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SOILS AND HUMAN HEALTH

Investigating the links between soils and human health provides a wealth of opportunities and
challenges in the coming years for soil scientists as well as those working in other related and
relevant fields. Many aspects of soils and human health have been investigated and reported on
in the scientific literature. One of the earliest recognized and most investigated links is the role
of soils in producing adequate quantities of nutritious foods, something that requires appropriate
biological, chemical, and physical properties in agricultural soils (1, 2). Other areas of work have
included soil contamination by trace metals (3) organic chemicals (4, 5), radioactive materials,
including radon (3), microplastics (6), nanoparticles (7), the effects of interactions between soil
and water on human health (8), and how soil organisms influence human health (9, 10). Many of
the pharmaceuticals used in modern medicine have their origin in soils, from antibiotics to cancer
treatments and antacids (11, 12). There has also been interest in topics such as communicating the
importance of soil to human health to the public and creating connections between soil scientists
and other professionals to work on the links between soils and human health (13, 14).

The idea that there are links between soils and human health is not new (15–17), but despite this
long history of recognition true scientific investigation of soil and human health links did not come
until much later, with a large portion of such work being anecdotal even at the end of the twentieth
century (18). Therefore, there is a pressing need to enhance the scientific study and understanding
of these links. However, soil and human health connections are extremely complex, a situation that
makes the traditional scientific approach of isolating a variable and seeing how it influences the
system less than ideal for the investigation of these links. Improving on this situation is a major
challenge in the area of soils and human health as we move forward.

COMPLEX LINKS

A classic case study will serve to demonstrate the complex links between soils and human health.
Osteomalacia is a disease commonly known as itai-itai disease, which is Japanese for “it hurts,
it hurts!,” a phrase often repeated by its victims in the disease’s final stages (19). The symptoms
of itai-itai include weak and brittle bones that break with increasing frequency as the disease
progresses, a waddling gait when walking due to bone deformities, anemia, and renal failure,
problems that ultimately lead to the victim’s death (20). In some of the more extreme cases, one
patient lost 30 cm of height due to fractures in the vertebrae and another suffered 28 fractures just in
their ribs, with additional fractures in other bones (19). Cases of itai-itai were recognized in several
regions of Japan in the early twentieth century, with the most serious of these occurring in the
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Toyama district (19). Itai-itai is linked to excessive cadmium
exposure. In the case of Toyama, the exposure was linked to zinc
extraction at the Kamioka mine, and most particularly with a
change in the treatment method to separate zinc from the ore
that was implemented in 1909 and released treatment waste into
the Jinzu River (19). Rice paddies were irrigated with cadmium
contaminated water from the river and cadmium accumulated
in the rice and the people who consumed it. The first reports
of itai-itai disease symptoms were made in about 1912 (20), but
it was the 1960s before the Japanese government determined
that itai-itai was caused by chronic cadmium poisoning (19).
The maximum releases of cadmium from the mine occurred
in 1970, and in 1971 itai-itai victims won a lawsuit against the
Mitsui Mining and Smelting Co. that led to reparations for
the victims and environmental remediation measures have been
undertaken (19).

At first glance the itai-itai example looks like a straight-
forward case of trace metal release into the environment
poisoning the Toyama district population. However, the
residents of Shipham, England live with soils that have cadmium
levels that are about 30 times higher than those found in the soils
of the Toyama district, without suffering the same adverse health
effects seen in Japan, meaning the links between soils and human
health in the case of cadmium must be more complex than
just the level of cadmium in the soil. Ideas advanced to explain
this discrepancy include cadmium being more bioavailable in
the anaerobic rice paddy soils than it is in the aerobic English
soils and differences in pH between the soils creating different
cadmium availability (21). Other differences may not be due
to the soils, but to diet. Compared to the English diet, the
diet of the Japanese victims was relatively deficient in iron and
zinc, a situation that led to cadmium retention in the Japanese
population (22). What the comparison of the Shipham and
Japanese cases makes clear is that the relationship between soils
and itai-itai disease is much more complex than just the level of
cadmium in the soil.

Much like ita-itai disease, we have little knowledge of the
complex reactions that take place between soils and the various
organic chemicals and chemical mixes that we apply during,
for example, modern agricultural operations (4). We have little
understanding of the ecology of soil pathogens, something that
depends on the complex and interwoven relationships in the soil
environment (23). There is still considerable disagreement within
the research community regarding whether geophagy is a net
positive or negative to human health, under what conditions,
and through which mechanisms (24), again because of the
complex interactions. Therefore, it is critical that we find ways
to adequately study and account for these complex interactions
that influence human health through the soil environment.

