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Abstract—We investigate experts’ ability to assess the difficulty
of a mental task for a human. The final aim is to find formalized
measures of difficulty that could be used in automated assessment
of the difficulty of a task. In experiments with tactical chess
problems, the experts’ estimations of difficulty are compared to
the statistic-based difficulty ratings on the Chess Tempo website.
In an eye tracking experiment, the subjects’ solutions to chess
problems and the moves that they considered are analyzed.
Performance data (time and accuracy) are used as indicators
of subjectively perceived difficulty. We also aim to identify
the attributes of tactical positions that affect the difficulty of
the problem. Understanding the connection between players’
estimation of difficulty and the properties of the search trees of
variations considered is essential, but not sufficient, for modeling
the difficulty of tactical problems. Our findings include that (a)
assessing difficulty is also very difficult for human experts, and
(b) algorithms designed to estimate difficulty should interpret the
complexity of a game tree in the light of knowledge-based patterns
that human players are able to detect in a chess problem.
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I. INTRODUCTION

In this article, we investigate the ability of experts to
assess the difficulty of a mental task for a human, and study
the possibilities for designing an algorithmic approach to
predicting how difficult the problem will be to solve by humans
[1], [2]. Modeling the difficulty of problems is a topic be-
coming increasingly salient in the context of the development
of intelligent tutoring systems [3], neuroscience research on
perceptual learning [4], and dynamic difficulty adjustment
(DDA) for gaming [5], [6]. However, as-of-yet there is no
developed methodology to reliably predict the difficulty for
a person of solving a problem. This work therefore seeks to
explore different ways of assessing difficulty, including human
experts, and statistical analysis of performance data.

In our study, we use chess as an experimental domain.
In our case, a problem is always defined as: given a chess
position that is won by one of the two sides (White or Black),
find the winning move, or a winning move in cases when
several moves lead to victory. A chess problem is said to
be tactical if the solution is reached mainly by calculating
possible variations in the given position, rather than by long
term positional judgement with little calculation of concrete
variations. The starting point of our investigation is scrutinizing
the relationship between a player’s chess expertise and their
ability to assess the difficulty of a tactical problem.

The term ’difficulty’ requires further explanation. We are
primarily concerned with task difficulty, which mediates be-
tween “subjective experience of difficulty” (that cannot be

objectified) and “task complexity” (an inherent quality of a
task; e.g., the properties of its state space). We define the
difficulty of a problem as the probability of a person failing
to solve the problem. Solving a problem is associated with
uncertainty. Even in the case that a person solving a problem
has complete knowledge relevant to the problem, she may
occasionally miss the solution. In chess, there are well known
cases of blunders when a chess grandmaster failed to see an
obvious winning move. Accordingly, the difficulty depends on
both the problem and the person.

The more experienced the person is in the area of the
problem, the easier the problem is for that particular person.
For a group of people of similar expertise and problem-solving
skills, the problem’s difficulty will be similar for all of them.
In such cases, when talking about difficulty, we may leave out
the reference to any particular individual within the group. We
thus make the following assumption regarding the ranking of
problems according to difficulty. For two people with different
experience in the problem area, the ordering of two problems
according to difficulty is the same for both people. That is, if
problem 1 is easier than problem 2 for person A, then problem
1 is also easier than problem 2 for person B. Of course, this
assumption may be debated, but we believe it is true in large
majority of cases.

The aim of our investigation is to find underlying principles
of difficulty perception and estimation for a defined group.
This will allow us to omit the reference to individual persons
and to focus on regularities that are required for modeling the
difficulty of particular tasks.

In the case of chess tactical problems, human players will
encounter difficulty when the problem exceeds the limitations
of their cognitive abilities, i.e., their ability to detect relevant
motifs and to calculate variations in [7]. The perception of
difficulty can also be influenced by psychological factors, and
from the way a particular problem is presented [8]. De Groot
[9] and Jongman’s [10] are among the first contributions to
the academic research on thinking processes in chess. Both
authors focus on the ability of players of different expertise to
memorize chess positions. Research on expertise in chess has
been mostly focused on the perceptual advantages of experts
over novices [11], [12], [13], [14], [15].

Our study aims to explore the connection between task
difficulty and expertise, as well as the variability among
individuals. Although relatively little research has been devoted
to the issue of problem difficulty, it has been addressed within
the context of several domains, including Tower of Hanoi
[16], Chinese rings [17], 15-puzzle [18], Traveling Salesperson
Problem [19], Sokoban puzzle [20], Sudoku [21], and also
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Figure 1. Chess Tempo: White to move wins. Black’s last move: Kf8-e8.

chess [2]. To the best of our knowledge, no related work has
been focused either on domain experts’ abilities to estimate
the difficulty of a mental task for a human, or on modeling
the difficulty of chess tactical problems.

To approach task difficulty we are using performance mea-
sures (accuracy of solution, time, variations considered, rank-
ing positions), psychophysiological measures (eye tracking),
and qualitative retrospective reports (on perceived difficulty
and on variations considered). The paper is organized as
follows. In Section II, we introduce the difficulty ratings, state
our hypothesis and explain why modeling the difficulty of
chess tactical positions is problematic. Section III describes our
methodology. We present our results of experimental data anal-
ysis in Section IV, which is followed by a thorough discussion
of illustrative examples from the eye-tracking experiment. The
final section of the paper is reserved for concluding remarks
and directions for future work.

