

Assessing the Comprehension of UML Class Diagrams via Eye Tracking

Shehnaaz Yusuf, Huzefa Kagdi, and Jonathan I. Maletic
Department of Computer Science

Kent State University
Kent Ohio 44242

{sdawoodi, hkagdi, jmaletic}@cs.kent.edu

Abstract
Eye-tracking equipment is used to assess how well a

subject comprehends UML class diagrams. The results
of a study are presented in which eye movements are
captured in a non-obtrusive manner as users performed
various comprehension tasks on UML class diagrams.
The goal of the study is to identify specific characteristics
of UML class diagrams, such as layout, color, and
stereotype usage that are most effective for supporting a
given task. Results indicate subjects have a variation in
the eye movements (i.e., how the subjects navigate the
diagram) depending on their UML expertise and
software-design ability to solve the given task. Layouts
with additional semantic information about the design
were found to be most effective and the use of class
stereotypes seems to play a substantial role in
comprehension of these diagrams.

1. Introduction
The use of eye tracking to complement traditional

usability assessments (e.g., surveys and questionnaires) is
gaining popularity in a variety of domains [5, 8]. This
can be attributed to a number of recent advancements in
eye-tracking technology. High quality, extremely
accurate, and user-friendly equipment are available
today. These systems are relatively affordable and easy
to use but their most noteworthy capability is the ability
to collect a subject’s eye gazes in a non-obtrusive
manner. This accurate data can then be used for
comprehending the cognitive process involved in the
processing of visual data [3, 5, 16].

Pictorial representations such as the UML Class
diagrams [6] are commonly used to model the design and
structure of a software system. Representations of UML
class diagrams are a general research topic with regards
to software comprehension and maintenance activities.
Investigations in the software visualization and program
comprehension communities have primarily focused on
effective layout schemes [1, 11, 25] and key aesthetics
criteria [9, 10, 14] with the goal of enhancing the
cognitive process. A number of usability studies have
been reported that evaluate UML class diagrams,

including those with additional semantic information
(e.g., class stereotypes), for an effective representation in
addressing various software evolution tasks [1, 2, 19, 24].
These studies typically form conjectures and/or draw
conclusions from the data explicitly collected from
subjects’ via a combination of questionnaires, experience
reports, and feedback comments after a designated task is
completed. This raises a potential threat to the validity of
the study, namely the match/disparity between the
subjects’ responses on completion of a task and the
“reality” they observed while performing that task. For
example, a subject may forget to report (or misreport) an
observation after a lengthy task.

Here we take a different approach to assess UML
class diagrams. We use eye-tracking equipment to
implicitly collect a subject’s activity data in a non-
obtrusive way as they are interacting with the diagram in
performing a given task. The equipment collects three
forms of pertinent data including the eye-gazes with
respect to the visual presentation and an audio/video
recording of the subject during the session.

Here, we present our experience and results of a study
that we conducted regarding some of the issues of how
people see and understand UML class diagrams. We
want to better understand how people explore, examine,
and navigate class diagrams. With this understanding we
can develop better layout mechanisms and other methods
for presenting software design information. In support of
this effort, we try to answer the following questions:

• Which UML class diagram layout is most
effective for software comprehension and design
tasks?

• Does the use of class stereotype information
provide additional assistance?

• Is the use of colors to map semantic information
on classes (entity, boundary, control) useful?

• What do people really look at in class diagrams?
• Is there a big difference between expert and

novice?
• What items in the diagrams do people fixate on

the most?
• How do people navigate through the diagrams?

The paper is organized as follows. The next section
presents background on eye tracking. Section 3 describes
our study on assessing how people comprehend UML
class diagrams. Our findings and analysis of the study
are presented in Section 4. Related work is presented in
Section 5 followed by conclusions.

2. Eye Tracking
The fundamental design of eye-tracking equipment is

based on the physiology of the human visual capability
[8, 17]. These systems use cameras to track eye
movement. Specifically, we used a Tobii 1750 eye-
tracker (www.tobii.se) to capture eye movements and
collect eye gaze data. In this equipment, the two cameras
used to track the eye are built into a 17 inch flat-panel
screen. Therefore, no restraints such as wearing a
headband or goggles are placed on the human subject.
This was not the case in older eye tracking equipment.
This provides a normal computer-operating environment
during the study. Moreover, the Tobii 1750 eye-tracker
is very accurate with an error rate of less than 0.5 degrees
and a sampling rate of 50MHZ. Software that records the
XY screen coordinates of eye gazes and supports analysis
of eye movements is also provided along with the eye-
tracker system. An audio/video recording is also made of
each study session.

The underlying basis is to capture various types of eye
movements that occur while humans physically gaze at
an object of interest. Among these, fixation and saccade
are the two most widely used eye movements in these
types of studies.

Definition: Fixation is the stabilization of eyes on an
object of interest for a period of time.

Definition: Saccades are quick movements of the eyes
that move interest from one location to the next (i.e.,
refixates).

