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A B S T R A C T   

Improving energy efficiency (EE) is vital to ensure a sustainable, affordable, and secure energy system. The 
residential sector represents, on average, 18.6% of the total final energy consumption in the OECD countries in 
2018, reaching 29.5% in the UK (IEA, 2020a). Using a staggered differences-in-differences approach with dy
namic treatment effects, we analyse changes in residential gas consumption five years before and after the 
adoption of energy efficiency measures. The analysis includes energy efficiency interventions involving the 
installation of new heating-related insulation equipment—i.e., of loft insulation and cavity walls, supported by 
energy efficiency programmes in England and Wales between 2005 and 2017—using a panel of 55,154 house
holds from the National Energy Efficiency Data-Framework (NEED). We control for, among other factors, energy 
prices and the extent to which gas consumption changes are dependent on household characteristics and vari
ations in weather conditions. Our results indicate that the adoption of EE measures is associated with significant 
reductions in household residential gas consumption one year after their implementation. However, the effect 
does not last in the long run and energy savings disappear four years after the retrofitting of cavity wall insu
lation measures and after two years following the installation of loft insulation. The disappearance of energy 
savings in the longer run could be explained by the energy performance gap, the rebound effect and/or by 
concurrent residential construction projects and renovations associated with increases in energy consumption. 
Notably, for households in deprived areas, the installation of these efficiency measures does not deliver energy 
savings. These results confirm the existence of effects that reduce the energy savings from the adoption of these 
efficiency technologies over time and indicates that, for some groups, these net savings do not seem to 
materialize.   

1. Introduction 

Improving energy efficiency (EE) in the residential sector is key to 
address multiple energy-related challenges. According to the IEA 
(2020b), increasing EE in buildings is important because many energy- 
efficient products and services can cost-effectively improve energy se
curity and reduce the environmental damages from the current energy 
system. The buildings sector is responsible for a third of the global total 
final energy consumption (TFC). Moreover, residential buildings 

account for 73% of the TFC in buildings (UNEP, 2020). 
In 2018, residential buildings in the UK were responsible for about 

29.5% of the country’s final energy consumption, with 37,991 Ktoe,1 

making the sector the second largest in terms of energy consumption 
after the transportation sector (IEA, 2020a). Not surprisingly, there is a 
long history of research studying the drivers and factors affecting UK 
energy demand –mostly price elasticity studies for gas and (mainly) 
electricity consumption- relying on different types of ex-post data (See 
Cuce, 2016; Fouquet, 2014; Chitnis et al., 2020; Asche et al., 2008; 
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Serletis et al., 2011; among others). 
Some analysis indicates that energy efficiency has already contrib

uted to reducing UK energy consumption (Jenkins, 2019). For example, 
according to a report from DECC (2012), while UK domestic energy use 
increased by 22% from 1970 to 2007, if new insulation or more efficient 
heating technologies had not been installed during that time period, this 
increase would have been more than double. But as noted by the DECC 
(2012) report, much more work on energy efficiency (as well as in other 
areas) is needed to meet the UK’s climate and EE targets, reduce energy 
bills, and fight fuel poverty (ICL, 2019). The important role of EE in 
residential buildings can be observed in policy efforts since 2002 to 
boost efficiency either through targets or through economic and finan
cial mechanisms as summarized in Fig. 1. However, these policies have 
come and gone, and there is a sense that policy makers are not achieving 
the results expected from the implementation of energy saving policies 
in buildings.2 