II. TOWARD MODELING DIFFICULTY

A. Difficulty Ratings

We have adopted the difficulty ratings of Chess Tempo – an
online chess platform available at www.chesstempo.com – as
a reference. The Chess Tempo rating system for chess tactical
problems is based on the Glicko Rating System [22]. Problems
and users are both given ratings, and the user and problem
rating are updated in a manner similar to the updates made
after two chess players have played a game against each other,
as in the Elo rating system [23]. If the user solves a problem
correctly, the problem rating goes down, and the user’s rating
goes up, and vice versa: the problem’s rating goes up in the
case of incorrect solution. The Chess Tempo ratings of chess
problems provides a base from which to analyze the ability
of human experts to estimate the difficulty of a problem, and
in our case to predict the statistically calculated measure of
difficulty.

Fig. 1 shows an example of a Chess Tempo tactical
problem. Superficially it may seem that the low number of
pieces implies that the problem should be easy (at least for
most chess players). However, this is one of the top rated Chess
Tempo problems, ranked as the 52nd out of 48,710 problems at
the time of this writing, with the rating of 2450 rating points

(other Chess Tempo statistics of this problem include: 211
users attempted to solve it, spending 602 seconds on average
and with success rate of 31.75%).

What makes a particular chess tactical problem difficult?
In order to understand it, we must first get acquainted with
the solution. The solution of the problem in Fig. 1, shown
in standard chess notation, is 1.Rh7-h8+ Ba3-f8 2.Bf6-g7!
(2.e6-e7? Ke8-f7!=) Ke8-e7 3. Bg7-h6!! and Black loses in
all variations, e.g.: 3... Rc8-a8 4.Rh8-h7+! Ke7-f6 5.Rh7-f7+
and the black bishop is lost. White’s 3rd move (3.Bg7-h6!!),
virtually giving an extra move to the opponent, is particularly
difficult to see in advance. Note that 3.Bg7xf8? Rc8xf8 4.Rh8-
h7+ achieves nothing after 4... Ke7-f6!, with a draw. In the
present case, it was not only the case that white was required to
make the highly unexpected and counterintuitive move 3.Bg7-
h6!!, there were also some seemingly promising alternatives
that actually fail to win.

B. Hypothesis

Our hypothesis is that one’s ability to estimate the difficulty
of a problem is positively correlated with his or her expertise
and skills in the particular problem domain. In chess, for
example, such expertise and skills are usually measured by
the World Chess Federation (FIDE) Elo rating. However, we
conceive of chess strength as only one among multiple factors
influencing the ability to make good predictions. For example,
in the case of teaching, one should develop skills related to
estimating difficulty in order to select appropriate tasks for
one’s students. Exhibiting greater expertise in a domain (e.g.,
being a stronger chess player) should (in principle) increase the
chances of making better predictions – due to increased aware-
ness of various possibilities and their potential consequences.
However, for a group of people of similar expertise, the
problem’s difficulty may vary due to their specific knowledge
and individual style. Moreover, it is important to note that
FIDE Elo rating does not solely reflect chess players’ tactical
skills, but also their strategic knowledge etc. Hence, we do not
necessarily expect a high linear correlation between player’s
FIDE Elo rating and their success in ranking the positions.

C. Modeling the difficulty of tactical positions

Guid and Bratko [2] proposed an algorithm for estimating
the difficulty of chess positions in ordinary chess games.
However, we found that this algorithm does not perform
well when faced with chess tactical problems. The reason for
this is that computer chess programs tend to solve tactical
chess problems very quickly, usually already at the shallowest
depths of search. The above mentioned algorithm takes into
account the differences in computer evaluations when changes
in decisions take place with increasing search depth, thus
the computer simply recognizes most of the chess tactical
problems to be rather easy, and does not distinguish well
between positions of different difficulties (as perceived by
humans). Estimating difficulty of chess tactical problems there-
fore requires a different approach, and different algorithms. It
is therefore necessary to investigate the way the players of
different strength solve tactical problems and estimate their
difficulty, and to better understand what may be the properties
of such difficulty estimation algorithms. Hence, we have
used physiological measures that gauge performance in chess
players’ ability to assess the difficulty of tactical problems, in



730

International Journal on Advances in Intelligent Systems, vol 7 no 3 & 4, year 2014, http://www.iariajournals.org/intelligent_systems/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

 

1700

1800

1900

2000

2100

2200

2300

2400
F

ID
E

 E
lo

Chess player

Figure 2. FIDE Elo ratings of the participants.
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Figure 3. The Elo curve and expected scores.

addition to qualitative reports on perceived difficulty and on
variations considered during problem solving.

III. METHODOLOGY

In the experiment, 12 chess experts solved and then ranked
a selection of Chess Tempo problems according to their
estimated difficulty. Only problems with established difficulty
ratings (each attempted by at least 575 Chess Tempo users)
were used. The participants consisted of 10 male and 2 female
chess players (average age: 48 years). Their FIDE Elo ratings
vary between 1845 and 2279 (average: 2089) and are given in
Fig. 2. The Elo rating system [23] is adopted by FIDE (World
Chess Federation) to estimate the strength of chess players.