APPROACHES TO RESEARCH AND
ANALYSIS

Recognition that the soil-human health link is more complex
than just the level of a chemical in the soil is not new. For
example, several indices have been developed to relate soil

contamination to human health risk, some of these can be
seen in Table 1. However, making significant advances in our
understanding of the links between soils and human health
will require approaches to the study of these links that are
able to account for multiple variables and have not typically,
or traditionally, been used within soil science. The field of
epidemiology studies the distributions and determinants of
health issues, including environmental exposures (27), meaning
there is significant overlap with the soil and human health work
being conducted by soil scientists and related professionals. This
also means there is opportunity for those interested in the links
between soils and human health to learn from the approaches
and techniques of epidemiology. There are several approaches
that have been utilized in recent epidemiology research that may
also have application in soils and human health studies, but
that have not been widely used in soil science. These include
causal diagrams, marginal structural models, and propensity
score methods (28). Machine learning, as a part of artificial
intelligence, is another technique being used in epidemiology
(28) that has also received an increasing amount of attention in
soil science (29), though not necessarily in studies of soil and
human health.

Causal diagrams have been used by epidemiologists to help
identify variables that need to be measured and controlled so that
un-confounded effect estimates can be found (30) (Figure 1). The
fundamental idea is that in studies where people have prolonged
exposure to the pollutant being studied, risk factors are typically
determined by subsequent exposures. A soil science example is
as follows. A farm worker is exposed to a pollutant in the soils
of their workplace. If that farm worker retires, their last day
of employment at the polluted farm is a determinate of future
exposure (exposure ceases once they leave the farm) and an
independent risk factor for death due to the “healthy worker”
effect (those who work are typically healthier than those who do
not). To address these intertwined effects, causal diagrams use
a graphical approach to study mortality issues where exposures
happen over long time periods (32). This relative simplicity
makes causal diagrams easy to work with, understand, recognize,
and use. In other words, “simplicity makes things easy.” Marginal
structural models are a class of causal models that use both
groups that have been exposed (e.g., to a pollutant or pathogen)
and those that have not as the standard to arrive at a non-
parametric standardization (33). This is important in studies
where there are confounding factors that are time-dependent and
are also affected by previous treatments (32).

Propensity score methods combine propensity score
matching with measurement error regression models to address
unmeasured confounding factors (34) (Figure 2). For example,
say one wanted to study the health effects of geophagy, which
requires an observational study. It might be considered unethical
to assign individuals to consume soil because it may cause
negative health effects, so the researcher would compare those
who practice geophagy of their own volition to those who do not.
This could introduce bias (confounding factors) because some
people (e.g., women, particularly pregnant women, children,
those with a nutrient deficiency, or a food toxicity problem) are
more likely than the general population to practice geophagy.
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TABLE 1 | Examples of pollution indices that have been used to provide

information on the relationship between soil pollution levels and human or

environmental health risks (25, 26).

Index Basic measurement being made

Biogeochemical index Compares the content of a given trace element

in the O horizon to the content of the same

element in the A horizon.

Contamination degree The sum of the contamination factors for a

given sample.

Contamination factor The ratio between the content of a given metal

and its background concentration.

Enrichment factor Measures the impact of anthropogenic activity

on soil trace element concentrations. It does

this by comparing the ratio of the concentration

of an element of interest to the concentration of

a metal with a low variability of occurrence to

the ratio of the background levels of the same

two elements.

Geoaccumulation index Evaluates soil contamination by a single trace

element by calculating the log of its

concentration divided by 1.5 times its

background concentration.

Modified degree of

contamination

Contamination degree divided by the number

of analyzed elements.

Nemerow pollution index Calculated for O and A horizons, assesses

overall degree of soil contamination considering

all trace elements that have been analyzed.

Pollution load index Determined by the number of times that the

trace element concentrations in a soil exceed

the background concentration

Potential contamination index The maximum concentration of a metal in the

soil divided by the background concentration of

the metal.

Potential ecological risk index The sum of all risk factors for trace elements in

the soil.

Single pollution index Used to determine which trace element is the

highest threat in a given soil environment,

calculated as the concentration of a trace

element in the soil divided by its background

value. Similar to contamination factor.

Sum of pollution index The sum of all single pollution indices

calculated for a given soil. Similar to

contamination degree.

