X + ε is close to
X, then a simple Taylor expansion shows that

H(X, X + ε) = −
∑

i

xi

[
log

(
1 + εi

xi

)]
≈

∑
i

ε2
i

xi
.

(15)
In particular, if X is uniform, then in its neighborhood the
relative entropy behaves like the LMS error.

Returning to the secondary structure prediction prob-
lem, we can then assess the performance of the prediction
M by the quantity:

H(D, M) =
N∑

i=1

[
di log

di

mi
+ (1 − di ) log

(1 − di )

(1 − mi )

]
.

(16)
This is just the sum of the relative entropies at each
position i . This form, of course, works perfectly well on
non-binary data (for example binding affinities), or when
D alone is binary. When M is also binary, then the relative
entropy has F P + F N components which are infinite (it
behaves like H(D, M) ≈ (F P + F N )∞) and cannot
really be used.

Mutual information
Consider two random variables X and Y with probability
vectors X = (x1, . . . , xM ) and Y = (y1, . . . , yK ). Let
Z be the joint random variable Z = (X ,Y) over the
Cartesian product with probability vector Z. The mutual
information I (X ,Y) or I (X, Y) between X and Y is
defined as the relative entropy between Z and the product
XY

I (X ,Y) = H(Z,XY). (17)

As such it is always positive. It is easy to understand
the mutual information in Bayesian terms: it represents
the reduction in uncertainty of one variable when the
other is observed, that is between the prior and posterior
distributions (Baldi and Brunak, 1998). The uncertainty
in X is measured by the entropy of its prior H(X ) =∑

xi log xi . Once we observe Y = y, the uncertainty in
X is the entropy of the posterior distribution, H(X |Y =
y) = ∑

x P(X = x |Y = y) log P(X = x |Y = y). This
is a random variable that depends on the observation y.
Its average over the possible ys is called the conditional
entropy

H(X |Y) =
∑

y

P(y)H(X |Y = y). (18)

Therefore, the difference between the entropy and the
conditional entropy measures the average information that
an observation of Y brings about X . It is straightforward
to check that

I (X ,Y) = H(X ) − H(X |Y) = H(Y) − H(Y |X )

= H(X ) + H(Y) − H(Z) = I (Y,X ) (19)

or, using the corresponding distributions,

I (X, Y) = H(X) − H(X|Y) = H(Y) − H(Y|X)

= H(X) + H(Y) − H(Z) = I (Y, X). (20)

Going back to the secondary structure problem, when D
and M are both binary, the mutual information is measured
by

I (D, M) = −H

(
T P

N
,

T N

N
,

F P

N
,

F N

N

)

−T P

N
log

[
T P + F P

N

T P + F N

N

]

− F N

N
log

[
T P + F N

N

T N + F N

N

]

− F P

N
log

[
T P + F P

N

T N + F P

N

]

−T N

N
log

[
T N + F N

N

T N + F P

N

]
(21)

or

I (D, M) = −H

(
T P

N
,

T N

N
,

F P

N
,

F N

N

)

−T P

N
log[d̄m̄] − F N

N
log[d̄(1 − m̄)]

− F P

N
log[(1 − d̄)m̄]

−T N

N
log[(1 − d̄)(1 − m̄)] (22)
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(see also Wang, 1994), where d̄ = (T P + F N )/N and
m̄ = (T P + F P)/N (as before), and

H

(
T P

N
,

T N

N
,

F P

N
,

F N

N

)
= −T P

N
log

T P

N

−T N

N
log

T N

N
− F P

N
log

F P

N
− F N

N
log

F N

N
(23)

is the usual entropy. Like the correlation, the mutual
information is a global measure rather than a sum of
local terms. It is clear that the mutual information always
satisfies 0 ≤ I (D, M) ≤ H(D). Thus in the assessment
of prediction performance, it is customary to use the
normalized mutual information (Rost and Sander, 1993;
Rost et al., 1994) coefficient

I C(D, M) = I (D, M)

H(D)
(24)

with

H(D) = −T P + F N

N
log

[
T P + F N

N

]