Definition: Scanpath is a directed path formed by
saccades between fixations.

The general consensus in the eye tracking research
community is that the processing of visualized
information occurs during fixations, whereas, no such
processing occurs during saccades [17]. Humans use
saccades to locate interesting parts in a visual scene to
form a mental model.

Figure 1 shows the recording of eye positions
superimposed on a UML class diagram. The numbered
circles represent fixation and lines between them
represent saccades. The size of a fixation (i.e., area of a
circle) is proportional to its time duration. The
numbering of circles represents the ordering of fixations.
For example, in Figure 1, the fixation labeled with the
number 35 on the class NTuple happened before the
fixation labeled 36 on the class NTupleController. That
is, the class NTuple was looked at before the class

NTupleController. The scanpath in this case is directed
to the left and downwards. A big circle on the class
PyNTuple shows that a large amount of time was spent
on this class. The eye-tracker captures fixation and
saccades in the form of XY coordinates of the visual
screen (in this case a UML class diagram) so that we can
determine what was being looked at in a visual
presentation.

Figure 1. ScanPath of a user on the UML Class
Diagram. Fixations are represented by the circles
and saccades by the lines connecting the circles.

3. Assessment Study
The principal goal is to obtain an understanding of

how human subjects use different types of information in
UML class diagrams1 in performing their tasks. In a
nutshell, human subjects were given specific tasks to
perform on diagrams. An eye-tracker was used to
capture their activities in terms of fixation, saccades,
audio, and video. The following is a more detailed
description of the various components of our study.

3.1. UML Class Diagram Layout
We used UML class diagrams representing the design

of the open source HippoDraw software
(www.slac.stanford.edu/grp/ek/hippodraw). HippoDraw
is a statistical data analysis application/framework that is
primarily written in C++ and uses the Qt library for GUI.

We used three different layout techniques of UML
class diagrams for our investigation. Our selection of
these layout methods are based on previous work in

1 The use of term diagram(s) means UML class diagram(s) unless
specified otherwise.

assessing layouts [1]. These diagrams vary in layouts,
semantic information (e.g., stereotype), and secondary
notations (e.g., color).

Definition:The orthogonal layout focuses on the
minimization of the edge crossings and bending.
Multiples of 90 degree angles are used to position
intersecting edges [10, 11, 22]. This layout is adopted
from general graph drawing algorithms and is typically
available in UML modeling and drawing tools.

Figure 2. Orthogonal (top), three-cluster (middle),

and multiple-cluster (bottom) layouts of a UML class
model.

Definition: The three-cluster layout positions classes
into three clusters (i.e., boundary, control, and entity)
based on their design or architectural roles. Classes that
are stereotyped entities, in terms of UML vocabulary, are
placed in a single cluster. Similarly, classes that are
stereotyped boundary and control form the other two
clusters. This is an example of layouts that use the
general role of a class in the high-level design modeling
and analysis of a software system via UML.

Definition: The multiple-cluster layout is a further
specialization of the three-cluster layout. Related classes
that are responsible for a specific functionality of a
software system are positioned in a single cluster. This is
an example of layouts that further use the responsibilities
of classes in modeling, analysis, and realization of an
application domain specific concept. For example, a
cluster could map to a functional requirement of a

system. Therefore, the number of clusters in a layout
could be equivalent to the number of functional
requirements.

Figure 2 shows examples of orthogonal (top), three-
cluster (middle), and multiple-cluster (bottom) layouts
for the same UML class model. Colors and textual
annotations (i.e., <<entity>>, <<control>>, and
<<boundary>>) are used to represent class stereotypes.
Boundary, entity, and control classes are represented by
three different colors (blue, green, and red colors in our
study). The orthogonal layout does not use the semantic
information such as stereotype of a class in positioning it
on a diagram, whereas the other two do. However, we
also made the stereotype information in the orthogonal
layout with textual annotation so that all the diagrams
exhibit the same design information.

3.2. Tasks
The tasks given to the subjects in our study consist of

the subjects answering specific questions by viewing
UML class diagrams. We designed two types of
questions, one set dealing with basics of UML class
diagram and the other set related to the software design.
The set of diagram questions deal with the characteristics
of the classes, attributes, methods, relationships, and
general notations. For example, what is the type of
relationship between two given classes? This set of
questions is aimed at understanding the user activities in
performing general exploration, explanatory, and
navigation tasks in a UML class diagram.

The set of software-design related questions are
concerned with general software design understanding,
extensibility, and changeability. For example, name the
class that could be extended to accommodate a new GUI
functionality. These questions are aimed at providing
insight as to how software developers approach, process,
and accomplish design tasks by utilizing UML class
diagrams. The questions in this set were planned in such
a way that they needed minimal knowledge of the finer
design, implementation, and domain minutia of
HippoDraw, and knowledge of fundamental software
design principles to address them.