Recent estimates suggest that 12 million dwellings will need to be 
retrofitted with energy efficiency technical improvements like insu
lation in the next 30 years, if the UK wants to meet its net zero target by 
2050 (IPPR, 2020). However, while the UK government has put in place 
several policies to promote the adoption of EE technical measures, 

research has been inconclusive regarding the effectiveness of such pol
icies in terms of their impact on the adoption of retrofitting measures 
and/or on achieving significant energy savings. A potential reason for 
that is the possible rebound effects associated with the behaviour of 
occupants (Aydin et al., 2018; Galassi and Madlener, 2018; Sorrell et al., 
2018). Research about the size and drivers of the well-known energy 
performance gap and of rebound effects, — increases in energy con
sumption due to behavioural changes induced by the lower energy 
costs—, either indirect or direct, resulting from different EE measures in 
the residential sector, is vast. However, studies estimating the direct 
rebound effects of the adoption of particular efficiency measures 
affecting heating are rare and, in most cases, they only use a relatively 
short-term before and after comparison without a control group and/or 
without controlling for confounding variables (see Sorrell, 2007 for a 
review). Gillingham et al. (2016) also point to the fact that there is more 
evidence on the nature of the rebound effects for gasoline used for 
transport and for electricity than for natural gas or oil for residential 
heating purposes. Crucially, Gillingham et al. (2016) and other work do 
not consider or estimate the extent to which the installation of different 
EE measures may yield different effects on heating consumption. In this 
study, we focus on improving our understanding of the impact of the 
installation of two specific (and important) efficiency measures on res
idential gas energy consumption. 

We shed light on the extent to which technical energy efficiency 
improvements —specifically, the installation of loft insulation and 
cavity walls— are associated with changes in residential gas consump
tion. Focussing on gas consumption is especially important in the 
context of the UK where 85% of households use gas as their main heating 
source and where there are large social, institutional and financial 
barriers to the adoption of low carbon heating technologies like heat- 
pumps (Thornton, 2022). We consider the adoption of loft insulation 
and cavity walls as they have been consistently the focus of all energy 
efficiency schemes in the UK over the past two decades. This paper 
analyses the dynamic effect of the installation of such efficiency mea
sures to determine whether such measures resulted in changes in gas 
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Fig. 1. Timeline of main residential building EE policies in the UK between 2002 and 2021. (In addition to the schemes shown in Fig. 1, the UK Government has set 
up non-EE focused heating and housing benefits that may influence both the energy consumption and expenditure of households. First, the Labour Government 
established the Winter Fuel Payment in 1997. This program was designed specifically to support people over 65 in paying heating bills. The scheme provides an 
annual tax-free payment of £100 to £300 to the beneficiary. The Warm Home discount scheme was established by the Warm Home discount regulation in 2011. Its 
main aim was to fight fuel poverty in Britain. Under this scheme, households on risk of fuel poverty are allowed to receive an electricity bill rebate of £140 year. Both 
schemes are still ongoing.) 
Source: Own elaboration with information from OFGEM. 

2 For example, the UK’s Smart Meter Implementation Program, projected that 
every household and small businesses across Great Britain would have installed 
a smart meter by 2020. The average household was expected to reduce their 
electricity and gas bill by £11 in 2020 and by £47 in 2030 (DBEIS, 2016). 
However, only 7.14% of the target number had been installed by late 2016, 
which makes it hard for the projected savings to be realized (Sovacool et al., 
2017). By March 2019 13.19 domestic and 1.15 non-domestic smart and 
advanced meters had been installed in the UK far away from the goal of 50 
million meters of the Smart Metering Programme aimed by the end of 2020 
(DBEIS, 2019). The Green Deal was cancelled after only 1% of expected 
households benefitted from the loans of the programme (National Audit Office, 
2016). Also, in March 2021, the UK Government cancelled its last programme, 
the Green Homes Grant, only after 6 months from inception in September 2020. 
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consumption in the long run, i.e. up to five years after the adoption of an 
energy efficiency measure. 

