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Abstract

Next-Generation Sequencing (NGS) technologies have dramatically revolutionised research in many fields of genetics. The
ability to sequence many individuals from one or multiple populations at a genomic scale has greatly enhanced population
genetics studies and made it a data-driven discipline. Recently, researchers have proposed statistical modelling to address
genotyping uncertainty associated with NGS data. However, an ongoing debate is whether it is more beneficial to increase
the number of sequenced individuals or the per-sample sequencing depth for estimating genetic variation. Through
extensive simulations, I assessed the accuracy of estimating nucleotide diversity, detecting polymorphic sites, and
predicting population structure under different experimental scenarios. Results show that the greatest accuracy for
estimating population genetics parameters is achieved by employing a large sample size, despite single individuals being
sequenced at low depth. Under some circumstances, the minimum sequencing depth for obtaining accurate estimates of
allele frequencies and to identify polymorphic sites is 2X , where both alleles are more likely to have been sequenced. On
the other hand, inferences of population structure are more accurate at very large sample sizes, even with extremely low
sequencing depth. This all points to the conclusion that under various experimental scenarios, in cost-limited population
genetics studies, large sample sizes at low sequencing depth are desirable to achieve high accuracy. These findings will help
researchers design their experimental set-ups and guide further investigation on the effect of protocol design for genetic
research.
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Introduction

One primary aim of population genetics studies is understand-

ing the relative role of neutral and selective forces in shaping the

overall genetic diversity of populations. This is often nowadays

achieved by investigating the amount and patterns of genetic

variation across multiple samples at a large genomic scale.

However, until recently, studies relied on the analysis of

sequencing data for short genomic regions or for a limited number

of candidate genes, or on the analysis of genotypes from sparse

Single Nucleotide Polymorphism (SNP) data. While the former

approach produces accurate inferences, it targets a small fraction

of the genome, and the latter provides insights at the genome-wide

level but can be prone to considerable ascertainment bias, which

has been shown to inflate certain results [1]. The main obstacle

precluding more extensive analyses relates to high experimental

costs.

In the last few years, new high-throughput DNA sequencing

technologies have allowed researchers to generate large amounts

of genetic data. Such Next-Generation-Sequencing (NGS) tech-

nologies are now a common tool in population genetics [2],

medical genetics [3] and other genetic disciplines [4]. While NGS

technologies may differ in their protocols, the data produced by

them all have similar general characteristics [5]: short fragments of

sequenced DNA known as ‘‘reads’’ are mapped to a reference

genome or de novo aligned. The data on which all downstream

analyses are performed typically consists of a collection of mapped

reads covering a particular genomic position, with associated base

and mapping quality scores. Each site in the alignment can be

covered by a variable number of reads (a feature called

‘‘sequencing depth’’). Individual genotypes are then inferred from

the allelic state of the reads covering the site of interest (a

procedure called ‘‘genotype calling’’), while ‘‘SNP calling’’ refers to

the process of identifying which sites are polymorphic in the

sample, that is, have more than 1 base type at the site.

Sequencing depth is an important characteristic of the data.

Genotypes called for sites with higher depth are likely to be more

accurate, while lower sequencing depth leads to a non-negligible

amount of genotyping uncertainty [6]. Since SNP calling proceeds

from genotype calling, sequencing depth influences the detection

of variable sites. Factors such as sequencing and mapping errors

add to the uncertainty in genotype and SNP calling from NGS

data.

Recently proposed methods that employ statistical models

accommodate this uncertainty by using genotype likelihoods and

have been successfully applied to empirical datasets (e.g. [7]). Such

methods include those used for estimating allele frequencies at a

single site [8–10] or jointly across multiple sites [9,11,12],

mutation rates [13], and several population genetics summary

statistics and parameters [11,12,14–17].
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NGS technologies are a powerful tool for investigating the

evolutionary forces that shape genomes. Many summary statistics

used for analysing demography, natural selection, and population

structure, are derived from estimates of nucleotide variation across

multiple individuals [18]. The number of segregating sites and the

allele frequencies at these sites are among the most important

features of the data from an evolutionary perspective, and are the

basis of commonly used neutrality tests [19–22].

Genetic structure is another extremely important feature of

populations that can be discerned from population genetics data.

Realising population structure provides insights into demographic

history [23], and has practical use in clinical association studies

[24]. Principal Component Analysis (PCA) is a long-standing

statistical tool for examining genetic structure among individuals

because it reduces highly-dimensional genetic data into a map of

uncorrelated components based on the covariance among

genotypes [25].