Table 1 shows the set of 12 UML questions and Table
2 shows the set of 15 software design questions used in
our study. Table 3 shows the distribution of questions
that are asked for the six modules of HippoDraw using
the three different types of layouts. Only UML questions
are allocated to the module High-Level and only software
design questions are allocated to the modules XmlNode
and Canvas. The remaining three modules Python
Wrappers, PlotterBase, and Tuple are allocated questions
from both sets. Notice that the same question is not
asked for two different layouts. This was done to avoid
any learning bias that may occur due to the same

question asked twice. However, very similar questions
were asked to give a fair coverage to all the layouts. We
felt that this distribution allows us to analyze common
and exclusive behavior of the three layouts in supporting
two different types of tasks.

Table 1. UML questions used in the study

No. Questions

1 Identify the kind of relationship between class
ViewBase and class PlotterBase.

2 Name the classes involved in aggregation.
3 Name the derived classes of the class PlotterBase.
4 Name the class with the method name getAverage.

5 Identify the kind of relationship between class NTuple
and class DataSource.

6 Name all the classes involved in dependency.

7 Count the number of derived classes of the class
Observer.

8 Name the class with the method name objectiveValue.

9 Identify the kind of relationship between class
DataSource and class Observable.

10 Name all the classes involved in generalization.
11 Count all the classes involved in aggregation.
12 Name the class with the method name registerNtuple.

Table 2. Software design questions used in the study

No. Questions

13 Name the class that a python wrapper uses to access
data in the class NTuple.

14 Name the class responsible for managing XML
serialization.

15 Name the class that controls the active window of an
application.

16 Name the base class for axis representation hierarchy.

17 Name the class through which a boundary class could
access data in the class NTuple.

18 Name the class that is a python wrapper for a class
with the method name adduct.

19 Name the classes that are specialized for XML
processing in QT.

20
Name the class that responds to the toolbar events
from windows and messages sent by the class
Inspector.

21 Name the class that plots point in 2D.

22 Name the class through which a boundary class could
access data in the class DataSource.

23 Name the entity class that is responsible for storing
data.

24
Name the entity class that could be extended to
specify a new property (besides Font and Color) in
XML

25 Name the concrete class that displays data in a tabular
format.

26 Name the class that sets the range and scale of the
axis.

27
Name the class that gets data from the class
DataSource objects and uses functions from the class
FunctionBase.

Table 4 shows the number of classes in a UML class
diagram that are used from the corresponding modules of
HippoDraw. Overall 100 unique classes are used from
the Hippodraw system. We selected six class models
that represent six logical subsystems or a set of related
functionalities. We manually engineered three class
diagrams with orthogonal, three-cluster, and multiple-
cluster layouts to represent each model. Each of the
resultant 18 diagrams occupies approximately the same
amount of physical screen space and consists of between
12 and 21 classes. The bound on the number of classes
in a diagram is guided from Purchase’s [22] results on
the optimal number of the classes beyond which there is
a substantial cognitive overhead for comprehension tasks.
Also, Sun et al. [25] showed that a diagram with very
dense information leads to difficulty in its readability.
Therefore, our diagram shows only selective methods
and attributes that are considered most relevant to the
designated tasks. Further, we considered various
advocated aesthetics criteria such as fewer edge bends
and crosses, shorter edge lengths, and maximization of
symmetry in the literature [9, 10, 22].

Table 3. Distribution of questions for the three UML

class diagram layouts and their corresponding
modules in HippoDraw software.

Modules Orthogonal Three-
Cluster

Multiple-
Cluster

High-Level 1 5 9
Python

Wrappers 2, 13 6, 18 10, 23

PlotterBase 3, 16 7, 21 11, 26
Tuple 4, 17 8, 22 12, 27

XmlNode 14 19 24
Canvas 15 20 25

Table 4. Number of classes used from the design of

corresponding HippoDraw software.

Modules Number of Classes
High-Level 14

Python Wrappers 15
PlotterBase 21

Tuple 19
XmlNode 12
Canvas 19

3.3. Stimuli
Using the eye tracking terminology, an object that is

viewed by a subject is known as the stimulus. We
combine a question and the corresponding diagram into a
single stimulus. The question is placed at the top-left
corner and the diagram occupied the remaining space.
Research on the use of eye tracking for a variety of
domains show a human bias for the top-left corner [5, 12]
and/or reading from the left to right [4, 18]. Therefore,

our chosen arrangement of the question and the diagram
should help eliminate or drastically reduce this bias.
Figure 3 shows an example of a portion of a stimulus
meeting our criteria. In our study, a total of 27 stimuli
are formed from the combinations shown in Table 3.

3.4. The Subjects
Volunteers who had completed undergraduate and/or

graduate level of software engineering coursework and
used UML class diagrams for academic and/or industry
projects were used as subjects. We secured nine such
subjects: three faculty, four doctoral students, one master
student, and one undergraduate student. These subjects
were all from computer science but had varying degrees
of software design and programming experience.