We analyse the patterns of gas consumption in English and Welsh 
households between 2005 and 2017 in those households subjected to 
any of the energy efficiency programmes listed in Fig. 1 during that 
period, namely: the Energy Efficiency Commitment (EEC), the Carbon 
Emissions Reduction Target (CERT), the Community Energy Savings 
Programme (CESP) and the Green Deal. This paper contributes to the 
literature in three ways. First, to the best of our knowledge, this is the 
first study analysing gas consumption patterns in the UK at the micro 
level for a large panel of households of more than 50,000 dwellings and 
over a period of 12 years, thus involving 700,000 observations. This was 
made possible by data that were made available by the National Energy 
Efficiency Dataset (NEED). Recent synthetic academic work notes that 
there is little evidence (in the UK or beyond) on the impact of policies for 
the installation of residential efficiency measures on heating use in 
buildings (Gillingham et al., 2016; Eyre and Baruah, 2015). 

Second, we apply a staggered differences-in-differences (DiD) 
methodology considering dynamic treatment effects for the first time to 
understand the impact of the EE installations on gas consumption over 
time, i.e., five years before and after the adoption of an EE technical 
measure, at a household level. To the best of our knowledge this 
methodology, which allows us to construct a relatively robust counter
factual, has not been used to study efficiency measures in the UK. We 
control for the following characteristics at the household level: dwelling 
size, the age of the dwelling and the type of dwelling and the vulnera
bility of the households, which we approximate by using the index of 
multiple deprivation (See section 3 for further details). We also take into 
consideration the region in which the dwelling is located by introducing 
regional differences3 in gas prices and in weather conditions. This allows 
us to briefly discuss potential impacts on the intensive margin i.e. on gas 
consumption; and on the extensive margin i.e. on the adoption on EE 
measures. 

Third, we segment our sample to allow us to understand the role 
played by other house renovations made alongside energy efficiency 
improvements and the vulnerability of the households to derive policy 
implications. 

Overall, the results obtained have important implications for the 
design of policies to help improve EE in residential buildings and thus 
help deliver the UK net zero targets. Given that more than 80% of 
dwellings in the UK use gas as the main source of heating, policies to 
reduce gas consumption in households and improve efficiency are 
important complements to other key efforts, most notably heating 
electrification. 

The rest of the paper is structured as follows. In the next section, we 
review the literature and outline the research hypotheses. Section 3 
introduces our model and methods. Results are summarized and dis
cussed in section 4 and robustness checks are presented in section 5. 
Finally, section 6 concludes with some policy implications, limitations 
and future research directions. 

2. Literature review and research hypotheses 

The reduction of energy use and consequently of GHG emissions in 
households, in particular CO2 emissions that represent around 97% of 
total GHG emissions in the residential sector, can be achieved using 
three main strategies that are not mutually exclusive: the adoption of 
technical solutions to improve EE, the replacement of energy carriers, 
and behavioural changes that result in energy savings (Trotta, 2018). 
This paper focusses on analysing the impact of two important technical 

efficiency measures at the household level. Although there are behav
ioural aspects directly related to choices regarding the adoption of EE 
measures (Barr et al., 2005; Trotta, 2018), we focus here on the impact 
of the adoption of these measures over time on gas consumption as 
mediated by behaviour and not on what preferences lead to the adoption 
of the technical measures. 

2.1. The impact of efficiency improvements on energy consumption: the 
energy efficiency gap, the rebound effect and expected energy savings 

Improving EE in the residential sector is key to addressing energy- 
related challenges. The International Energy Agency (IEA) estimates 
that a range of public policies can reduce energy consumption in resi
dential buildings globally by 30–80% while increasing energy security 
and improving welfare conditions (IEA, 2017). However, this estimate is 
based on an ex-ante engineering-based model that makes important 
assumptions regarding the impact of new policies without considering 
systemic or behavioural aspects. While there is a consensus regarding 
the need to put in place additional public policies to reduce energy 
consumption in residential buildings in countries such as the UK (Eyre 
et al., 2018), there is less agreement about the level of effectiveness of 
different interventions (Kerr et al., 2017). Indeed, while improving en
ergy efficiency in the building sector is believed to be one of the most 
cost-effective ways to improve energy security and reduce the envi
ronmental damages from the current energy system (IEA, 2016), energy 
consumption in households is not decreasing (Gram-Hanssen, 2015; 
Gram-Hanssen and Georg, 2018). In addition, some EE interventions 
could perpetuate the use of natural gas in the residential sector for 
heating in that they may, for example, delay electrification, and this may 
also result in some increases in methane emissions, another important 
GHG (Slorach and Stamford, 2021; Field and Derwent, 2021). 