−T N + F P

N
log

[
T N + F P

N

]
(25)

or, more briefly expressed, H(D) = −m̄ log m̄ − (1 −
m̄) log(1 − m̄). The normalized mutual information
satisfies 0 ≤ I C(D, M) ≤ 1. When I C(D, M) = 0,
then I (D, M) = 0 and the prediction is totally random
(D and M are independent). When I C(D, M) = 1, then
I (D, M) = H(D) = H(M) and the prediction is perfect.
Like the correlation coefficient, the mutual information
coefficient is a global measure rather than a sum of local
terms. The mutual information is symmetric in F P and
F N , but the mutual information coefficient is not because
of its denominator.

Receiver operating characteristics curves, sensitivity
and specificity
In a two-class prediction case where the output of the
prediction algorithm is continuous, the numbers T P , T N ,
F P and F N depend on how the threshold is selected.
Generally, there is a trade-off between the amount of false
positives and the amount of false negatives produced by
the algorithm. Receiver operating characteristics (ROC)
summarize such results by displaying for threshold values
within a certain range the ‘hit rate’ (sensitivity, T P/(T P+
F N )) versus the ‘false alarm rate’ (also known as false
positive rate, F P/(F P + T N ). Typically the hit rate
increases with the false alarm rate (see Figure 1).

Alternatively, one can also display the sensitivity
(T P/(T P+F N )) versus the specificity (T P/(T P+F P))
in a similar plot or separately as a function of threshold in
two different plots. An example will be given below.

While the sensitivity is the probability of correctly
predicting a positive example, the specificity as defined
above is the probability that a positive prediction is
correct. In medical statistics, the word ‘specificity’ is
sometimes used in a different sense, meaning the chance
of correctly predicting a negative example: T N/(F P +
T N ), or 1 minus the false positive rate (see e.g. Burset
and Guigó, 1996). We would prefer to refer to this as the
sensitivity of the negative category.

If we write x = T P/(T P + F N ) for the sensitivity and
y = T P/(T P + F P) for the specificity, then:

T P + F P = T P

y
T P + F N = T P

x

T N + F P = N − (T P + F N ) = N x − T P

x

T N + F N = N − (T P + F P) = N y − T P

y
(26)

provided x �= 0 and y �= 0, which is equivalent to
T P �= 0, a rather trivial case. In other words, we just
reparametrize (T P , T N , F P , F N ) using (T P, x, y, N ).
In this form, it is clear that we can substitute these values
in (11) to derive, after some algebra, an expression for the
correlation coefficient as a function of the specificity and
the sensitivity:

C(D, M) = N xy − T P√
(N x − T P)(N y − T P)

. (27)

Notice that this expression is entirely symmetric in x and
y, i.e. in the specificity and sensitivity, or equivalently also
in F P and F N , the number of false positive and false
negative. In fact, for a given T P , exchanging F P and F N
is equivalent to exchanging x and y. A similar calculation
can be done in order to re-express the mutual information
of (22) or the mutual information coefficient of (24) in
terms of T P , x , y, and N . The mutual information is
entirely symmetric in x and y, or F P and F N (this is not
true of the mutual information coefficient).

Summary
In summary, under the equivalence and independence
assumption, if both D and M are binary, then all the
performance information is contained in the numbers T P ,
T N , F P , and F N . Any measure of performance using a
single number discards some information. The Hamming
distance and the quadratic distance are identical. These
distances, as well as the percentages and the L p distances,
are based on only two out of the four numbers T P , T N ,
F P , and F N . The correlation coefficient or the mutual
information coefficient are based on all four parameters
and provide a better summary of performance in this case.
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Fig. 1. Receiver operating characteristics curves for the detection of protein fragments as a function of the length and noise level of the
fragments (see Baldi and Brunak, 1998, for details).

In the continuous case, the recommended measures are the
correlation coefficient and the relative entropy.