Additionally, we had three non Computer Science
graduate students who had no knowledge of UML and
very little or no software development experience. We
incorporated these subjects in the study to compare
results from these two groups and see if there is any
inherent difference in their eye movements.

3.5. Running the Study
The study consisted of subjects viewing the stimuli

and verbally responding to the stated questions. The
entire study was conducted over a two-day period. The
subjects were informed well in advance of the schedule
of their sessions. On the day of the study, subjects were
given a single page UML notation guide along with
introductory information of HippoDraw. Also the
subjects were briefed on the eye-tracking equipment as to
how it works and what information would be recorded.
They were informed that the eye tracking system
automatically records their audio, video, and eye
movements on the class diagram.

All the subjects were given the 27 stimuli
(comprehension tasks). Only one subject at a time
performed the study and it took between 10 and 20
minutes to complete. The subject was stationed
comfortably in front of the eye tracker at a distance of
approximately 60 cm and the eye-tracker was calibrated
for their individual use to verify that the system was
working properly. This process takes less than a couple
minutes to complete. After this, the environment in front
of them was just a common desktop Windows operating
environment.

The subjects were then instructed to read the question
on a stimulus loudly and verbally answer it so that they
could be recorded. There was no time limit on individual
stimulus or the entire session. After concluding the task
on a stimulus, the subjects were asked to say “next” so
that the auditor could make them transit to the next
stimulus. The set of 12 UML questions stimuli was
presented before the set of 15 software design questions

stimuli. The auditor verbally warned the subjects of the
transition from one set to the other. The same diagram
was not presented in consecutive stimuli in order to avoid
immediate learning bias occurring due to a mental picture
in the short-term memory. The subjects were encouraged
to verbally provide their observations, comments, and
feedback during and after the study.

Figure 3. A portion of stimulus used in the study with
a question in the top-left corner and the UML class

diagram occupying the rest of the visual space.

Figure 4. The number of correct answers for both

UML and Design sets of questions.

4. Analysis and Results
We analyzed the data collected from our study to

obtain an understanding of subjects’ visual activities in
answering questions with the three layouts.

4.1. Subject and Question Classification
We analyzed the accuracy and response time of the

answers to the 27 stimuli using the audio and video
recordings of the experiments. Figure 4 shows the
number of correctly answered questions. The remainder
of the questions were either incorrectly answered or
skipped. Eight of the nine computer science subjects

answered all the 12 UML questions correctly. No one
answered all of the 15 design questions correctly.

The subjects with no UML knowledge prior to the
study were able to answer a number of UML questions
after reading the one-page description of the notation.
Based on the performance of subjects in answering the
questions, we classified them into the following groups:
• Both UML and design agnostic (UADA): Subjects

that demonstrated very little knowledge of UML and
software design. Three subjects (K, L, and J) are
found in this category. These subjects took between
14 and 16.5 minutes each to complete the study.

• UML expert but inexperienced designer (UEDI):
Subjects that seem very skillful in UML but seem to
exhibit a lack of software design experience. Only
one subject (A) is found in this category. This
subject took approximately 13.9 minutes to complete
the entire study.

• UML expert and knowledgeable designer (UEDK):
Subjects that seem to be expert in UML and
knowledgeable in software design. Three subjects
(D, C, and H) are found in this category. These
subjects took between 8.5 and 14 minutes to
complete the entire study.

• Both UML and design expert (UEDE): Subjects that
exhibited commendable knowledge on both UML
and software design. Five subjects (B, E, G, I, and
F) are found in this category. These subjects took
between 6.5 and 11.5 minutes to complete the study.

It should also be noted that subjects had very different
reading speeds. Some were very fast readers while
others read slowly and carefully. This is one of the main
reasons why we cannot compare performance based
purely on the time to complete a particular task.

The classification of subjects shows that we have
representatives with varying UML and software design
skills. Also, our questions were effective enough to
enable this classification and this information is used in
further analysis presented in the following sections. We
now classify the tasks based on the performance of
subjects to gauge the difficulty level in answering the
questions. Figure 4 shows that most subjects with the
exception of the UADA group answered all the UML
questions. Therefore, we believe that the UML questions
were quite easy to handle and are not classified further.

We classified the 15 design questions based on the
distribution of subjects answering them correctly and
excluded the UADA group from this analysis. Questions
that were answered correctly by subjects in the ranges
[0%, 25%), [25%, 70%), [70%, 80%), and [80%, 100%]
were classified as easy, intermediate, difficult, and
challenging respectively. Table 5 shows the specific
design questions in the respective categories. No subject

answered the question numbered 20 correctly. Other
questions were correctly answered by at least one subject.
Table 5. Classification of design questions based on

the percentages of subjects correctly answering
them. The question numbers correspond to the

questions in Table 2

Level Questions
Easy 15, 16, 19, 21

Intermediate 13, 14, 22, 24
Difficult 17, 25, 26, 27

Challenging 18, 20, 23

Figure 5. A gaze plot for a portion of the stimulus
shown in Figure 3

4.2. Exploration, Examination, and Navigation
Here, we focus on trying to understand how subjects

use their eye movements for:
• Exploration of visual space: How they perform

searches on the UML class diagram to locate objects
required for a given task.