One of the reasons explaining why gas consumption in households is 
not decreasing in most places is the well-known building energy per
formance gap (EPG) (see Zou et al., 2018 for a review). While there are 
two main definitions of the energy performance gap, the one relevant to 
the analysis presented in this paper is the one that defines the energy 
performance gap as the difference (or gap) found between the predicted 
building energy performance in ex-ante evaluations –i.e. the potential 
simulated energy savings-, and the actual ex-post performance of a 
building (Zou et al., 2018). In the context then of energy retrofits in 
households, the aforementioned energy performance gap can be divided 
in two. First, a pre-bound effect defined as the difference between the 
simulated theoretical consumption of a building and the actual energy 
use before an energy efficiency retrofitting measure is installed. Second, 
a rebound effect after an energy efficiency retrofitting measure has been 
adopted (Mahdavi et al., 2021). 

The energy performance gap, therefore, is understood as the devia
tion in energy use from the expected (or forecasted) change in demand at 
the design stage. Based on a review of 144 papers on the energy per
formance gap for both residential and non-residential buildings, Mah
davi et al. (2021) calculated that for residential buildings, the mean 
energy performance gap is about 30% (±51%). The review seems to 
confirm occupant-related factors as important causes of the EPG. On a 
recent analysis using data for Ireland, Coyne and Denny (2021) calcu
lated that, excluding potential rebound effects that can arise after a 
retrofit, dwellings that have been assigned high Energy Performance 
Certificates (EPCs) based on a set of observable characteristics, display, 
on average, an energy consumption that is higher than their expected 
consumption based on their EPC. The literature suggests a great vari
ability, however, depending on the quality of the thermal performance 
of the building (e.g. Cozza et al., 2020 for a case study on Switzerland) 
and/or the occupants’ socio-economic background, income, lifestyle or 
environmental attitudes, among others (See section 2.2 and van den 
Brom et al., 2018; Sunikka-Blank and Galvin, 2012, Dall’O et al., 2012 
for Italy among others). 

Regarding the rebound effect i.e. the energy performance gap 

3 These England Regions were formerly known as Government Office Re
gions. We include: South East, London, North West, East of England, West 
Midlands, South West, Yorkshire and the Humber, East Midland and North East 
plus Wales. 
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observed after an EE retrofit; there are increasing concerns about the 
effectiveness of energy efficiency retrofits in terms of their ability to 
realize the expected energy savings (Galvin, 2014). Several recent pa
pers have estimated, ex-ante, the impact of household EE technical 
improvements on energy consumption using different techniques. These 
include general equilibrium models (Lecca et al., 2014; Bye et al., 2018; 
Figus et al., 2017; Wei and Liu, 2017; Kulmer and Seebauer, 2019), 
microeconomic demand systems (Tovar and Wolfing, 2018), scenario 
analysis (Chitnis et al., 2014; Chitnis et al., 2013; Druckman et al., 2011) 
and input-output models (Thomas and Azevedo, 2013; Freire-Gonzalez 
et al., 2017). One of the most recent contributions on the potential of 
energy savings in the residential sector in the UK has been Rosenow et al. 
(2018), who forecast the lifetime energy savings associated to different 
levels of deployment of energy efficiency technologies up to 2035. The 
Rosenow et al. (2018) study is an example of the wide range of ex ante 
assessments in the literature. 