Population genetics inferences will become more accurate with

greater sample sizes, that is, with more individuals representing a

particular population. However, at a fixed research budget,

sequencing more samples will lower the per-sample sequencing

depth, and, as a consequence, increase the genotype uncertainty.

Similarly, higher sequencing coverage will decrease genotyping

uncertainty, but will also restrict the analysis to a smaller sample of

individuals, which may be a poor representation of the genomic

variation of the entire population. Recent whole-genome sequenc-

ing projects have adopted both the former [26–29] and the latter

strategy [30].

It is therefore appealing to investigate the relationship between

the accuracy in estimating within- and between-populations

genetic variation and the sequencing experimental design. The

sequencing strategy can easily be modelled in terms of the number

of sequenced samples and the per-sample sequencing depth.

Despite the extensive use of NGS data in population genetics, the

effect on the accuracy of estimates of genetic variation by different

sequencing strategies has yet to be thoroughly quantified.

Through simulation of sequencing data and by using state-of-

the-art statistical methods for estimating genetic variation from

NGS data, I quantified the accuracy of estimating the number of

segregating sites, nucleotide diversity, allele frequencies, and

population structure under a wide range of sequencing scenarios.

These results will help researchers optimise their sequencing

experiments.

Results and Discussion

Estimating Nucleotide Diversity
Extensive simulations were performed to evaluate the accuracy

of estimating nucleotide diversity under various sequencing

conditions and fixed experimental budget. The cost is assumed

to be proportional to the total sequencing depth, which is a

function of the number of individuals and target size. Therefore,

experiments with equal cost will have equal total sequencing

depth. Although this may be not strictly true, this assumption is a

reasonable generalization given current NGS technologies.

A total of 1M, and 100k, sites of DNA sequencing data were

simulated at an average per-sample sequencing depth of 1X , 2X ,

10X , and 50X . Corresponding sample sizes were 1,000, 500, 100,
and 20 diploid individuals, so that the product of the sample size

and sequencing coverage was the same across scenarios. The

standardised bias for estimates of the number of segregating sites

(S) and the expected heterozygosity (H ), between the case of

known genotypes for all 1,000 individuals and the case of

unknown genotypes for all or a fraction of individuals, was

calculated. Sequence data was divided into 100 independent

windows and the bias in the estimates for the population genetics

statistics was computed for each region separately (see Methods).

The highest accuracy for estimating the number of segregating

sites was achieved at a larger sample size despite the lower

sequencing depth (Figure 1). In all scenarios, the true number of

segregating sites in the population was underestimated, but this

error approaches 0 in the 1X coverage condition. The error

rapidly increases at higher sequencing depth and lower sample

size. At 50X coverage for 20 individuals, the number of

segregating sites is underestimated by up to 50%.

Secondly, estimates for the expected heterozygosity from

simulated sequencing data were compared to estimates of

heterozygosity with known genotypes. Heterozygosity is a function

of allele frequency (see Methods). Heterozygosity is severely

underestimated at high sequencing depth and small sample size,

while an approximately unbiased estimate is achieved at 2X

coverage for 500 sequenced individuals (Figure 1). Similar results

are observed when simulating a larger number of sites with lower

variability (Figure S1) or lower sequencing error rate (Figure S2).

When sequencing depth is low, under-estimating S and H can

be attributed to the smaller probability of sequencing the alternate

allele from heterozygotes. On the other hand, when sample sizes

are small, S and H are under-estimated due to heterozygotes not

being sampled. The results clearly show that, despite lower

sequencing depths, larger sample sizes produce more accurate

estimates of population genetics variation. Furthermore, increasing

sample size affords greater accuracy for detecting nucleotide

diversity outliers, with a sequencing depth of 2X for 500
individuals giving the highest correlation between true and

estimated values (Table S1).

Under a simulated population expansion model (e.g. like in

humans [31]), estimates of nucleotide diversity at high sequencing

depth and small sample size were even more biased than under the

constant population size model (Figure S3). Under population

expansion, the site frequency spectrum is skewed towards low

frequency variants, which are not captured well when sequencing

only a small number of individuals. This effect increases the error

when estimating nucleotide diversity.

The number of segregating sites and nucleotide diversity were

also estimated under conditions in which genotype proportions

deviated from Hardy-Weinberg Equilibrium (HWE) due to

inbreeding. Specifically, an individual inbreeding coefficient of

0.3 was used for the simulations (see Methods). This inbreeding

scenario is representative of highly structured populations, self-

pollinating plants, and domesticated species. The highest accuracy

in estimating the number of segregating sites and nucleotide

diversity was achieved when employing many samples at low

sequencing depth (Figure S4). The general decrease in accuracy

when estimating average heterozygosity is caused by violation of

the HWE assumption upon which the method used to estimate

heterozygosity relies [11]. Further studies to generalise models for

estimating allele frequencies from sequencing data when HWE

does not hold are strongly encouraged [32].