Propensity score methods seek to control for these biases.
Within agricultural science, propensity score methods have been
used to create valid comparison groups in a study of whether
clinics (agronomic extension workshops) made farmers more
knowledgeable of pests and diseases that negatively affect their
crop yields, a food security issue that relates to human health.
Specifically, propensity score methods allowed the researchers
to increase the possibility that differences between the two study
groups were due to the training they received in the clinics rather
than some other uncontrolled for factor (age, education level,
farm size, etc.) (35).

Machine learning uses algorithms that “learn” how to process
data to make predications or reach decisions that the computer
was not explicitly programmed to. This ability opens a plethora

FIGURE 1 | A causal diagram showing the cyclical relationship of the four bold

factors in the boxes for people living under poverty conditions. Note that there

is a relationship between household income and soil fertility. Diagram from

Joffe et al. (31).

of possibilities regarding the evaluation of complex relationships,
such as those found in studies of soil and human health. However,
utilizing machine learning is not popular in soil and human
health studies for two reasons. The first is that the common
machine learning algorithms [e.g., artificial neural networks
(ANN)] have difficulty detecting the correct data patterns related
to soil health studies. ANN requires a large sample size, which
is a limitation in many agricultural studies. The second reason is
that soil scientists are interested in using interpretable machine
learning algorithms, and a large majority of these algorithms are
black boxes. Khaledian and Miller (36) discussed the selection
of appropriate machine learning algorithms for soil mapping
based on the purpose of the mapping and nature of the data. For
example, decision tree learning approaches, e.g., Cubist (37), can
provide promising and intelligible results with small sample sizes.

Google Scholar searches were used to provide some
quantitative comparisons regarding the use of the approaches
discussed above in soil science and epidemiological studies.
It was expected that more epidemiology papers are published
than soil science papers, so the first goal was to establish the
expected ratio between them. A basic search for “epidemiology”
anywhere in the article from 2011 to 2021 yielded 2,030,000
results, the same search for soil science yielded 342,000. So,
soil science papers over the last 10 years have only represented
about 16.8% as many papers as epidemiology. A Google Scholar
search for “soil science” and “causal diagram” returned 80 results,
while the same search substituting “epidemiology” for “soil
science” returned about 2,800 results, with soil science papers
representing only 2.8% of the epidemiology papers. A Google
Scholar search for “marginal structural model” and “soil science”
did not return any results, and “marginal structural model” and
“soil” only returned 34 results, while a search that substituted
“epidemiology” for “soil science” returned about 3,320 results.
Therefore, the more specific “soil science” publications were
published at 0% the rate of the epidemiology papers, while the less
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FIGURE 2 | Flow charts for traditional statistical (straight from variable selection to results) and propensity score approaches. The traditional approach limits the

number of variables that can be fed into the final model, while propensity score methods simplify the final model, which allows more covariates in the first step. The

example given shows a potential set-up to investigate coccidioidomycosis (Valley Fever), a disease caused by a soil-borne fungus that is common in the western USA.

specific “soil” publications were published at 1.0% the rate of the
epidemiology papers. A Google Scholar search for “propensity
score methods” and “soil science” only returned 26 results, while
the same search substituting “epidemiology” for “soil science”
returned about 13,100 results, with soil science papers being
published at only 0.2% the rate of epidemiology papers. A Google
Scholar search for “soil science” and “machine learning” returned
about 8,380 results, but searching “soil,” “human health,” and
“machine learning” only returned 45 results (about 0.5% of all
soil science papers that includemachine learning). Therefore, soil
scientists are showing interest in machine learning techniques,
but that interest is not yet being extensively applied to soil
and human health connections. Searching “epidemiology” and
“machine learning” returned about 158,000 results, showing that
machine learning papers in soil science are only published at
5.3% the rate ofmachine learning papers in epidemiology. Clearly
these techniques to account for confounding factors are more
widely used in epidemiology than in soil science, even though
confounding factors are an issue in soil and human health (and
other soil science) research.

CONCLUDING THOUGHTS

Using selected analysis techniques commonly utilized in
epidemiological studies to account for confounding factors
may help shed light on complex soil and human health issues,
such as the example of different outcomes given high soil
cadmium levels in Toyama and Shipham. However, Google
Scholar searches show these techniques are not currently being
widely used to investigate soil and human health relationships.
The extensive use of these techniques in epidemiology studies,
which include links between human health and various
environmental factors, indicates these same techniques
have promise to improve understanding of soil and human
health relationships.
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