More than two classes
In the case of a multi-class prediction problem with K
classes, one obtains a K × K contingency or confusion
matrix Z = (zi j ). Thus in the secondary structure
prediction case, one often has to deal with a 3 × 3
contingency matrix associated with the three basic classes:
helix H , sheet E , and coil C . The number zi j represents
the number of times the input is predicted to be in class
j while belonging in reality to class i . Naturally, if the
prediction algorithms outputs continuous quantities, it is
clear that this definition assumes thresholding has already
taken place. Even more so than in the binary case, it is
difficult to collapse the contingency matrix into a single
number. The number of inputs associated with class i is
given by xi = ∑

j zi j . Likewise, the number of inputs
predicted to be in class i is given by yi = ∑

j z ji .
Obviously N = ∑

i j zi j = ∑
i xi = ∑

i yi .
It should be fairly clear which measures can be general-

ized to the multiple class case and how to do so. Here, we
shall work out the details only for the percentages and the
mutual information. We can define the percentage

Qi = QD
i = 100

zii

xi
(28)

which captures the percentage of inputs correctly pre-
dicted to belong to class i relative to the total number
of inputs in i (sensitivity for class i). One can similarly
define another percentage

QM
i = 100

zii

yi
(29)

which captures the number of inputs correctly predicted to
be in i with respect to the total number of inputs predicted
to be in i (specificity for class i). This provides an estimate
of the conditional probability of correct prediction, given
that the predicted class is i . Finally, the overall percentage
is often used in the literature

Qtotal = 100

∑
i zii

N
. (30)

This is just the percentage of all correct predictions. As in
the two-class case, these percentages often hide important
information. For instance, individual class frequencies are
completely absent from Qtotal. In the case of secondary
structure prediction, for instance, one can also compute
slightly different percentages defined as the average Qtotal
on a per protein chain basis.
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To derive the mutual information or mutual information
coefficient, it is sufficient to apply the definition using
X = (xi/N ), Y = (yi/N ) and Z = (zi j/N ). For instance,

I C(D, M) = H(X) + H(Y) − H(Z)

H(X)

=
(

−
∑

i

xi

N
log

xi

N
−

∑
i

yi

N
log

yi

N

+
∑

i j

zi j

N
log

zi j

N

)/(
−

∑
i

xi

N
log

xi

N

)

(31)

The mutual information may also be expressed as a sum of
the information contribution for each assignment category
(Wang, 1994):

I (D, M) =
∑

i

I D
i (32)

where I D
i is the information provided by the prediction

about the category i :

I D
i = − xi

N
log

xi

N
+

∑
j

zi j

N
log

zi j

y j
. (33)

The Matthews correlation coefficient as defined in (11)
is not readily generalized to more than two classes; but
it is possible to use the analogy with the χ2 statistic to
define a generalized measure for K classes which is equal
to C2(D, M) when K = 2. We can refer to this as a
generalized squared correlation, GC2:

GC2(D, M) =
∑

i j
(zi j −ei j )

2

ei j

N (K − 1)
(34)

where ei j = xi y j/N is the expected number of data in cell
i, j of the contingency matrix under the null hypothesis as-
sumption that there is no correlation between assignments
and predictions. Like I C , GC2 ranges between 0 and 1.

Example: Secondary structure prediction
As an illustration of the application of performance
measures on more than two classes, we show in Table 1
a comparison of two neural networks for prediction of
protein secondary structure (Andersen, 1998) with three
‘non-informative’ predictors.

The neural networks have one hidden layer with 200
hidden units and were trained using standard back prop-
agation on the relative entropy (16). The secondary struc-
ture was predicted from the amino acid sequence based
on the DSSP (Kabsch and Sander, 1983) definitions of α-
helix (H), extended β-sheet (E) and coil (C). One of the
networks used balanced training: at each training cycle,

only a subset of the examples was shown so that the three
classes were presented with equal weights. For both the
balanced and unbalanced network, we have selected the
training cycle with the optimal Qtotal.