Sequencing a large number of samples at the trade-off of lower

individual coverage represents the optimal design for accurately

inferring population nucleotide diversity. Under some scenarios,

the highest accuracy for estimating the expected heterozygosity,

which is a function of the sample allele frequency, is achieved at

2X sequencing depth, where both alleles are more likely to have

been sequenced, versus 1X coverage. These findings are robust to

different assumptions of population demography and mating

system.

Population Genetics Inferences from NGS Data
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Identifying Polymorphic Sites
SNP calling is the procedure for identifying which sites are

polymorphic in a sample, and hence in the population from which

the sample was drawn. The False Positive (FP) and False Negative

(FN) rates, and Precision and Recall values (see Methods) were

calculated under all experimental scenarios in order to assess SNP

calling accuracy. FP measures how many non variable sites are

misidentified as being polymorphic, while FN measures how many

SNPs are not identified as being variable. Precision and Recall

measure the proportion of relevant calls for FP and FN,

respectively (see Methods). High values of Precision and Recall,

and low values of FP and FN are desirable.

Precision and Recall values for SNP calling under different

scenarios are shown in Table 1. A site was considered to be a SNP

if its probability of being variable exceeded a given threshold,

which was dynamically chosen to minimise the difference between

the true and estimated number of variable sites in the entire

population. This approach is not realistic outside of simulations,

but guarantees an optimal equilibrium between FP and FN (i.e.

their sum is approximately constant). As expected, Precision

increases with higher sequencing depth. For instance, at 50X ,

Precision is 1, indicating that all called SNPs are truly

polymorphic. On the other hand, as sequencing depth increases

and the sample size is reduced, Recall values decrease. This

reflects the inability to call variable sites when heterozygous

individuals are not sequenced. The highest Recall is obtained at

2X sequencing depth for 500 individuals, at which point the

Precision is comparable to a scenario that uses depth of 10X for

Figure 1. Nucleotide diversity estimation. Bias in the estimate of the number of segregating sites (left panel) and the expected heterozygosity
(right panel) under different experimental scenarios. Sequencing depths are 1X , 2X , 10X , and 50X and the corresponding sample sizes are 1,000,
500, 100, and 20 individuals. I simulated 100 regions of 1k independent sites, with a probability of each site being variable in the population equal to
0.1.
doi:10.1371/journal.pone.0079667.g001
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100 individuals. Similar results are obtained when filtering out sites

with low total sequencing depth (see Methods) (Table S2). As

expected, when identifying polymorphisms solely at the sequenced

sample level, as opposed to the population level, both Precision

and Recall increase with higher sequencing depth (Table S3).

These trends, as well as the distribution of FP and FN rates, are

similar across all windows (Figure 2). The FP rate is higher in cases

of low sequencing depth, especially at 1X , while it is 0 at 50X . The

opposite effect is observed for FN rates, which are higher at 50X ;

specifically, almost 50% of true SNPs are not detected. The

median FN rate at 2X is the lowest among all tested experimental

conditions (Figure 2). Similar results are obtained when simulating

genotype frequencies not in HWE (Figure S5), and for a

population under an expansion model, although, in the latter

case, 1X , 2X , and 10X designs show comparable levels of

accuracy (Figure S6).

Then, I performed SNP calling by assigning polymorphisms if

the probability of being variable was greater than a fixed

threshold, namely 0:95. This strategy is similar to common

practice. For all scenarios, FP rates drop to 0, while FN rates

increase and median values are above 30% (Figure S7). Indeed,

SNPs are called only if high confidence is achieved. Similar results

are obtained in case of population expansion (Figure S8) and

deviation from HWE (Figure S9). A less stringent threshold for

SNP calling reduces the FN rate (Figure S10), while a more

stringent cut-off increases FN values (Figure S11).

SNP calling accuracy was also assessed when confined to

common variants, defined as sites with a minor allele frequency

greater than 0:01, which is equivalent to an absolute frequency of

20 chromosomes, out of 2,000 total chromosomes, bearing the

alternate allele. SNPs were called if their probability of being

variable was greater than 0:95. Notably, FN rates have a median

equal to 0 in 1X and 2X cases, while it is close to 15% for 50X
(Figure S12). Accuracy increases if rare variants, which are more

likely not to be identified, are ignored. Similar results were

obtained in the cases of population expansion (Figure S13) and

deviation from HWE (Figure S14).