Fig. 3 shows the Elo curve, i.e., a plot of the expected score
at particular rating differences between two players. It is shown
here in order to give the reader an approximate idea about the
relative strength of the participants. Assume, for example, that
two players are rated r1 = 2200 and r2 = 2000. The difference
between r1 and r2 is 200 rating points in this case. According
to the Elo rating system, the expected success rate of the higher
rated player playing against the lower rated player is 76% and
the expected success rate of the lower rated player is 24%. The
expected scores do not depend on the actual ratings r1 and r2,
but only on their difference. The expected score between two
players would also be 76:24 according to the Elo curve if their

ratings were, say, r1 = 2050 and r2 = 1850, because the rating
difference in this case is also 200 points.

Eye tracking was used in order to gather perceptual data
about performance and difficulty. One of the main advantages
of eye tracking is that there is no appreciable lag between what
is fixated and what is processed [24]. The aim was to have
a grip on what is happening when the players were solving
the problems, in order to understand better why a particular
player missed the correct solution, what happened when a
particular problem was underestimated, what piece movements
did the player focused upon etc. In the experiments, the chess
problems were displayed as ChessBase 9.0 generated images,
70 cm from the players’ eyes. Participants’ head was stabilized
by a chin rest. Fig. 4 shows the experimental setting in the eye-
tracking room. The players’ eye movements were recorded by
an EyeLink 1000 (SR Research) eye tracking device, sampling
at 500 Hz. Nine-point calibration was carried out before each
part of the experiment session.

Participants were presented with 12 positions – chess
tactical problems – randomly selected from Chess Tempo
according to their difficulty ratings. Based on their Chess
Tempo ratings, the problems can be divided into three classes
of difficulty: “easy” (2 problems; their average Chess Tempo
rating was 1493.9), “medium” (4; 1878.8), and “hard” (6;
2243.5). While the problems within the same difficulty class
have very similar difficulty rating, each of the three classes is
separated from the other by at least 350 Chess Tempo rating
points. Some problems may have more than one single correct
solution. Table I displays the statistics for the 12 tactical chess
problems: Chess Tempo rating, success rate and the number
of attempts by Chess Tempo users, average problem solving
times, the number of correct solutions, and our difficulty class.

The 12 positions were presented in 3 blocks of four
positions, randomized within the blocks and between blocks
to avoid a sequence effect. There were short breaks to prevent
the accumulation of fatigue. The experiment with each player
lasted between 20 and 45 minutes. The subjects were instructed
to input their solution (their suggested best move) as soon as
they have found a winning solution. They were not allowed to
exceed the time limit of three minutes for each position.

Figure 4. The experimental setting in the eye-tracking room.
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TABLE I. CHESS TEMPO STATISTICS OF THE PROBLEM SET.

# Rating Success Attempts Average time Solutions Difficulty

1 1492.5 61% 789 3:50 2 easy

2 1495.3 62% 712 2:12 2 easy

3 1875.2 49% 669 4:08 3 medium

4 1878.1 51% 626 3:31 1 medium

5 1878.6 52% 774 3:16 1 medium

6 1883.3 53% 694 6:39 2 medium

7 2230.9 37% 809 6:53 1 difficult

8 2233.1 36% 815 6:13 1 difficult

9 2237.5 34% 575 7:01 1 difficult

10 2238.5 38% 751 5:20 1 difficult

11 2243.4 40% 572 8:49 1 difficult

12 2274.9 38% 580 9:41 1 difficult

Retrospective reports were obtained after the completion of
the experiment. These reports serve as a key to understanding
the way experts approached the presented position, and to the
variations they considered. Chess experts are able to remember
variations and are capable of reconstructing even full chess
games. Hence, the retrospective reports obtained should have
high validity. After the experiment, participants were asked
to rate the problems (from 1 to 12) in ascending order of
their difficulty. They were not told that the problems were
divided into three difficulty classes, in order to avoid the bias
introduced by this information.

The data types of primary importance to our investigation
were: success rate in solving and in ranking the positions, and
the type of solutions that players considered (also the incorrect
ones). Success rate is an objective parameter, associated with
the difficulty of the problem. It shows whether the person
was able to solve the problem correctly. In combination with
the retrospective reports, it provides an additional framework
for understanding participants’ estimation of the difficulty
of particular problems. On the other hand, the measure of
success rate does not account for the way that people went
about solving the problem. We analyzed the success rate of
the participants in ranking the positions while using Chess
Tempo’s (well established) difficulty ratings as a frame of
reference, in order to observe how good chess players were
at estimating the difficulty of problems. We found that in the
cases when players did not solve the problem correctly, they
tended to make a gross error in their estimate of the difficulty
of the position.

The program DataViewer was used to generate reports
about the participants’ eye-gaze activity: saccades, fixations,
interest areas, and trial reports. The data analysis will be
discussed in the next section.

IV. ANALYSIS OF EXPERIMENTAL RESULTS

A. Statistical Analysis

We computed the correlation between various difficulty
rankings for the set of chess positions. The rankings come
from individual players that took part in the experiment, and
from the Chess Tempo database. The Chess Tempo ranking
order was derived from the Chess Tempo difficulty ratings
of individual positions (see Table I). The players did not
estimate difficulty ratings, but produced their ranking orders
directly. That is, they were asked to rank the positions in order:
from easiest to most difficult. We used Kendall’s tau (τ ) rank

TABLE II. THE PROBLEM-SOLVING STATISTICS.