• Examination of visual objects: How they visualize,
in detail, whole or parts of classes and relationships
while accomplishing a given task.

• Navigation: How they move from one object of
interest to the next after their discovery.

Gaze plots, such as shown in Figure 5, that provide
fixations, saccades, and scanpaths are used in this
analysis. We found the following:
• The eye-tracker captured the fixations at the

granularities of class, attribute, and method textual
names in the diagram. Most subjects directly
explored only the part of the diagram that contained
the names specified in the questions. For example,
when a class containing a specific method name X
was required, subjects only searched the parts of the
class containing methods.

• A wide majority of the fixations are found on classes
and relationships, and very few on the empty spaces.

• The first fixations were found only on the end of
relationship symbols (e.g., diamond edge for
aggregation) for questions regarding or involving
relationships. Therefore, subjects start examining
from the relationship-ends for answering specific
questions about them. Only saccades were found on
the rest of a relationship symbol (i.e., the lines). So
the line parts of relationship notations are used only
for navigation purposes.

• All subjects in the UEDE and UEDK groups start
exploring the diagrams from the center and moved
towards the periphery.

• Subjects in the UADA and UEDI groups explore the
diagrams from top-to-bottom, and left-to-right.

Figure 6. A heatmap showing the cumulative

fixations of subjects on a specific stimulus. The
colors red, orange, yellow and green indicate the
decrease in number of fixations from highest to

lowest. Best viewed in color.

4.3. Stereotype Usage
Here, we discuss the use of explicit stereotype

information that was provided in the form of textual
annotations and color in the diagrams. Gaze plots and
video recording were used to facilitate the analysis. We
found the following:
• All subjects in the UEDE group and majority of the

subjects in the UEDK group visually examined the
textual annotations used for stereotypes in answering
the majority of the design questions. This was
evident by the number and size of the fixations on
text.

• All subjects in the UEDE group and majority of the
subjects in the UEDK group used the distinct class
colors indicating their stereotypes to facilitate
exploration and navigation through the diagrams.

• None of the subjects in the UADA and UEDI groups
used the stereotype textual annotations and colors.

Since they did not use this information they explored
and examined almost all classes in the diagram.

• Subjects in the UEDE group divided the visual space
of the UML diagram into clusters based on the
stereotype color information. They used clusters as
units of navigation (and not classes). They narrowed
down their search to the cluster potentially
containing the answer and examined that cluster in
detail.

• Subjects that used the above strategy answered more
questions correctly and quickly than others.

• When answering questions that involved both
stereotypes and relationships, majority of the
subjects in the UEDE group used stereotype to
narrow down to the possible solution, and then
located the appropriate relationship to complete the
answer.

Also, we analyzed all the heatmaps consisting of
cumulative fixations of all the subjects for a particular
stimulus (i.e., task) and found support for all of the above
findings. For example, the heatmap in Figure 6 for the
question 23 shows a large number of fixations on the
textual annotations of stereotypes.

4.4. Efficient Layouts
There is a wide variety of eye tracking metrics in the

literature [15]. The most frequently used metric is the
number of fixations. A large number of fixations is an
indicator of poor arrangements of objects in a stimulus.
The determination of the efficiency of a layout is based
on the total number of fixations on a stimulus. In our
study, each stimulus corresponds to a diagram with one
of the three layouts. Fewer total number of fixations on a
stimulus means that the subject needs less effort to
answer the associated question. We conjecture that if the
total number of fixations is high then the classes and
relationships are laid out in a way that leads to inefficient
visual exploration, explanation, and navigation. Such
poor arrangement spans the attention of the subject
across a number of objects instead of systematically
narrowing down the visual space to only the relevant area
of interest. Similar measures are used to assess the
arrangement of objects in a visual environment in other
domains that use eye-tracking methodology for
assessment [12, 16, 18, 21, 27].

The average number of fixations for a specific task is
computed from the fixations of all the subjects
(excluding the group UADA) on the associated stimulus.
The column Average Fixations in Table 6 shows the
average fixations for all the UML and design questions
used in our study. In order to determine the relative
effort required in answering the questions, four
categories low, intermediate, high, and extreme are
formed from the analysis of the average number of

fixations. The median of all the average number of
fixations of the stimuli is 34.33. The stimuli with
average number of fixations in the range [0, 34), [34, 42),
[42, 50), [50, 67) are classified as low, intermediate,
high, and extreme respectively. The classification of the
questions based on the accuracy of answers from Table 5
is also shown in Table 6 to facilitate comparison of
difficulty level and the required effort.

Table 6. Classification of effort required to answer

questions based on the average fixations taken over
the number of expert subjects for each stimulus. The

table is ordered by effort/average fixation. The
column Levels is taken from Table 5.