The results suggest that SNP calling is greatly influenced by the

joint effect of sample size and sequencing depth. Generally, high

sequencing depth provides greater Precision, while greater Recall

is obtained with higher sample size. However, calling SNPs using a

common strategy based on the probability of each site being

variable reduces FP rates to 0 for all scenarios. Nevertheless, FN

rates are always greater than 0 with small sample sizes. A

sequencing depth lower than 2X precludes accurate identification

of variable sites because of the lower chance of sequencing both

alleles at the individual level. These findings are robust to different

assumptions for population size changes and deviation from HWE.

As expected, most of the misidentified true variable sites have low

minor allele frequency. Indeed, SNP calling on common variants

produces FN rates close to 0 for all sequencing configurations

except at the lowest sample size.

Predicting Population Structure
I simulated sequencing data for multiple sub-populations to test

the accuracy of inferring population structure under different

sequencing depth and sample size conditions. Specifically, I

simulated 3 populations of 40 individuals each, at different levels of
genetic differentiation, with the per-sample sequencing depth set

to 1X , 2X , 10X , and 20X , and corresponding sample sizes of 40,
20, 4, and 2 individuals from each of the 3 populations, so that

total sequencing depth was equal across designs. One hundred

simulations were performed under each sequencing scenario to

account for variation in individual sub-sampling (see Methods).

The first 2 Principal Components (PCs) in a Principal

Components Analysis (PCA) were used to train a predictive model

of population structure on a 2-dimensional grid through a Support

Vector Machine (SVM) technique. For each cell of the grid, I

assigned a population based on the model trained from known

genotypes and from sequencing data. The proportion of misla-

belled cells, where the model from sequencing data predicts a

different population than the model trained by known genotypes

(see Methods), was recorded. Accuracy in predicting population

structure is then inversely proportional to the fraction of

mislabelled cells, and can be quantified on an arbitrary grid.

Results show that the design with 1X sequencing depth and 40

individuals sampled from each population achieves the highest

accuracy in predicting population structure (Figure 3). This effect

is more pronounced for cases involving low-to-medium genetic

differentiation between populations. Under these conditions,

sequencing less samples produces 50% more mislabelled cells, on

average, than using all individuals at very low sequencing depth.

Similar results were obtained with a less dense grid (Figure S15),

and when simulating only variable sites (Figure S16). The latter

finding suggests that monomorphic sites do not influence

predictions even at low sequencing depth.

To illustrate the overall trend in distinguishing population

structure, the inferred population structure was plotted over a grid

for a single simulation, assuming low genetic differentiation among

populations. For each scenario, a simulation having accuracy

equal to the median for the entire distribution was chosen to

represent the overall behaviour. Figure 4 shows that most of the

mislabelled cells lie on the borders between populations. As

already seen in Figure 3, an experimental design in which all

individuals have been sequenced at low depth provides the greatest

accuracy for predicting population structure.

Conclusions

For this study, extensive simulations were performed under a

wide range of sequencing designs to test the joint effect of

sequencing depth and sample size on population genetics

inferences. The results suggest that at a fixed sequencing budget,

it is desirable to sequence a large number of individuals, at the cost

of reducing the per-sample sequencing depth.

To estimate allele frequencies and identify polymorphic sites,

sequencing the largest possible sample size with at least a per-

sample sequencing depth of 2X is recommended. Similarly,

population structure is more accurately inferred at low depth with

large sample sizes, and even at depth as low as 1X if a large

enough sample size is used.

It is also important to consider that state-of-the-art statistical

methods to estimate genetic variation from NGS data were used

Table 1. SNP calling Precision and Recall.

Sequencing depth Sample size Precision Recall

1X 1,000 0.737 (0.0437) 0.749 (0.0472)

2X 500 0.778 (0.0461) 0.771 (0.0446)

10X 100 0.779 (0.0441) 0.725 (0.0408)

50X 20 1 (0) 0.540 (0.0582)

Precision and Recall values for detecting polymorphic sites at different
scenarios of sequencing depth and sample size. Values are averaged across 100
different replicates and standard deviations are reported in parentheses.
doi:10.1371/journal.pone.0079667.t001

Population Genetics Inferences from NGS Data

PLOS ONE | www.plosone.org 4 November 2013 | Volume 8 | Issue 11 | e79667



[11]. These approaches, based on genotype likelihoods, provide

superior estimates to methods employing strict genotype calling

[11,17,33], and therefore should be adopted in all population

genetics studies using low-medium coverage sequencing data.