The comparison between the balanced and unbalanced
network illustrates how seemingly similar Qtotal values for
a prediction can hide significant underlying differences.
There is only 2% difference in their Qtotal values; but the
sensitivities QD

i show that the unbalanced network vastly
overpredicts coil (C) at the expense of β-sheet (E). The
generalized squared correlation and the information-based
measures (I , I C , and GC2) reflect this difference much
more substantially than Qtotal.

For the two-category measures, another difference is
worth noting: judged by the sensitivity and specificity
measures (QD

i and QM
i ), coil seems to be the most

easily predicted category. This, however, again merely
reflects that coil is more abundant than the two secondary
structure classes; and the I D

i and Ci measures show a
lower precision for coil than for α-helix. If the balanced
neural network is optimized with respect to one of the
information based measures instead of Qtotal (results not
shown), the information contribution I D

i shows coil to be
even worse predicted than β-sheets, while the correlation
coefficient Ci is always higher for coil than for β-sheets.
This discrepancy has also been noted by Wang (1994).

For comparison, we have included three ‘predictions’
without any information content in the table. The ‘Random
one-third’ predictor makes a random guess giving each
category the same probability and therefore gets one-third
of the predictions right. If the background distributions
are used as guessing probabilities (‘Random BG’), 37%
will be correctly predicted. Finally, if the predictor always
returns the largest category (‘Only coil’) a Qtotal of 48%
can be achieved. Note that all of these ‘non-informative’
predictors achieve zero by the measures I , I C and GC2.

Probabilistic models and learning
It is important to realize that several of the error functions
described above come with a natural underlying proba-
bilistic model (Baldi and Brunak, 1998) and this impacts
the parametrization of the prediction models, as in the case
of a neural network. For simplicity of notation we consider
here the case of a single prediction m for a single pattern
d. If d has a wide range, then the output transfer function
of the network should not be sigmoidal but rather linear.
Under a Gaussian noise model, the likelihood is given by
P(d|m) = Z exp(−(d − m)2/2s), where Z is a normal-
izing constant. The negative log-likelihood is obviously
the LMS error function, up to a scaling factor provided by
the standard deviation s. In the case of 0/1 classification,
we can consider a simple binomial model for the data. In
this case the likelihood is P(d|m) = md(1 − m)1−d . The
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Table 1. Prediction performances for two neural networks (using balanced and unbalanced training) and three ‘non-informative’ predictors (random guess with
uniform or background probabilities and coil-only prediction). The performances are assessed with four different three-category measures (overall % correct,
Qtotal; mutual information, I ; mutual information coefficient, I C ; and generalized squared correlation, GC2) and four different two-category measures
(sensitivity, QD

i ; specificity, QM
i ; mutual information contribution, I D

i ; and correlation coefficient, Ci ) applied separately to each class (α-helix, H; extended

β-sheet, E; and coil, C)

Qtotal I I C GC2 QD
i QM

i I D
i Ci

H/E/C H/E/C H/E/C H/E/C

NN 0.6717 0.6899 0.0895 0.5389
Balanced 0.6714 0.2116 0.2024 0.2328 0.5821 0.5319 0.0607 0.4304

0.7110 0.7290 0.0614 0.4710

NN 0.6433 0.6330 0.0703 0.4723
Unbalanced 0.6508 0.1653 0.1582 0.1811 0.3995 0.5581 0.0383 0.3583

0.7674 0.6879 0.0567 0.4508

0.3333 0.3118 0 0
Random 0.3333 0 0 0 0.3333 0.2117 0 0
one third 0.3333 0.4765 0 0

0.3118 0.3118 0 0
Random BG 0.3691 0 0 0 0.2117 0.2117 0 0

0.4765 0.4765 0 0

0 — 0 0
Only coil 0.4765 0 0 0 0 — 0 0

1 0.4765 0 0

output transfer function should be the logistic function
m = f (u) = 1/(1 + e−u) (see also the Appendix). The
negative log-likelihood is essentially the relative entropy
H = d log m + (1 − d) log(1 − m). Finally, in the case
of a classification into K classes m = (m1, . . . , mK )

and d = (d1, . . . , dK ), where all the di are 0 except
one of them which is equal to 1. The simple multino-
mial model yields the likelihood P(d|m) = ∏

i mdi
i

and the log-likelihood is again the relative entropy
H = ∑

i di log(mi ), except for a constant offset term.
In this case, the output transfer functions in the output
layer of the neural networks should be the normalized
exponentials mi = exp ui/

∑
k exp uk which reduce to

the logistic function when K = 2. Needless to say, in
all the cases we could also included a prior P(w) in
the model and maximize the posterior rather than the
likelihood, as in the well-known weight decay neural
network approach.