# Rating Success First moves Pieces Avg. time (sec)

1 1492.5 83% 4 3 71.5

2 1495.3 100% 2 2 65.5

3 1875.2 100% 2 2 67.4

4 1878.1 33% 5 3 105.0

5 1878.6 42% 4 3 101.3

6 1883.3 100% 1 1 91.6

7 2230.9 25% 2 2 78.5

8 2233.1 42% 5 3 95.0

9 2237.5 67% 3 2 113.5

10 2238.5 75% 3 2 96.3

11 2243.4 33% 3 1 120.0

12 2274.9 33% 3 1 123.5

correlation coefficient which we applied to our data as follows.
Given two rankings, Kendall’s τ is defined by:

τ =
nc − nd

n ∗
n−1

2

=
nc − nd

nc + nd

(1)

Here n is the number of all chess positions in the rankings, and
nc and nd are the numbers of concordant pairs and discordant
pairs, respectively. A pair of chess positions is concordant if
their relative rankings are the same in both ranking orders.
That is, if the same position precedes the other one in both
rankings. Otherwise the pair is discordant. In our data, some
of the positions were, according to Chess Tempo, of very
similar difficulty. Such positions belong to the same difficulty
class. To account for this, the formula above was modified. In
the nominator and denominator, we only counted the pairs of
positions that belong to different classes.

Table II shows respectively: position numbers and their
Chess Tempo ratings (see Table I for more details about
the problem positions), the rate of correct solutions by the
participants, the number of different first moves tried, the
number of different pieces considered for the first move, and
the participants’ average time spent on the problem.

Fig. 5 shows the relation between Kendall’s τ and FIDE
Elo ratings for each of the 12 participants. Pearson product-
moment correlation coefficient (Pearson’s r) was computed in
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Figure 5. The relation between Kendall’s τ and FIDE Elo ratings.
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TABLE III. PARTICIPANTS’ RESULTS OF PROBLEM SOLVING AND DIFFICULTY ESTIMATION.

Participant # 1 2 3 4 5 6 7 8 9 10 11 12 –

FIDE Elo 2279 2252 2212 2181 2139 2123 2086 2035 2022 1983 1912 1845 Chess Tempo

“easiest” 2 3 2 3 3 7 2 2 4 3 8 3 1

1 2 1 10 2 8 3 3 5 2 2 9 2

3 6 3 1 12 12 10 4 6 5 11 10 3

5 1 10 2 5 6 1 7 2 1 7 1 4

6 10 6 7 6 3 6 1 9 7 1 2 5

10 4 9 6 4 2 4 10 3 8 6 11 6

4 7 7 9 1 1 8 5 7 4 9 12 7

9 12 5 8 10 9 12 9 1 6 5 7 8

11 9 4 5 7 4 7 6 10 10 12 6 9

12 8 12 4 9 10 9 12 8 11 10 4 10

7 5 8 12 8 11 11 8 11 12 3 5 11

“hardest” 8 11 11 11 11 5 5 11 12 9 4 8 12

Discordant pairs 1 9 7 14 21 26 9 8 10 10 7 23 –

Kendall’s τ 0.95 0.59 0.68 0.36 0.05 -0.18 0.59 0.64 0.55 0.55 0.68 -0.05 –

Solved correctly 11 8 8 5 7 8 6 8 5 8 9 6 –

order to determine the relationship between Kendall’s τ and
the chess strength of the participants (reflected by their FIDE
Elo rating). There was a moderate positive relationship that is
statistically not significant between Kendall’s τ and FIDE Elo
ratings (r = .30, n = 12, p = 0.34). Clearly, there is no linear
correlation between player’s Elo rating and their success in
ranking the positions.

Table III demonstrates big discrepancies between
ChessTempo rating and participants estimation of difficulty.
It shows the difficulty rankings each participant gave to the
positions they solved. For example, the chess player with
FIDE Elo rating of 2279 ranked the positions in the following
order: 2 (the easiest one according to the player), 1, 3, 5, 6,
10, 4, 9, 11, 12, 7, 8 (the most difficult one). The “correct”
order according to the Chess Tempo ratings is given in the
last column of the table. Notice that the numbers of positions
refer to the position numbers given in Table I: Positions 1-2
are from the difficulty class easy, Positions 3-6 are from
the difficulty class medium, and Positions 7-12 are from the
difficulty class difficult.

As it can be seen from the table, on several occasions our
participants ranked a position from the class difficult to be
easier than a position from the class easy, and vice versa.
Keep in mind that the difficulty classes are clearly separated
by more than 350 Chess Tempo rating points. Although Chess
Tempo ratings only resemble FIDE ELO ratings (they are not
on the same scale), a difference of 350 points – or even 700
points, i.e., the minimal distance between the difficulty classes
easy and difficult – represents a huge difference in difficulty.

We were mainly interested in the number of mistakes made
in the comparison of pairs that belong to different difficulty
classes, and not the ones within a class. Thus, when computing
the value of Kendall’s τ , we only counted the pairs of positions
that belong to different classes as discordant pairs. The above
mentioned player ranked Position no. 2 before Position no. 1,
however, this is not a discordant pair, since they both belong
to the difficulty class easy. The only discordant pair of this
player is 10-4, since Position no. 10 is from the difficulty class
difficult and Position no. 4 is from the difficulty class medium.
As another example, let us briefly mention discordant pairs by
the second-best rated chess player (FIDE Elo 2252): 3-2, 3-1,

6-1, 10-4, 10-5, 7-5, 12-5, 9-5, and 8-5. At the bottom of the
table the number of correctly solved problems is displayed for
each of the participants.