I believe that this study will assist researchers in their

experimental design. The approach for testing the effect of

experimental conditions on population genetics inferences used in

this study can be extended to other fields in genomics and medical

genetics.

Methods

Simulating Sequencing Data
Sequencing data was extensively simulated to assess the

accuracy of estimating nucleotide variation and population

structure under different experimental scenarios. Simulated

individual genotypes were assigned assuming Hardy-Weinberg

Equilibrium (HWE), and an inbreeding coefficient of 0 or 0:3,
given an ancestral population allele frequency. This ancestral allele

frequency was drawn from an exponential distribution, which is

proportional to the expected allele frequency distribution under a

standard neutral diffusion model [34]. To mimic the genomic

effect of population expansion, I artificially skewed the expected

allele frequency distribution towards low frequency variants by

squaring, and then normalising, the values in the site frequency

spectrum. The number of reads at each locus for each individual

was drawn from a Poisson distribution [10,35]. Sequencing errors

were randomly and uniformly introduced among reads at rates of

0:005 and 0:01, which are comparable to empirical error rates

Figure 2. SNP calling accuracy. False Positive and False Negative rates in the identification of polymorphic sites under different experimental
scenarios. Simulations were performed as described in Figure 1. Sites were identified as polymorphic if their probability of being variable was above a
threshold, chosen to minimise the difference between the true and the estimated number of SNPs (see Methods).
doi:10.1371/journal.pone.0079667.g002

Population Genetics Inferences from NGS Data
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[26,27]. The probability of a site being polymorphic in the

population was set to 0:01, 0:1, and 1.

For analyses related to estimating within-population nucleotide

diversity, the individual per-site mean sequencing depths (the

average number of mapped reads) were set to 1X , 2X , 10X or

50X for different corresponding sample sizes in order to achieve a

constant total sequencing depth of 2000X across all individuals. I

simulated 1M, and 100k, independent diallelic sites for 1,000

individuals. The information content produced by these simula-

tions is comparable to the output of current high-throughput

sequencing machines.

To simulate population structure, sub-population allele fre-

quencies were drawn from a Beta distribution [36] with mean

equal to the ancestral population allele frequency [37]. To

simulate data from 3 populations, allele frequencies for two sub-

populations were drawn as just described and the first of these

Figure 3. Population structure inference accuracy. Accuracy of population structure inference, measured as the proportion of cells over a
20x20 grid where sub-populations have been wrongly assigned from sequencing data compared to the case of known genotypes for all individuals
(see Methods). Sequencing depths are 1X , 2X , 10X , and 20X and the corresponding sample sizes are 120, 60, 12, and 6 individuals. I simulated 20k
independent sites, with a probability of each site being variable in the population equal to 0.1. Populations were simulated with high genetic
subdivision (left panel, FST 0.4 and 0.1), medium genetic subdivision (mid panel, FST 0.3 and 0.05), low genetic subdivision (right panel, FST 0.1 and
0.02).
doi:10.1371/journal.pone.0079667.g003

Population Genetics Inferences from NGS Data
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frequencies was assigned to sub-population 1. The second allele

frequency was assigned as the ancestral allele frequency for sub-

populations 2 and 3. To model variable degrees of genetic sub-

division among populations in the Beta distribution [36], different

values of FST , a common measure of population genetics

differentiation [38], were assumed. I simulated population

structure with low (FST values of 0:1 and 0:02), medium (FST

values of 0:3 and 0:05), and high (FST values of 0:4 and 0:1)
genetic sub-division.

For population structure analyses, I simulated 3 populations of

40 individuals each, and a total of 20k independent diallelic sites.

Then, 40, 20, 4, or 2 individuals per population were sampled,

with corresponding sequencing depth of 1X , 2X , 10X , and 20X ,

resulting in a total sequencing depth of 80X per population. Given

that individuals can be sampled in many different combinations, I

performed 100 replicates for each experimental scenario.

Computing Nucleotide Diversity from Sequencing Data
Accuracy for estimating nucleotide diversity from sequencing

data was assessed by first dividing all 1M, and 100k, simulated

sites into 100 10k, and 1k, non-overlapping windows. For each

window, I calculated the proportion of segregating sites (S) as the

fraction of variable sites in the sample, and the expected

heterozygosity (H ). In the case of known genotypes, these

quantities can be easily calculated across L sites as:

S~
XL

s~1

Is ð1Þ

where Is is an indicator function equal to 1 when at least one

individual is heterozygous at site s, and 0 otherwise, and

H~
XL

s~1

2fs(1{fs); ð2Þ

where fs is the reference allele frequency for a site, s, in the sample.