The choice of a performance evaluator is particularly
important when one considers machine learning ap-
proaches to prediction such as neural networks. Often
in these approaches a model with many parameters is
selected and then fitted to the training data by some
performance optimization algorithms, such as gradient
descent. It is clear that the resulting algorithm depends
to a great extent on the measure that has been optimized
during the learning from examples procedure. A related
aspect has to do with the difference between confidence
and classification. Consider for instance the prediction

of four α-helical residues. With a threshold at 0.5, the
prediction (0.6, 0.6, 0.6, 0.6) gives perfect classification,
but the confidence is rather poor. The prediction vector
(0.9, 0.9, 0.9, 0.4) classifies correctly only three out of
the four residues, but with much higher confidence.

Another issue has to do with dynamic range. As pointed
out in Baldi and Brunak (1998) and above, there are
a number of theoretical reasons why the output of a
neural network binary classifier should be implemented
by a logistic sigmoidal unit trained using the relative
entropy error measure rather than the usual LMS error.
Likewise, in a multi-class classification problem, the
output of the network should be implemented by a set
of normalized exponential units (the so-called ‘soft max’
units) with the relative entropy error. Reasonable results
have been obtained in these cases, however, also with the
standard LMS error. In fact, in simple cases (Baldi and
Brunak, 1998) both error functions lead to the same global
optimum. But the dynamic range is very different and
can impact the learning process. The LMS error is much
more shallow. This is because for each i the LMS error
is limited to a narrow range, whereas the relative entropy
is potentially unbounded. This can lead to larger gradients
and potentially better or faster learning. In the Appendix,
we compare the relative entropy and the logarithmic LMS
error—which is also unbounded—from this perspective.

Some of the coefficients above are additive with respect
to single predictions. This is the case of the LMS and the
relative entropy error measures. In this case, the global
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Fig. 2. Sensitivity, specificity, (Matthews) correlation coefficient, and mutual information coefficient as a function of the cut-off for assigning
a positive prediction for cleavage site/non-cleavage site prediction. The maximum of both coefficients are indicated.
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Fig. 3. Sensitivity, specificity, (Matthews) correlation coefficient, and mutual information coefficient as a function of the cut-off for assigning
a positive prediction for signal peptide/non-signal peptide prediction. The maximum of both coefficients are indicated.
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derivative of the error can easily be computed as a sum
of the local errors. Gradient descent learning can then be
applied ‘on-line’, i.e. after the presentation of each exam-
ple. Other error measures, such as the correlation coeffi-
cient or the mutual information coefficient, do not have
this simple additive structure. The derivatives, however,
can still be computed and this suggests a slightly different
class of learning algorithms—based on correlation or mu-
tual information maximization—which, to the best of our
knowledge, have not been tried on the protein secondary
structure prediction problem. The derivatives of the corre-
lation measure are computed in the Appendix. Maximiza-
tion of mutual information has been used in a different
context (Linsker, 1989).

Experiments and discussion
SignalP (Nielsen et al., 1997) is a program that was
derived by some of us in order to predict signal peptides
and cleavage sites in proteins. In its basic form, it consists
of two types of neural networks that are trained to provide
two different scores in the 0–1 range, for each amino
acid in a given sequence, the C and the S score. The
score is typically associated with the amino acid located
in the central position of a fixed network input window.
The S (signal/non-signal) score can be interpreted as an
estimate of the probability that the amino acid belongs
to a signal peptide. The C score (cleavage/non-cleavage)
can be interpreted as an estimate of the probability
that the amino acid has the first position in the mature
protein (position +1 relative to the cleavage site). One
important observation has to do with the skewedness
of the corresponding training sets. Cleavage sites are
single amino acid events: thus they are quite rare. The
cleavage/non-cleavage site problem has a very skewed
distribution with very low positive/negative examples
ratio. Signal peptides amino acids are more numerous and
therefore can lead to a more balanced training set with a
positive/negative ratio of examples close to 1.