Chess players obtain their FIDE Elo ratings based on
chess tournament games. However, they may not be a reliable
predictor of the players’ tactical skills. Even the correlation
between their FIDE ratings and the performance at solving
the experimental problems was surprisingly unclear. In order
to verify this, we observed the relation between players’
FIDE Elo ratings and the number of correctly solved tactical
problems that were the subject of our experiment. The results
are demonstrated in Fig. 6. Players’ FIDE Elo ratings were
rather poor predictors of the players’ success in solving the
given tactical problems. This is not completely surprising, as
chess strength is dependent upon multiple factors in addition
to the tactical ability. Nevertheless, this result provides an
explanation for why estimating difficulty of chess tactical
problems cannot be strongly correlated with players’ FIDE
Elo ratings. Perhaps Chess Tempo ratings would be a more
reliable predictor for this purpose, however, these ratings were
unavailable, since several of our participants were not Chess
Tempo users.

We then observed the relationship in players’ success
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Figure 7. The relation between players’ success in estimating difficulty of
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in estimating difficulty of the problems (according to the
Kendall’s τ rank correlation coefficient) and their success in
solving the problems correctly. The results are demonstrated
in Fig. 7. There was a moderate positive (statistically not
significant) relationship between Kendall’s τ and the problem-
solving success rate (r = .44, n = 12, p = 0.15). It is interesting
to notice that this relationship is slightly stronger than the
relationship between Kendall’s τ and FIDE Elo ratings (given
in Fig. 5), which is in line with the observations stated in the
previous paragraph.

Questions remained about the reasons why some rather
strong players (according to their FIDE Elo ratings) performed
rather poorly at estimating the difficulty of the problems, as
well as at solving them correctly (and vice versa). For this
purpose, we analyzed the data from the eye-tracking sessions
and from the players’ retrospective reports. This analysis is the
subject of the following section.

B. Eye Tracking

A crucial part of eye tracking data processing is the analysis
of fixations and saccades in relation to the squares of the chess-
board, defined as interest areas (IAs) [25]. We analyzed what
percentage of the fixations fall on a particular interest area:
1) for each individual, 2) for all fixations of all participants.
For the purpose of the analysis, the following phases were
focused upon: 1) the first 10 seconds after presentation; 2)
overall duration of the trial. The first 10 seconds represent the
perceptual phase according to [26].

De Groot [27] conducted several think-aloud protocols with
chess players of different strengths, and discovered that much
of what is important to decide on the best move occurs in
the player’s mind during the first few seconds of exposure to
a new position. He noted that position investigation always
comes before the investigation of possibilities. Furthermore,
he divided the initial phase of the thought process into static,
dynamic, and evaluative investigation, and found that consid-
ering the position from these three points of view typically
occurs in this fixed order. Eye movement studies showed that
during a few seconds exposure of a chess position, masters and
novices differ on several dimensions, such as fixation durations
and the number of squares fixated. Retrospective protocols
indicated that very little search is conducted during these first
few seconds [28].

Fig. 8 demonstrates two EyeLink duration-based fixation
maps (visualized as “heatmaps”) of Position 3. The displayed
heatmaps depict the areas upon which two of the participants
spent the greatest amount of time looking at. The left-hand
diagram depicts the fixations made by Participant 1, and
the right-hand diagram the fixations by Participant 4. The
FIDE Elo ratings of the two participants are 2279 and 2181,
respectively, and the first participant was more successful both
in terms of ranking the positions according to their difficulty
as well as in solving them correctly (see Table III for details).
Position 3 has three possible solutions. The quickest way to
win is mate in 4 moves: 1.b3-b4 (avoiding drawing due to
stalemate – i.e., when the player to move has no legal move
and his king is not in check) a5xb4 2.Kg3-f2 b4-b3 3.Kf2-f1
b3-b2 4.Sh3-f2 checkmate. However, there are two alternative
solutions, which begin with the White Knight jumping to
squares g5 (1.Nh3-g5) and f2 (1.Nh3-f2+), respectively. In this
case, the two motifs (sacrifice a pawn and deliver checkmate
vs. merely move the knight to avoid stalemate) are neatly
separated on the board so that eye activity can be reliably
attributed to each variation.

The heatmaps show that Participant 1 (depicted in the left-
side diagram), i.e., the stronger player according to the FIDE
Elo ratings, focused upon the quickest path to checkmate,
while Participant 2 (see the right-side diagram) looked at the
first of the alternative moves. Interestingly, the stronger player
correctly assessed this position as the third easiest one, while
the other one assessed it as the easiest position of the whole
set (see Table III). This may be contributed to a possible
message by the two heatmaps: the second player (right-side
diagram) most likely did not notice that there exists a quick
and effective solution which however demands a sacrifice of a
pawn in order to avoid stalemate. It is stalemate in this position
that causes some players to go wrong by moving White King
to f2 (not noticing that this move results in no legal moves
for the opponent), thus contributing to the higher rating of this
problem (compared to the lower-rated Positions 1 and Position
2). We briefly note that the stronger player also spent less time
on this position (20 seconds vs. 36 seconds).