When genotypes are unknown, they must be inferred from the

mapped sequence read data. Current studies use genotype

likelihoods to ultimately call genotypes when necessary. Genotype

likelihoods are a function of both base calls and quality scores and

are proportional to the probability of the observed data given a

certain genotype, for a given site in an individual [12,39]. Bayesian

methods have been proposed to calculate the posterior probability

P(G(z)
s DX ) of genotype G at site s for individual z given the

observed data X [11,12]. The prior for obtaining these posteriors

can be derived from an estimate of the allele frequency [11].

Similarly, empirical Bayes methods have been proposed to

calculate the posterior probability P(fsDX ) of the sample allele

frequency f at site s [11,12]. P(G(z)
s DX ) and P(fsDX ) from

Figure 4. Population structure prediction. Population structure predicted over a 20x20 grid for a single replicate under different experimental
scenarios. Simulations were performed as described in Figure 3, in the case of low genetic subdivision. Grey cells represent locations where a different
sub-population was predicted to be located from sequencing data compared to the case of known genotypes of all individuals. These particular
replicates show a proportion of mislabelled cells equal to be the medium of the distribution. Note that replicates are not the same across the
different tested scenarios.
doi:10.1371/journal.pone.0079667.g004

Population Genetics Inferences from NGS Data
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simulated sequencing reads were computed using ANGSD

software (http://popgen.dk/angsd).

Nucleotide diversity indices were calculated in a way that

accounts for genotyping uncertainty, rather than strictly assigning

individual genotypes. This probabilistic framework has been

successfully adopted to estimate population genetics parameters

from low sequencing depth data [11,12,14,16,17]. Throughout the

study, the ancestral and derived allelic state were assumed to be

known, and ‘‘allele frequency’’ refers to the frequency of the

derived allele. All motivations are still valid under the folded site

frequency spectrum (when ancestral and derived state are

unknown).

Estimates of S and H from sequencing data can be calculated

as:

ŜS~
XL

s~1

(1{P(fs~0DX ){P(fs~2kDX )) ð3Þ

where k is the number of diploid individuals in the sample, and

ĤH~
XL

s~1

X2k

i~0

(2(
i

2k
)(
2k{i

2k
)P(fs~iDX )) ð4Þ

where P(fs~0DX ), P(fs~2kDX ), P(fs~iDX ) is the posterior

probability of having 0, 2k, and i chromosomes with the derived

allele at site s, respectively [14].

Several experimental scenarios were explored by varying

sequencing depth and sample size, while keeping their product

(the total sequencing coverage) constant. 1,000, 500, 100, and 20
samples at 1X , 2X , 10X , and 50X , respectively were sub-sampled

from the entire pool of 1,000 individuals. To assess the accuracy

for estimating nucleotide variation under different experimental

scenarios, the standardised bias between estimates obtained from

known genotypes for all individuals and from unknown genotypes,

for each window, was calculated as:

Bias(S)~
ŜS{S

S
ð5Þ

and

Bias(H)~
ĤH{H

H
: ð6Þ

Positive values of Bias(S) and Bias(H) therefore indicate over-

estimation of true values, while negative values indicate under-

estimation. To directly quantify the effect of this bias on

population genetics estimates, I identified windows showing

extremely low or high values of H from the empirical distribution

of all 100 windows for each experimental scenario. The number of

correctly identified outliers using sequencing data, and the

correlation between H and ĤH were used to measure estimation

accuracy.

In the case of unknown genotypes, identifying variable sites in

the sample can be achieved by detecting sites with a probability of

being variable, calculated as (1{P(fs~0DX ){P(fs~2kDX )) (see
Equation 3), greater than a certain threshold. For each simulation,

this threshold was dynamically chosen to minimise the difference

between the number of true and estimated variable sites, in order

to realise an optimal trade-off between SNP over-calling and SNP

under-calling. Additional analyses were performed by setting the

probability of being variable threshold to fixed values.

I evaluated the accuracy of SNP calling by computing False

Positive (FP) and False Negative (FN) rates. Precision and Recall

values were derived from these quantities. Precision is computed as

the ratio of True Positive (TP) rates to (TP+FP), while Recall is the
ratio of TP to (TP+FN). The average and standard deviation for

Precision and Recall, and FP and FN rates, were calculated across

all 100 windows to inspect their distribution.

Predicting Population Structure from Sequencing Data
I assessed the prediction accuracy of population structure under

different experimental scenarios. Specifically, I compared the

predicted population structure in the case of known genotypes

from all individuals to the structure determined from the

sequencing data for the entire pool of individuals, or a subset of

it, at a fixed total sequencing depth. A total of 120 individuals with

known genotypes were sampled from 3 different sub-populations.