Here we computed the correlation coefficient, mutual
information, sensitivity and specificity of some of these
networks. Typical plots are given in the Figures 2 and 3.
Available examples can be partitioned into training and
test sets in many ways. The plots above are just one
representative example of such a partition. But, in all the
training/test set partitions we experimented with a number
of phenomena were generally observed.

For a fixed skewed data set (cleavage/non-cleavage), the
mutual information and the mutual information coefficient
seem to peak at a lower cutoff than the Matthews
correlation coefficient (see Figure 2). In addition, for a
fixed balanced set (see Figure 3), the mutual information,
the information coefficient, and the Matthews correlation
coefficient often peak near the point where the sensitivity

is equal to the specificity (and often with value close to
0.5). This is not too surprising since, with the data set
being fixed and balanced, the variables T P , T N , F P , and
F N are constrained by T P+F N = N/2 and T N+F P =
N/2 for some 0 ≤ C ≤ N . Now we have seen that
the expressions for I (D, M), I C(D, M), and C(D, M) are
entirely symmetric in F P and F N (notice that H(D) = 1
(bit) is a constant). Thus the partial derivatives of these
functions with respect to F P and F N are also symmetric.
With the constraints above, the Lagrange equations for
the optimum remain similar and, therefore, around the
optimum F P ≈ F N , which implies x ≈ y and, therefore,
the specificity is close to the sensitivity.
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Mathematical appendix
Relation between relative entropy and logarithmic
LMS
The following two error functions, computed here for
simplicity on a single input,

H = d log
d

m
+ (1 − d) log

1 − d

1 − m

L Q = − log[1 − (d − m)2] (35)

have been used in classification problems, for instance
in combination with neural networks. H = H(d, m) is
just the relative entropy or KL distance and L Q is a
logarithmic form of the LMS distance. It is clear that both
H and L Q are symmetric in m and d. They are 0 if and
only if m = d and they are infinite if m = 1 and d = 0 or
m = 0 and d = 1. The latter property, i.e. a large dynamic
range leading to large derivatives, is the main practical
reason why these functions have been used in practice and
have lead to better results than those obtained using the
mean square error over the 0–1 range. In fact, H and L Q
behave very similarly. To see this, consider first the case
of large errors. This is the case, for instance, when d = 1
and m is close to 0. In this case we have

H = − log m

L Q = − log m − log(2 − m). (36)

Thus the two functions behave similarly when the error is
large. In the small error regime, we write m = d + ε and
Taylor expand both functions. Interestingly, the first order
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terms vanish and we are left with the second order terms

H ≈ 1

d(1 − d)

ε2

2

L Q ≈ ε2 (37)

Again the behavior is very similar, quadratic in the error
ε, except that H magnifies the error as d approaches
1 or 0, i.e. when the target value is more certain—a
sensible thing to do. In conclusion, both H and L Q
achieve a large dynamic range and in similar fashion.
In our opinion, however, H is preferable because of the
probabilistic model that comes with it and because of
the error modulation near the boundaries. The argument
sometimes used that the derivative of L Q is particularly
simple is not really valid. Indeed, the derivative of L Q
is simple ∂L Q/∂m = 2(m − d)/[1 − (m − d)2] and
corresponds to the derivative obtained with the LMS error
rescaled by the factor 1 − (m − d)2, which is large when
m and d differ a lot in the 0–1 range. But the derivative of
the relative entropy is even simpler since ∂ H/∂m = (m −
d)/m(1 − m). As we have seen, m should be computed as
the output of a logistic function m = f (u) = 1/(1+e−u).
Since ∂m/∂u = f (u)(1 − f (u)) = m(1 − m) this finally
yields the most simple expression ∂ H/∂u = (m − d).