Fig. 9 shows an alternative type of EyeLink fixation map for
Position 4 – one of the positions that was regularly estimated
by participants to be more difficult than its Chess Tempo rating
(1861) indicates. The problem has only one correct solution
- attacking Black Queen on b3 with the move 1.Nc2-a1. The
retrospective accounts of the variations the players considered
indicate the presence of two main motifs that all participants
attended to: 1) weakness of Black King on e8; 2) trapping
Black Queen on b3. The diagrams from the perceptual phase
(see the left-side diagram Fig. 9) and the data from players’
retrospective reports confirm that all participants spotted the
first motif. The players considered different variations aiming
at exploiting this motif (see the solid arrows in the right-side
diagram Fig. 9): attacking with Re4xe7 or strengthening their
attack through playing Qc1-e3. During the perception phase
and for the overall duration of the trial, the e7 square is the
most attended IA – accounting for 9.5% of the fixations in
perceptual phase, and 9.3% of the fixations in overall duration
of the trial, respectively. Another main piece in this motif,
Re4, is the third most visited area, accounting for 7.3% of the
fixations in the perception phase.

The other salient motif in Position 4 has also been reported
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Figure 8. The EyeLink fixation maps for Participant 1 (left) and Participant 4 (right), showing the areas that the two players were focused on.

Figure 9. The EyeLink fixation maps of a random participant for the first 10 seconds (left) and overall duration of the trial (right), for Position 4.

in the retrospective accounts provided by all participants:
trapping Black Queen on b3. As shown on Fig. 9 (right
side, see the dashed arrows) three moves were considered by
participants: 1.Re4-b4, 1.Nc2-d4 or 1.Nc2-a1. The percentage
of fixations recorded on a1 is low – 0.3% of the whole trial. A
possible explanation is that once the potentially winning move
Nc2-a1 is spotted, the calculations should be focusing on the
squares surrounding the Qb3 – to verify whether this move
leads to a success in trapping the Queen. Also, the rate of the
fixations on a1 may be influenced by the fact that a1 is a corner
square. During the perceptual phase the White Knights on c2
(2.9%) and c3 (8.9%) – note that they are both on the squares
surrounding the Qb3 – were among the fixations attended to
for the longest period of time.

Our data shows that despite their differences in strength,
participants’ line of thought focused on the above two motifs.
This position has only one good solution (1.Nc2-a1), but two
salient motifs (two families of branches of the search tree).
The first motif triggers variations that do not contain the right
solution. It is evident and invites for violent moves in the center
of the board and along the e-file. This motif is even more

appealing as White has two Knights at her disposal – pieces
that are usually strong in the center of the chess board. The
candidate moves are: Re4xe7 - direct attack; Qc1-e3 - strength-
ening White’s attack. The second motif’s candidate moves
appear less intuitive. Choosing to move a Knight to the edge,
or even to the corner (a1), is a rather counterintuitive move
since Knights are considered to be strongest in the middle of
the chessboard. Ultimately, the aforementioned characteristics
of the problem create predisposition for increased difficulty
even for skilled chess players. Hence, the success rate for this
position was 33% only.

The White Knight on c2 was identified as the piece that
should be used in the first move of the winning variation in
this tactical position by 66% of the participants. However, half
of these players were simply unable to see the move 1.Nc2-
a1, most likely because all chess players are taught not to
move a knight into a corner. Putting the knight on such square
reminds chess experts on the well-known expressions like “A
knight on the rim is dim” or the French “Cavalier au bord,
cavalier mort” (“A knight on the edge is dead”). Neiman and
Afek [29], who analyzed the reasons why some moves are
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Figure 10. Left: Position 10; right: the EyeLink fixation map in this position for overall duration of the trial and averaged across all participants.

often “invisible” to chess players, discovered that amongst
all the possible backward moves with the chess pieces, the
hardest to spot are those by the knight. Actually, the incorrect
alternative 1.Nc2-d4 – putting the night in the center – is so
natural that it makes the correct (but backward!) move 1.Nc2-
a1 very difficult to find for many players. This is an example
of a mistake made due to negative knowledge transfer [30]
when the player overlooks the solution of the problem as a
result of their training. In other words, seemingly good moves
can increase the difficulty of a chess position due to a simple
(but misleading) heuristics that people may use in order to
solve the problem. A famous example of the negative impact of
prior experience is the so-called Einstellung (mental set) effect,
which applies to a wide range of problem-solving settings
where the presence of a familiar pattern can actually block
the discovery of better solutions [31], [32], [33].

Fig. 10 (the left-side diagram) demonstrates Position 10,
which was one of the most difficult positions in the ex-
perimental set (Table I). However, most of the participants
underestimated its difficulty.

The solution is a sequence of moves based on a geometrical
motif:

• Step 1: White Queen moves to h4, where it simulta-
neously attacks both h7 (thus threatening checkmate)
and Black Rook on d8.

• Step 2: Black should use the next move to defend
against checkmate, thus has no time to protect or move
the Rook.

• Step 3: White exchanges the White Bishop for Black
Knight (attacking Black Queen at the same time), to
remove the crucial defender of Black Rook on d8.

• Step 4: Black should recapture the White Bishop,
since Black Queen is under attack.

• Step 5: White wins Black Rook on d8, taking it with
White Rook, supported by White Queen.

According to Chess Tempo statistics, about 60% of users
failed to solve this problem. In this particular case, good
combinatorial vision is required in order to recognize the
geometrical pattern. Once the motif is spotted, the solution
may seem rather easy. In our experiment 75% of participants

solved this problem correctly, which is probably the reason for
the underestimation of its difficulty.