Sample sizes of 40, 20, 4, and 2 individuals from each of the 3

populations, at 1X , 2X , 10X , and 20X sequencing depth,

respectively, were examined.

Principal Component Analyses (PCA) was used to inspect

population genetics structure. The PCA is ultimately based on a

covariance matrix of individual genotypes [40]. In the original

latter approach, the denominator normalises the allele frequency

variance. However, this normalisation over-weights low frequency

variants and is therefore not suitable for NGS data, for which

estimates of rare variants are usually less confident. Thus, the

normalisation was not applied, without loss of generalisation

throughout all analyses.

In cases where the genotypic covariance matrix had to be

inferred directly from the sequencing data, previously proposed

methods [17] were followed. Briefly, the posterior probability for

the covariance matrix is approximated from the genotype

posterior probabilities at each site for each individual. The

covariance matrix is finally weighted by the probability of each site

of being variable. This approach has been shown to perform well

in cases of low sequencing depth and converges to standard

genotype calling methods in cases of high sequencing depth [17].

Eigenvector decomposition of the covariance matrix is then

performed to obtain the first 2 Principal Components (PCs). Given

the simulation scheme used, these PCs contain the full information

on population structure, while other PCs are likely to represent

only stochastic noise. Procrustes Analysis techniques [41] were

used to compare PCs obtained from the case of known genotypes

and the case of unknown genotypes. Specifically, the PCs

coordinates derived from unknown genotypes were rotated and

scaled to minimise the distance to the corresponding coordinates

of PCs computed from known genotypes.

A Support Vector Machine (SVM) algorithm was adopted to

model and predict population structure over a 2-dimensional grid.

SVM receives a training set of features and categories, and trains a

machine to model the relationship between them. PCs coordinates

were set as uncorrelated features and the population labelling at

each set of coordinates as categories, and a model, for both the

case of known genotypes and unknown genotypes, was estimated.

From these models, I predicted the population structure over a

grid of 20x20 cells, as well as 10x10 cells, from the model

estimated from known and unknown genotypes separately. In

other words, for each cell of the grid I predicted which population

is located at that particular set of coordinates. I used the same grid,

obtained by equally partitioning the PCs plane from known

genotypes, for both models. Finally, the proportion of mislabelled

populations between the model from known genotypes and from
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unknown genotypes over the entire grid was used as a measure of

population structure prediction accuracy.

Programs to simulate sequencing data and to perform all

described analyses are available at https://github.com/

mfumagalli/ngsTools. All statistical analyses were performed in

the R environment (www.r-project.org).

Supporting Information

Figure S1 Nucleotide diversity estimation with lower
level of polymorphisms. Bias in the estimate of the number of

segregating sites (left panel) and the expected heterozygosity (right

panel) under different experimental scenarios. Simulation were

performed as described in Figure 1. I simulated 100 segments of

10k independent sites with the probability of each site being

variable in the population equal to 0.01.

(TIF)

Figure S2 Nucleotide diversity estimation with lower
sequencing error rate. Bias in the estimate of the number of

segregating sites (left panel) and the expected heterozygosity (right

panel) under different experimental scenarios. Simulations were

performed as described in Figure 1. The sequencing error rate was

set to 0.005.

(TIF)

Figure S3 Nucleotide diversity estimation under popu-
lation size expansion. Bias in the estimate of the number of

segregating sites (left panel) and the expected heterozygosity (right

panel) under different experimental scenarios. Simulations were

performed as described in Figure 1. Populations were simulated

under a size expansion model.

(TIF)

Figure S4 Nucleotide diversity estimation with inbreed-
ing. Bias in the estimate of the number of segregating sites (left

panel) and the expected heterozygosity (right panel) under

different experimental scenarios. Simulations were performed as

described in Figure 1. Genotypes were simulated assuming an

individual inbreeding coefficient of 0.3.

(TIF)

Figure S5 SNP calling accuracy with inbreeding. False

Positive and False negative rates for the identification of

polymorphic sites under different experimental scenarios. Simu-

lations were performed as described in Figure 2. Genotypes were

simulated assuming an individual inbreeding coefficient of 0.3.

(TIF)

Figure S6 SNP calling accuracy under population size
expansion. False Positive and False negative rates for the

identification of polymorphic sites under different experimental

scenarios. Simulations were performed as described in Figure 2.

Populations were simulated under a size expansion model.