Learning by maximizing correlations
In general the correlation coefficient is a continuous and
differentiable function of the prediction values mi . If these
in turn depend on a parametrized model, as in the case
of neural networks, then we can compute the derivative
of C(D, M) with respect to any parameter w of the
model. But, before we proceed with this calculation it
must be pointed out that C varies between −1 and 1
and, therefore, it has poor dynamic range. To improve the
range we can take the logarithm of C as our measure
of performance. This requires that C is positive. Thus
we must start with an initial learning system that has a
positive correlation. This is easily realized using a few
steps from a different learning algorithm, or by trying
several different starting points, or even with a random
starting point since a model with a prediction that is
negatively correlated can easily be transformed into a
model with a positive correlation. In what follows we
assume this has been done. One caveat is that the ensuing
learning trajectory will be constrained to remain in the
space where correlations remain positive. Thus we choose
as a measure of performance the logarithmic correlation

LC = log C(D, M). (38)

Any parameter w in the model is then updated by gradient
ascent to maximize the correlation

w(t +1) = w(t)+η
∂LC

∂w
= w(t)+η

1

C(D, M)

∂C(D, M)

∂w
(39)

where η is some positive learning rate. Thus we are left
with the calculation of

∂C(D, M)

∂w
=

∑
i

∂C(D, M)

∂mi

∂mi

∂w
. (40)

It is easy to check that

∂C(D, M)

∂mi
= (di − d̄)

||D − d̄1||||M − m̄1|| − C(D, M)(mi − m̄)

||M − m̄1||2
(41)

where we use the standard notation ||X|| = √
X

2 =√∑
i x2

i and 1 is the column vector containing all 1s.
While learning is not exactly on line, notice that the
terms ||D − d̄1||, need to be computed only once for
all and the terms ||M − m̄1||, its square, and C need to
be computed only once at most for each pass through
the entire training set (training epoch). Finally, we need
to compute the partial derivatives ∂mi/∂w and, in the
case of a neural network this is just the back propagation
algorithm—a straightforward application of the chain rule.
For completeness, we include the derivation here.

To be more specific then, consider a feed-forward neural
network with K layers L1, . . . , L K . In reality, it is not
necessary that the network be layered as long as there
are no directed loops—but layered networks are the most
commonly used (see also Baldi, 1995). Let W h represents
the matrix of connections from Lh−1 to Lh . Each unit in
the network as a total input I and an output O satisfying

I h
i =

∑
j

wh
i j Oh−1

j

Oh
i = f h

i (I h
i ) (42)

where f h
i is the transfer function of unit i in layer h,

typically a logistic function f (u) = 1/(1 + e−u) but
other transfer functions are possible. In this notation we
also assume that there exists a unit in each layer with a
fixed output of 1 that is used to create affine biases in the
following layer. In vector notation, (42) can be rewritten
as:

I h = W h Oh−1 (43)

Oh = Fh(I h). (44)

Thus m depends on a parameter wh
i j only through the
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quantity I h
i . Thus we can compute the partial derivatives

∂m

∂wh
i j

= ∂m

∂ I h
i

∂ I h
i

∂wh
i j

= εh
i Oh−1

j . (45)

Thus the partial derivative can be written as the product
of two terms: the pre-synaptic term Oh−1

j and the post-

synaptic term εh
i = ∂m/∂ I h

i . The post-synaptic term is
easily computed recursively by back propagation from the
output layer towards the input layer:

εh
i = ∂m

∂ I h
i

= d f h
i

dI h
i

∑
k

εh+1
k wh+1

ki . (46)

In vector notation, by letting εh be the vector of back
propagated values at layer h

εh = dFh

dI h
[W h+1]tεh+1 (47)

where W t denotes the transpose of W —the signature of
back propagation. Thus learning is achieved by putting
together (39)–(41), (45), and (46).
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