While there is significant ex-post research on the factors determining 
the adoption of different types of energy efficiency measures in resi
dential buildings across different countries (Achtnicht and Madlener, 
2014; Bergman and Foxon, 2020; De Vries et al., 2020; Ebrahimighar
ehbaghi et al., 2019; Lang and Lanz, 2021; among others); ex-post 
research on the impact of the adoption of EE measures on energy con
sumption is relatively scarce, with a few notable exceptions (namely: 
Trotta, 2018; Elsharkawy and Rutherford, 2018; Adan and Fuerst, 2016; 
Webber et al., 2015; Fowlie et al., 2018). The ex post analysis of the 
impact of EE measures in households is particularly timely in the UK, 
given the perceived policy failures in the residential EE space in the UK 
(See, e.g. Kjaerbye et al., 2011; Sovacool et al., 2017; DBEIS, 2016; 
National Audit Office, 2016). 

Understanding the extent to which the expected energy savings in 
households after the adoption of EE measures are realized—the com
bination of the prebound and rebound effects—is paramount given that 
around 80% of the housing stock that the UK will have in 2045 already 
exists and will need to be subject to energy retrofits (Gibb, 2022). Au
thors like Allcott (2017), Allcott and Greenstone (2017) for the U.S. and 
Gerarden et al. (2017) have identified the existence of an energy effi
ciency gap between ex-ante engineering forecasts and the actual energy 
savings after the adoption of EE measures. Based on a laboratory field 
experiment in Australia, Dorner (2019) argues that residential energy 
efficiency technological improvements may see their benefits partially 
offset by the existence of direct rebound effects when the consumer 
responds to resource efficiency by consuming more energy. The partial 
offset could be due to changes in occupants’ behaviour related to a 
change in the pro-environmental behaviour of individuals, i.e., there 
could be a decrease in environmental efforts after the adoption of a 
technological energy efficiency measure. That said, there is no conclu
sive large scale, on the ground evidence detailing the extent to which the 
differences between expected energy savings from EE measures and 
realized savings may depend on contextual social factors, e.g., vulner
ability or consumer resistance (Sovacool et al., 2017), or may be asso
ciated to rebound effects of policy-induced improvements (Gillingham 
et al., 2016; Brockway et al., 2017; Sorrell et al., 2018) among other 
relevant policy questions. 

In the last few years, some ex-post evaluation studies using data on 
residential energy consumption over time have tried to shed light on the 
role and magnitude of the rebound effects, i.e. the reduction in expected 
savings from the installation of EE technologies because of behavioural 
or other systemic responses. 

Using ex-post information about the Kirklees Warm Zone (KWZ)4 

scheme in UK homes between 2007 and 2010 using micro level data on 

49,000 households; Webber et al. (2015) found that the impact of the 
scheme in energy savings in households had been greater than predicted 
in part because performance gaps and rebound effects had been lower 
than the ones initially assumed by the Buildings Research Establishment 
and by the Savings Trust.5 The same authors point to the mediating role 
of demographic characteristics and find that rebound effects in all 
households in Kirklees are much larger in low-income areas (realized 
savings of around 53% and 49% of expected savings) than in high- 
income areas (around 90% and 70% of expected savings). It is impor
tant to note that the EE improvements were subsidized and free for 
everyone and that there is no record of adopters combining the insu
lation with other house projects. 

In a US context, Fowlie et al. (2018) evaluated with a randomized 
experiment and quasi-experimental techniques the U.S.’ Weatherization 
Assistance Program (WAP) using a sample of 30,000 low-income 
households from Michigan. The programme provided on average, 
approximately $5150 worth efficiency improvements (including loft and 
wall insulation) per household. The authors concluded that the costs of 
adoption of the energy efficiency measures were twice the actual savings 
and that therefore the WAP energy efficiency investments were not 
delivering on their goals. 