Stimuli
(Questions)

Average
Fixations Effort Levels

5 23.00 Low Easy
23 23.56 Low Challenging
11 24.67 Low Easy
26 25.22 Low Difficult
15 27.67 Low Easy
8 28.00 Low Easy
12 29.56 Low Easy
6 29.89 Low Easy
7 30.22 Low Easy
18 30.56 Low Challenging
9 31.22 Low Easy
3 32.00 Low Easy
19 32.56 Low Easy
14 34.33 Medium Intermediate
1 36.22 Medium Easy
21 38.00 Medium Easy
2 40.56 Medium Easy
4 41.00 Medium Easy
16 42.56 High Easy
24 42.56 High Intermediate
25 42.78 High Difficult
10 43.56 High Easy
22 44.22 High Intermediate
13 62.44 Extreme Intermediate
20 63.67 Extreme Challenging
27 65.22 Extreme Difficult
17 66.33 Extreme Difficult

In order to compare the three types of layouts we
compared the level of question and the effort needed in
answering them. The baseline of comparison is that the
level and effort should be directly related. That is, easy
questions should require low effort, intermediate
questions should require medium effort, difficult
questions should require high effort, and challenging

questions should require extreme effort. We refer to such
questions having this property as equal-effort. Also,
questions that require more effort than the corresponding
baseline level are referred as more-effort, whereas those
that require less effort than the corresponding baseline
level are referred as less-effort.

Using Table 3 and Table 6 we can map questions and
stimuli to the corresponding layouts. Table 7 shows that
the multiple-cluster layout supports the highest number
of questions at the equal-effort and the orthogonal layout
supports the lowest number of questions at the equal-
effort. Similar performance is seen in favor of multiple-
cluster and three-cluster layouts, and against the
orthogonal layout with respect to the more-effort
category. Moreover, multiple-cluster and three-cluster
layouts show support at less-effort, whereas no such
support is found in the orthogonal layout. Clearly, the
multiple-cluster layout outperforms the other two layouts,
and the orthogonal layout is outperformed by the other
two layouts, for both sets of UML and design questions.

Table 7. Distribution of questions based on level and

effort. The multiple-cluster layout outperforms the
others with respect to effort.

Layout Types Equal-
Effort

More-
Effort

Less-
Effort

Orthogonal 3 6 0
Three-cluster 4 4 1

Multiple-cluster 5 2 2

4.5. Threats to Validity
We discuss the internal and external validities of our

approach with regards to the results obtained from its
evaluation.

Internal validity refers to addressing the possible
factors in our evaluation that bias the results one-way or
the other and as such do not represent reality. All our
subjects were from academia and volunteers. This raises
the threat that they may not have been motivated enough
to perform to their fullest capability and interest. Also,
some subjects may have apriori knowledge of the
Hippodraw system. We believe that this was less of an
issue as there are no UML design documents publicly
available (with the exception of Doxygen documents).
The number of subjects (12) in our study may appear to
be low, however, this range is typically found in eye-
tracking studies [3, 12, 16].

External validity refers to addressing the general
applicability of our approach and conclusions to any
given dataset. We assessed UML diagrams with subjects
from academia, 27 questions, 3 layouts, and one system.
We tried to take adequate measures so that our study
represents commonly found comprehension and design
scenarios, however we do not claim that our results will

generalize to any arbitrary task, layout, system, and
subject combination.

5. Related Work
There are two research areas that are related to our

work. We discuss representative works in the UML and
eye-tracking usability studies.

5.1. UML Class Models
Very recently, Guehénéuc [13] used eye-tracking to

study the comprehension of the software engineers on the
class diagrams. However, their study was more limited
with regard the questions and the scope. Additionally,
they used a head mounted system that is quite intrusive
and no more accurate than what we used.

Sun et al. [25] proposed key criteria and guidelines
for the effective layouts of UML Class diagrams based
on the perceptual theories. Kurniaz et al. [19] and Staron
et al. [24] evaluated the influential role of stereotypes in
understanding UML class and collaboration diagrams.
Andriyevska et al. [1] found that the layouts based on
design and architectural information assists more in
comprehension of UML class diagram than those solely
based on graph drawing aesthetics. Eichelberger [9, 10]
proposed a set of aesthetic criteria and semantic
clustering of nodes to increase the readability of UML
class diagrams. Purchase et al. [22, 23] conducted user
studies to evaluate the effect of aesthetics criteria (i.e.,
minimize bends, edge crossing, orthogonal) on the UML
diagrams. Tilley et al. [26] investigated the use of UML
syntax, semantics, spatial layout, and domain knowledge
in system evolution tasks. Eiglsperger et al. [11]
proposed an automatic layout algorithm for UML class
diagrams. Their algorithm is based on the topology and
shape metrics that try to minimize the edge crossing,
bends, and occupied area. Briand et al. [7] showed that
the combined use of OCL and UML offers significant
benefits in terms of defect detection, comprehension, and
maintenance of UML analysis documents. Arisholm et
al. [2] showed that the UML documentation can provide
significant improvements in the functional correctness of
changes and overall quality of the design for complex
tasks.