On the right side of Fig. 10, the more frequently viewed
squares according to the eye tracking data are shaded in darker
grey (and vice versa). This information was obtained by aver-
aging the fixation maps of all participants for overall duration
over the trial, thus representing the “collective” fixation map
for Position 10. It was interesting to observe, also on the
basis of individual fixation maps in perceptual phase, that all
participants focused on roughly the same part of the board.
However, although one would expect that the squares that play
the major role in the above presented geometrical motif (such
as h4, h7, d8, c6, and e4) would stand out in this diagram,
this is not the case. The most viewed square by the participants
was e7, which does not play any particular role in the problem
solution – except that it is positioned somewhere in the middle
of the above mentioned squares. On several occasions – one
of them is also the move 1.Nc2-a1! in Position 4, as explained
earlier – we spotted that the players found the best move,
although they barely looked at the square with the piece that is
about to execute it. This reflects some of the limitations of eye
tracking research when exploring higher cognitive functions
(as in the case of solving chess tactical problems).

One explanation is that eye tracker records the position of
the focus of the eye. However, neighboring squares are also
visible to the person. In the case of Position 4, the low amount
of fixations on a1 may be due to it being a corner square,
or just because the player had to calculate the implications
of the move Nc2-a1 for the pieces surrounding Black Queen.
In both cases, there is no deterministic one-to-one mapping
between the physiological data (fixations) and higher cognitive
processes. Hence, in our study, the eye-tracking data proved
to be most useful when providing physiological evidence of
the areas (groups of adjacent squares) on the chess board that
people attended to.

Analyzing eye tracking data together with the retrospec-
tions provided the basis for the previously described case stud-
ies. Eye tracking data enables the verification that a player’s
retrospection is a genuine account of her thought process when
solving the problem, and not a post-hoc justification for her
decision. In this way, they can also provide clues about the
source of difficulty of a position.
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C. Retrospection Reports Analysis

The retrospective reports represent an important source of
information for better understanding of how the participants
tackled the given problems, and what were the candidate moves
and variations they considered. In this section, we briefly an-
alyze what we learned from retrospection analysis of Position
5 (see Fig. 11). This position is an example of a position with
many motifs, although they are very unsophisticated. Each
motif is actually a direct threat to capture a piece in one move,
as shown by the arrows in Fig. 11: both Queens are under
attack (Nc6xa5, Rd8xd1, Ne3xd1) and there are many further
direct threats to capture pieces (Nc6xd8, Ne3xf1, Ne3xg4,
f5xg4). These single-move “motifs” are so straightforward that
they hardly deserve to be called motifs due to their conceptual
simplicity.

In their retrospections, the players mentioned all or most of
the motifs shown in Fig. 11. Even if the motifs themselves are
straightforward, the players’ typical comment was “a rather
complicated position.” Only 50% of the players found the
only correct solution b7xc6, and the most frequent incorrect
solution was Rd8xd1. What makes this position difficult is
the large number of simple motifs (threats) which combine
in many different ways. This gives rise to relatively complex
calculation of possible variations where various subsets of the
“motif moves” combine in different orders. In this particular
case, this is enough to make a position difficult for a human.

This case very clearly supports the following tentative
conclusions indicated by the retrospections concerning other
positions as well. First, the retrospections nicely conform to
the early model by De Groot [27] of chess players’ thinking
about best moves in chess. De Groot’s model conceptually
consists of two stages: (1) positions investigation (in this paper
referred to as “identifying motifs”), and (2) investigation of
possibilities, or search (here referred to as “calculation of
variations”). Strong chess players have to master both of these
two tasks. But an interesting question is: which of the two tasks
contributes more to the difficulty? The tentative conclusion
from our analysis of retrospective reports is that this is task
2, i.e., calculation of variations. At least for players of Elo
rating between about 1800 and 2300 (our players’ range),
the calculation skill seems to be the more important factor.
The motifs detected in our positions are almost invariable
between the players. The success in solving the positions
however varies considerably, which is due to the different
strengths at calculation of variations. These differences are not
only reflected in the correctness of the solution proposed by
the players, but can also be clearly detected in the players’
comments that include many mistakes in the calculations.

It was interesting to notice that missing the correct line of
reasoning often leads not only to underestimating, but also
to overestimating the difficulty of a position. One of the
participants, for example, provided the input 1... Bf8-d6??
(incorrect move) as the solution of the tactical problem in
Fig. 11. This move not only fails to win, but also loses very
quickly to 2.Nc6xa5 Ne3xd1 3.Bg4xf5+ (the move that the
player missed, although 3.Bg4xd1 and several other moves also
win for White). However, this participant ranked this position
as the most difficult of the whole set of 12 positions – although
this position is from the difficulty class medium, and therefore
its Chess Tempo rating is more than 350 points lower than the
ratings of 6 positions in the data set. There were actually two

Figure 11. Each arrow indicates a move that corresponds to a separate
simple motif, in this case a direct threat to capture an opponent’s piece.

participants who labeled this position as the most difficult of
all positions in the set (see Table III).