Davis et al. (2020) conducted a field experiment in Mexico to assess 
the impact of energy efficiency upgrades in new dwellings (specifically 
insulation and passive cooling systems) on electricity use and thermal 
comfort over a 16-month period after the retrofit. With a sample of 
around 500 households (229 vs. 238 homes in the treatment and control 
groups, respectively), the authors found no effect on electricity con
sumption, contrasting with the ex-ante engineering estimates that pre
dicted electricity consumption reductions of 26%. 

Finally, using a version of the dataset used in this paper covering an 
earlier time period, Adan and Fuerst (2016) applied a traditional diff- in 
–diff econometric model to analyse variation in energy consumption 
before and after the installation of cavity wall insulation, loft insulation 
or the installation of a new boiler in the period from 2008 to 2012. The 
authors analyse energy efficiency improvements for a treatment group 
of households who installed some energy efficiency measure in 2011 
relying on the funding made available through the CERT and/or CESP 
policies. The authors find statistically significant energy savings one 
year after the adoption of the energy efficiency improvement despite 
other factors like the rebound effect. However, the study does not con
trol for mediating effects of changes associated to, for example, other 
home improvements unrelated to energy efficiency technical measures, 
nor does it consider the extent to which the energy savings that they 
observed one year after installation may not continue over time. 

So, what happens in the long-term? Research indicates that con
sumers would need to both adopt new technology and adapt their 
behaviour to reduce residential energy consumption (Aydin et al., 2017; 
Aydin et al., 2018). According to Galassi and Madlener (2018), for a 
sample of 3161 individuals in Germany, changes in occupants’ behav
iour could reduce the energy efficiency impact of the retrofit. These 
authors find that retrofitting residential dwellings may result in better 
insulation and therefore in higher room temperatures (Psomas et al., 
2016). In that situation, occupants may change their behaviour (they 
may adapt) and open the windows when it is too warm. These types of 
effects might explain why energy saving policies in buildings are often 
not leading to the expected results. Rau et al. (2020) used a before-after 
experimental research and online survey to test the impact of retrofitting 
on twenty households in Ireland in 2015. The authors conclude that 

4 The KWZ is one of the largest retrofit energy efficiency programmes 
completed in the UK up to date and it took place from 2007 to 2010 coordinated 
by the Kirklees Council. The scheme included and energy audit and free loft and 
cavity wall insulation to all households in the metropolitan area. 

5 The results indicate that while predictive models from the Buildings 
Research Establishment, from the UK Committee on Climate Energy and from 
the Saving Trust for the UK DEFRA, assumed 44% and 50% energy savings of 
the total full technical potential of the measures adopted under KWZ respec
tively; the KWZ, following the predictive models methodology, realized 76% 
and 62% respectively on average. 
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heating-related energy efficiency retrofits6 generated a reduction in gas 
consumption in 17 out of the 20 surveyed households of 23% on 
average. However, the experimental research does not include a control 
group, there may be self-selection bias, and the effect is only measured 
one year after retrofitting which does not allow the authors to estimate 
the long-term effects of the adopted energy efficiency measures. 

2.2. The role of other mediating factors: renovations and vulnerability of 
the households 

In addition to being subject to the rebound effects, in practice, many 
EE measures are implemented alongside other home improvements that 
may have associated increases in energy consumption, such as exten
sions —which are popular in the UK (Jack et al., 2011) —. On average, 
Jack et al. (2011) estimate that, across all building and extension types 
in the UK, extensions result in a 16% increase in energy consumption. 
The combination of an old housing stock, the rebound effect, and the 
possible correlation between the implementation of EE measures and 
other building work, which may lead to increase energy use, might when 
taken together, result in no reductions in gas consumption at the 
household level. When these renovations (e.g. adding an extension, 
renovation of bathrooms, adding new rooms…) take place, the adoption 
of an energy efficiency measure may be considered as part of the wider 
renovation primarily aimed at improving the physical well-being of the 
families (Judson and Maller, 2014). Research considering the impact of 
renovations on heating energy consumption is scant. Sandu and Petchey 
(2009), however, found that in Australian households, despite an in
crease from 33% to 59% between 2005 and 2008 in the proportion of 
households using energy efficient lighting, the lighting energy demand 
per household increased at the aggregate level. This may be the effect of 
a greater use of halogen lamps after renovations, increases in the amount 
of lighting used (e.g., more locations and/or new devices), and/or a 
change in how occupants used electricity. For the UK, Hand et al. (2007) 
using interviews with UK households also points to the fact that spatial 
changes and extensions tend to be associated with the acquisition of new 
devices that may contribute to an increase in energy consumption both 
gas and electricity. 