5.2. Eye Tracking and Usability
Jacob [17] discusses the human factors and technical

considerations in using eye tracking in Human Computer
Interaction (HCI). Beymer et al. [4] developed the tool
WebGazeAnalyzer to record and analyze eye gazes on
web browsing sessions. Uwano et al. [27] used eye
tracking to characterize the individual’s performance in
reviewing source code. Nakamichi et al. [20] advocates
the use of gaze-point velocity to detect the low usability
web pages. Khiat et al. [18] studied the relation between

subjects understanding and their eye movements on the
text in a non-native language. Pan et al. [21] studied
factors such as gender information, web page viewing
order, and different types of website (news and shopping)
by using eye tracking measures. Whalen et al. [28]
conducted a study to determine the elements in web
browsers that are viewed (and ignored), and how easily
they can be noticed. Bednarik et al. [3] applied eye
tracking to study comprehension of java programs. Iqbal
et al. [16] investigated the mental workload demanded by
computer-based tasks perform by users in an eye tracking
study. Additionally, our findings corroborate with the
prior results [1, 13, 19] obtained by traditional evaluation
methods, and further provide reasoning behind those
results.

6. Conclusions
This work, along with the work by Guehénéuc [13],

are the first studies to use eye-tracking equipment to
assess how people comprehend UML class diagrams in
the context of software design problems. The advent of
new eye-tracking technology makes the use of this
equipment easier and unobtrusive. This method of data
acquisition is implicit and more objective compared to
traditional usability study methods. It also opens the
door for the creation of objective assessment metrics of
class diagram layout.

Our findings showed that experts tend to use such
things as stereotype information, coloring, and layout to
facilitate more efficient exploration and navigation of
class diagrams. Additionally, experts tend to
navigate/explore from the center of the diagram to the
edges whereas novices tend to navigate/explore from top-
to-bottom and left-to-right.

We made some observations that need further study.
Even if subjects could not answer the question correctly,
they got very close to the answer by using stereotype and
color information. Defining standards for the use of this
type of additional information could lead to more
readable and effective diagrams. Also, we observed that
the close similarity in the notations for generalization and
aggregation relationships could cause undue effort to
differentiate. Using less similar visual notations may
reduce the effort to understand diagrams.

We thank Dr. David Robbins, Dr. Jason Holmes, and
Aaron Rosenberg for their assistance in the use of the
Tobii eye-tracker.

7. References
[1] Andriyevska, O., Dragan, N., Simoes, B., and Maletic, J. I.,
"Evaluating UML Class Diagram Layout based on
Architectural Importance", in Proceedings of 3rd IEEE
International Workshop on Visualizing Software for
Understanding and Analysis (VISSOFT'05), Budapest,
Hungary, September 25th 2005, pp. 14-19.

[2] Arisholm, E., Briand, L. C., Hove, S. E., and Labiche, Y.,
"The Impact of UML Documentation on Software
Maintenance: An Experimental Evaluation", IEEE Transactions
on Software Engineering (TSE), vol. 32, no. 6, 2006, pp. 365.

[3] Bednarik, R. and Tukiainen, M., "An eye-tracking
methodology for characterizing program comprehension
processes", in Proceedings of the Sym. on Eye tracking research
\& applications (ETRA), San Diego, CA, 2006, pp. 125-132.

[4] Beymer, D. and Russell, D. M., "WebGazeAnalyzer: a
system for capturing and analyzing web reading behavior using
eye gaze", in Proceedings of CHI '05 extended abstracts on
Human factors in computing systems, Portland, OR, USA,
2005, pp. 1913-1916.

[5] Bojko, A., "Eye Tracking in User Experience Testing: How
to Make the Most of It. " in Proceedings of 14th Annual
Conference of the Usability Professionals Association (UPA),
Montréal, Canada, 2005.

[6] Booch, G., Rumbaugh, J., and Jacobson, I., Unified
Modeling Language User Guide, NJ, Addison Wesley, 2005.

[7] Briand, L. C., Labiche, Y., Penta, M. D., and Yan-Bondoc,
H., "An Experimental Investigation of Formality in UML-
Based Development", IEEE Transactions on Software
Enginering (TSE), vol. 31, no. 10, 2005, pp. 833.

[8] Duchowski, A. T., Eye Tracking Methodology: Theory and
Practice, London, Springer-Verlag, 2003.

[9] Eichelberger, H., "Aesthetics of class diagrams", in
Proceedings of First IEEE International Workshop on
Visualizing Software for Understanding and Analysis
(VISSOFT), Washington, DC, USA, 2002, pp. 23-31.

[10] Eichelberger, H., "Nice Class Diagrams Admit Good
Design?" in Proceedings of SOFTVIS'03, 2003, pp. 159-167.