Several participants (5 out of 12) ranked Position 3 (Fig.
8) as the easiest one in the experimental set (refer to Table
III). The retrospection analysis revealed that the participants
tended to assess this position as a very easy one just because
they solved it without much effort after correctly noticing the
stalemate motif. However, when assessing the difficulty of such
a position, one has to have in mind that not all chess players
will notice this motif and that it is likely that many other
players may fall into the trap of playing the seemingly logical
(but wrong, due to the stalemate) move 1.Kg3-f2, with the idea
of putting White King on f1 and then delivering checkmate
with White Knight. It is precisely this possibility that caused
this problem to score higher, i.e., to obtain a higher Chess
Tempo rating. It is interesting to notice that about 50% of
Chess Tempo users who attempted to solve this problem failed
to solve it correctly.

V. DISCUSSION

As expected, our data indicates that no single measurement
directly predicts the difficulty of the task for the players. The
best approximation to the difficulty is offered by looking at
data such as success rates and solution times.

Difficulty depends on the knowledge of the player and her
individual abilities - to spot the most relevant motifs and to
calculate concrete variations based on the motifs observed. A
tentative conclusion from our retrospection analysis is that the
player’s strength in calculation of variations is in fact more
important than the ability to detect motifs in a position. This
seems to be true at least for players in the Elo rating range
between 1800 and 2300. This conclusion will be surprising
to many since a common view among strong players is
that a players’ chess strength mainly comes from her deep
understanding of chess concepts. The motifs belong to this
deep chess knowledge. The calculation of variations is, on the
other hand, usually considered as routine activity done without
any deep understanding of chess.

Difficulty also depends on the task characteristics, such as
the weight of the alternative variations - as this may have an
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impact on the degree of uncertainty the player experiences
(e.g., the existence of many good or seemingly good solutions
may confuse). This is a crucial observation for further attempts
to model difficulty.

Regarding the eye tracking data, the analysis of heatmaps
and players’ retrospections showed that the most attended
squares of the heatmap of the player do not necessarily
correspond to the squares that the player was thinking about.
This is in agreement with general experience in eye tracking
research. Instead, a central square of heatmap density should
be understood as an indication that the neighboring squares,
in addition to the maximal density square, were the specific
areas of the players’ interest. This is illustrated in Figs. 9 and
10. An interesting future project would be to develop a careful
transformation between the heatmaps and the squares on the
board that are of genuine interest to the problem solver. Chess
knowledge and calculation of variations would certainly be part
of such a more subtle algorithm for interpreting eye tracking
data.

On the other hand, a potential use of eye tracking data is
illustrated by Fig. 8, where the areas on the chess board of
the two main motifs were not overlapping. In this and similar
cases, the tracking of the player’s eye fixations is sufficient to
reliably predict what variations are considered.

The players’ retrospective reports give important clues on
what a mechanized difficulty estimator should look like. It
should involve the calculation of chess variations, but not in
the way that strong computer chess programs do. The difficulty
estimator should carry out a more subtle search guided by the
motifs that human players spot in a position. So, only moves
relevant to these motifs should be searched, as illustrated in
the analysis of the retrospections of Position 4. The complexity
of such limited search should eventually produce reliable
estimates of difficulty of problems for humans.

VI. CONCLUSION

The goal of our research is to find a formal measure of
difficulty of mental problems for humans. The goal is then to
implement such a measure, possibly as an algorithm, which
would enable automated difficulty estimates by computers.
Obvious applications of this are in intelligent tutoring systems,
or in better evaluation of student’s exam results, which would
take into account the difficulty of exam problems.

In this paper, our study of how to mechanically estimate
difficulty was limited to chess problems, more precisely to
solving tactical chess positions. In solving such problems,
humans have to use their knowledge of the domain, including
pattern-based perceptual knowledge and the skill of position
analysis through calculation of concrete variations of what can
happen on the board. Similar kinds of knowledge and skill
are required in solving other types of problems, for example
in mathematics, everyday planning and decision making, and
acting skillfully in unexpected social situations. Therefore, we
believe that observations pertaining to difficulty in chess will
apply to problem solving in other domains.

Our experiments included observing humans during prob-
lem solving (eye tracking, retrospection analysis), and humans
themselves estimating the difficulty of problems (ranking of
chess positions according to difficulty). One conclusion from
this is that estimating difficulty is difficult also for humans,

including highly skilled experts. Our experimental results did
not confirm statistical significance of the hypothesis that the
human’s level of expertise correlates strongly with the human’s
ability to rank problems according to their difficulty. The
results in Table III illustrate this point. The players’ difficulty
rankings of chess problems appear to be almost random!

Also explored was the question of which of the following
stages in chess players’ thinking about best moves contributes
more to the difficulty of chess tactical problem solving:
identifying motifs or calculation of variations? The tentative
conclusion from our retrospection analysis is that, at least for
players of FIDE Elo rating between about 1800 and 2300 (our
players’ range), the calculation skill seems to be the more
important factor in this respect.

In a further analysis of the correlations between the players’
rankings and Chess Tempo rankings (considered as the ground
truth), and players’ Elo chess ratings and the players’ success
in solving the chess problems (not estimating the difficulty),
all of these relations turned out not to be statistically signifi-
cant. The largest correlation coefficient was observed between
overall success in difficulty ranking and the overall success in
problem solving over all the experimental problems. Although
this also turned out not to be statistically significant, it provides
an indication that further work in this area may prove to be
valuable. Namely, to investigate another hypothesis, i.e., that
the success in estimating the difficulty of a particular problem
depends on the ability to solve that particular problem.

ACKNOWLEDGMENT

The authors would like to express their gratitude to Kris-
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