One aspect that has not been generally considered by the literature is 
the extent to which the cost of specific EE improvements is a possible 
driver of subsequent energy consumption patterns i.e. the fact that 
households may adapt their energy consumption behaviours depending 
on the theoretical payback period of the EE investment. Authors like 
Gillingham et al. (2016), Greening et al. (2000) and Turner (2009) 
among others have highlighted this as an area for future research. For 
example, differences in the size of the upfront cost, the level of retrofit 
schemes or the expected payback period may have important impacts on 
subsequent energy consumption in households. Indeed, according to 
simulation exercises facilitated by technicians and installers, the 
payback time at the household level for a cavity wall installation, for 
example, vary between 3 and 4 years, on average.7 It is possible that 
households that made those investments would adapt their energy 
consumption behaviours during the first few years after the installation 
to accelerate the amortization period. If this is the case, households that 
spend more money upfront on the adoption of EE measures may expe
rience smaller rebound effects in their energy consumption—they may 
be more likely to reduce heating consumption. Tovar (2012) using data 
from England and Bye et al. (2018) using data from Norway are two 
studies that have considered this hypothesis. 

Tovar (2012) used the English Household Condition Survey 

including data from 2003 to 2007 to make projections of expected costs 
and savings. His ex-ante modelling study estimated that the adoption of 
low cost measures such as the ones analysed in this paper, i.e. cavity and 
loft insulation, would bring cost savings to households over a five-year 
time period because of the expected overall reductions in annual en
ergy consumption. 

In turn, rebound effects may be higher for those receiving external 
financing (since they do not have costs to recover) and those belonging 
to low-income percentiles which spend a higher fraction of their income 
on energy consumption. More specifically, the literature indicates that 
we may expect differences in the energy consumption of households 
after adopting a particular measure for households with different in
come levels, mainly due to price sensitivity. The sensitivity of rebound 
effects to income or consumption groups has been widely studied in the 
literature (Belaïd et al., 2020; Gillingham et al., 2016; Kulmer and 
Seebauer, 2019; McCoy and Kotsch, 2021; among others). For example, 
previous studies have observed higher rebound effects in low-income 
households for improvements in heating technologies (Milne and 
Boardman, 2000). Chitnis et al. (2014) conduct ex ante modelling of the 
rebound effect of six heating and lighting EE measures in households in 
terms of GHG emission reductions. Using the Community Domestic 
Energy Model the authors conclude that rebound effects are likely to be 
modest (0–32%). 

Understanding ex-post energy consumption responses to EE tech
nical improvements in different types of households (vulnerable vs. high 
income, for instance) is important for policy making as most of the en
ergy efficiency programmes have focused on vulnerable households and 
it is those households that may experience the largest rebound effects 
given the ex-ante evidence available. 

2.3. Research hypotheses 

We propose the following hypotheses related to the relationship 
between the installation of loft insulation and cavity walls and the 
evolution of household energy consumption: 

H1. The installation of EE technical improvements in households 
generates statistically significant reductions in the amount of gas 
consumed by dwellings in the short-term (a year after installation) 
when compared to similar dwellings that have not adopted them. 