[11] Eiglsperger, M., Kaufmann, M., and Siebenhaller, M., "A
topology-shape-metrics approach for the automatic layout of
UML class diagrams", in Proceedings of 2003 ACM Sym on
Software visualization, San Diego, CA, 2003, pp. 189-199.

[12] Goldberg, J. H., Stimson, M. J., Lewenstein, M., Scott, N.,
and Wichansky, A. M., "Eye tracking in web search tasks:
design implications", in Proceedings of 2002 symposium on
Eye tracking research & applications (ETRA), New Orleans,
Louisiana, 2002, pp. 51-58.

[13] Guehénéuc, Y. G., "TAUPE: Towards Understanding
Program Comprehension", in Proceedings of The Conference of
the Center for Advanced Studies on Collaborative Research
(CASCON'06), Toronto, Canada, Oct 16-19, 2006, pp. 1-13.

[14] Gutwenger, C., Junger, M., Klein, K., Kupke, J., Leipert,
S., and Mutzel, P., "A new approach for visualizing UML class
diagrams", in Proceedings of 2003 ACM symposium on
Software visualization, San Diego, CA, 2003, pp. 179-188.

[15] Hyona, J., Radach, R., and Deubel, H., The Mind's
Eye:Cognitive and Applied Aspects of Eye Movement
Research, 0-444-51020-6 ed., Amsterdam, 2003.

[16] Iqbal, S. T., Adamczyk, P. D., Zheng, X. S., and Bailey, B.
P., "Towards an index of opportunity: understanding changes in

mental workload during task execution", in Proceedings of
SIGCHI conference on Human factors in computing systems,
Portland, Oregon, USA, 2005, pp. 311-320.

[17] Jacob, R. J. K., "What you look at is what you get: eye
movement-based interaction techniques", in Proceedings of
SIGCHI conference on Human factors in computing systems:
Empowering people, Seattle, Washington, 1990, pp. 11-18.

[18] Khiat, A., Matsumoto, Y., and Ogasawara, T., "Task
Specific Eye Movements Understanding for a Gaze-Sensitive
Dictionary", in Proceedings of Conference on Intelligent User
Interfaces, Funchal, Madeira, Portugal, 2004, pp. 265-267.

[19] Kuzniarz, L., Staron, M., and Wohlin, C., "An Empirical
Study on Using Stereotypes to Improve Understanding of UML
Models", in Proceedings of 12th International Workshop on
Program Comprehension (IWPC), 2004, pp. 14.

[20] Nakamichi, N., Shima, K., Sakai, M., and KenIchi, M.,
"Detecting low usability web pages using quantitative data of
users' behavior", in Proceedings of 28th International
Conference on Software Engineering (ICSE'06), Shanghai,
China, 2006, pp. 569-576.

[21] Pan, B., Hembrooke, H., Gay, G., Granka, L., Feusner, M.,
and Newman, J., "Determinants of web page viewing behavior:
An eye-tracking study", in Proceedings of Eye tracking research
& applications symposium on Eye tracking research &
applications, San Antonio, Texas., 2004.

[22] Purchase, H. C., Allder, J.-A., and Carrington, D. A.,
"Graph Layout Aesthetics in UML Diagrams: User
Preferences", J. Graph Algorithms Application, vol. 6, no. 3,
2002, pp. 255-279.

[23] Purchase, H. C., McGill, M., Colpoys, L., and Carrington,
D., "Graph drawing aesthetics and the comprehension of uml
class diagrams: an empirical study", in Proceedings of
Australian Sym on Info. Vis., 2001, pp. 129-137.

[24] Staron, M., Kuzniarz, L., and Thurn, C., "An empirical
assessment of using stereotypes to improve reading techniques
in software inspections", in Proceedings of Proceedings of the
Workshop on Software quality, St. Louis, MO, 2005, pp. 1-7.

[25] Sun, D. and Wong, K., "On Evaluating the Layout of UML
Class Diagrams for Program Comprehension", in Proceedings
of 13th IEEE International Workshop on Program
Comprehension, St. Louis, Missouri, USA, 2005, pp. 317-328.

[26] Tilley, S. and Huang, S., "A qualitative assessment of the
efficacy of UML diagrams as a form of graphical
documentation in aiding program understanding", in
Proceedings of 21st Conference on Documentation (SIGDOC),
San Francisco, CA, USA, 2003, pp. 184-191.

[27] Uwano, H., Nakamura, M., Monden, A., and Matsumoto,
K., "Analyzing individual performance of source code review
using reviewers' eye movement", in Proceedings of 2006
symposium on Eye tracking research & applications (ETRA),
San Diego, California, 2006, pp. 133-140.

[28] Whalen, T. and Inkpen, K. M., "Gathering evidence: use of
visual security cues in web browsers", in Proceedings of Conf.
on Graphics interface, Victoria, BC, 2005, pp. 137-144.