(TIF)

Figure S7 SNP calling accuracy using a fixed cut-off.
False Positive and False negative rates in the identification of

polymorphic sites under different experimental scenarios. Simu-

lations were performed as described in Figure 2. Sites were

identified as polymorphic if their probability of being variable was

above 0.95.

(TIF)

Figure S8 SNP calling accuracy using a fixed cut-off
under population size expansion. False Positive and False

negative rates for the identification of polymorphic sites under

different experimental scenarios. Simulations were performed as

described in Figure 2. Sites were identified as polymorphic if their

probability of being variable was above 0.95. Populations were

simulated under a size expansion model.

(TIF)

Figure S9 SNP calling accuracy using a fixed cut-off
with inbreeding. False Positive and False negative rates for the

identification of polymorphic sites under different experimental

scenarios. Simulations were performed as described in Figure 2.

Sites were identified as polymorphic if their probability of being

variable was above 0.95. Genotypes were simulated assuming an

individual inbreeding coefficient of 0.3.

(TIF)

Figure S10 SNP calling accuracy using a less stringent
fixed cut-off. False Positive and False negative rates for the

identification of polymorphic sites under different experimental

scenarios. Simulations were performed as described in Figure 2.

Sites were identified as polymorphic if their probability of being

variable was above 0.90.

(TIF)

Figure S11 SNP calling accuracy using a more stringent
fixed cut-off. False Positive and False negative rates for the

identification of polymorphic sites under different experimental

scenarios. Simulations were performed as described in Figure 2.

Sites were identified as polymorphic if their probability of being

variable was above 0.99.

(TIF)

Figure S12 SNP calling accuracy for common variants
using a fixed cut-off. False negative rates for the identification

of polymorphic sites under different experimental scenarios.

Simulations were performed as described in Figure 2. Sites were

identified as polymorphic if their probability of being variable was

above 0.95. Only sites with a true sample allele frequency greater

than 0.01 were retained. Outliers are plotted as circles.

(TIF)

Figure S13 SNP calling accuracy for common variants
using a fixed cut-off under population size expansion.
False negative rates in the identification of polymorphic sites under

different experimental scenarios. Simulations were performed as

described in Figure S12. Populations were simulated under an

expansion size model.

(TIF)

Figure S14 SNP calling accuracy for common variants
using a fixed cut-off with inbreeding. False negative rates for
the identification of polymorphic sites under different experimen-

tal scenarios. Simulations were performed as described in Figure

S12. Genotypes were simulated assuming an individual inbreeding

coefficient of 0.3.

(TIF)

Figure S15 Population structure inference accuracy
over a less dense grid. Accuracy of population structure

inference, measured as the proportion of the cells over a 10x10
grid where sub-populations have been wrongly assigned compared

to the case of known genotypes for all individuals (see Methods).

Simulations were performed as described in Figure 3. Populations

were simulated with high genetic subdivision (upper left panel, FST

0.4 and 0.1), medium genetic subdivision (upper right panel, FST

0.3 and 0.05), low genetic subdivision (lower left panel, FST 0.1

and 0.02). I also simulated 2k independent variable sites at

medium genetic subdivision (lower right panel).

(TIF)
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Figure S16 Population structure inference accuracy
with all sites variable in the population. Accuracy of

population structure inference, measured as the proportion of the

cells over a 20x20 grid where sub-populations have been wrongly

assigned compared to the case of known genotypes for all

individuals (see Methods). Simulations were performed as

described in Figure 3. I simulated 2k independent variable sites

at medium genetic subdivision (FST 0.3 and 0.05).

(TIF)

Table S1 Power to detect outliers in the distribution of
nucleotide diversity. Accuracy of detecting outliers in the

distribution of nucleotide diversity. Simulations were performed as

described in Figure 1. The number of top and bottom (5 or 10 out

of 100) windows from the distribution of H calculated from known

genotypes that were correctly identified using sequencing data.

Wilcoxon-test correlation between H and ĤH (see Methods) is also

shown.

(PDF)

Table S2 SNP calling Precision and Recall with data
filtering. Precision and Recall values for detecting polymorphic

sites at different scenarios of sequencing depth and sample size.

Analyses were performed as described in Table 1. Sites with a total

sequencing depth below the 10th percentile were discarded.

(PDF)

Table S3 SNP calling Precision and Recall for the
sample. Precision and Recall values for detecting polymorphic

sites at different scenarios of sequencing depth and sample size.

Analyses were performed as described in Table 1. Accuracy was

estimated by comparing true and estimated SNPs variable in the

specific sample size, and not in the entire population of 1,000
individuals.

(PDF)
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