H2. Any reduction in gas consumption in UK households after the 
installation of an EE technical improvement will not be sustained in the 
longer term (over 2–5 years) due to mediating factors unrelated to the 
energy savings potential of the measure adopted, e.g. behaviour and 
purchases of residents. 

H3. Households installing EE technical improvements alongside 
other renovations in dwellings do not experience a significant reduc
tion in gas consumption in the short or medium-term. 

H4. For the two EE measures investigated, vulnerable households 
installing EE technical measures exhibit a higher rebound effect that 
results in no reduction (in the short- or medium-term) to their gas 
consumption. 

In summary, Hypothesis 1 and 2 focus on the timing of any energy 
saving effect, Hypothesis 3 on differences between households 
depending on whether or not additional home renovations took place, 
and Hypothesis 4 probes whether there are differences in the rebound 
effect based on household income. 

3. Material and methods 

3.1. Data 

The analysis included in this paper relies on the microdata from the 
National Energy Efficiency Data-Framework (NEED), which takes the 

6 Energy efficiency retrofit in this group of community dwellings included 
pumped cavity wall insulation, attic insulation, double-glazed uPVC-framed 
windows, uPVC-framed front door, uPVC-framed back patio doors and heating 
system and controls (Rau et al., 2020).  

7 Data extracted from https://www.cavitech-uk.com/cavity-wall-insulation/. 
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form of a panel of households and includes annual information from 
2005 to 2017. Our dataset includes a total of 717,002 observations 
corresponding to than 55,154 households. This Data-Framework was set 
up by the Department of Climate Change (DECC) of the UK Government8 

to facilitate a better understanding of energy use and energy efficiency 
in Great Britain. For the purpose of this research, we will focus on its 
data on residential buildings. 

The NEED collects annual information about energy consumption i. 
e., gas and electricity, together with information on energy efficiency 
measures installed in dwellings and some property and household at
tributes and characteristics to deliver a representative sample of the 
housing stock in the England and Wales. The EE measures installed were 
(at least partly) supported by National EE support schemes i.e., EEC, 
CERT, CESP, and the Green Deal Communities. The technical measures 
covered in a panel form in this paper are loft insulation and cavity wall 
installation. We focus on gas consumption as 85% of the dwellings in the 
UK as of 2018 relied on central gas heating systems (Ministry of Hous
ing, Communities and Local Governments, 2019). 

We complement the dataset with a measure of weather conditions, 
approximated by the heating degree days variable coming from Euro
stat, and the average annual domestic unitary cost of gas by region 
provided by the ONS and the UK Department of Business, Energy and 
Industrial Strategy (DBEIS). In order to analyse the impact of the 
installation of EE improvements in the energy consumption of house
holds, we include controls for confounding variables that may have an 
effect on the outcome variables. It is probable that the age and size of the 
dwelling9 or the characteristics of the building itself, in addition to 
changes in energy prices, may play a role in the gas consumption pattern 
in the residential sector. 

Fig. 2 shows the number of households that have adopted different 
types of energy efficiency measures i.e., cavity wall and/or loft insu
lation, in the period of analysis. 

Table 1 shows the descriptive statistics for the dependent and control 
variables used in this research for the group of households in the 
treatment group, which we define as the group of households that had at 
least one EE measure implemented in some year between 2005 and 
2017, and for the households in the control group, which are the 
households that did not implement any of the two EE improvements 
considered during the period of analysis. We discuss potential hetero
geneity concerns and selection biases in section 5. 

This table presents the average of the variables as well as the results 
of a two-sample test for equal means. This table has been constructed 
without the establishment of any sample segmentation by type of energy 
efficiency measure. A more detailed descriptive statistics table of the 
variables, the units of measurement, the sources of data and expected 
relations with the dependent variable is provided in table A1 in the 
Supplementary Information (SI). Details of a Wilcoxon rank-sum test for 
medians for non-continuous variables10 can be found in table A2 in the 
SI. 

3.2. Methods 

The main goal of this paper is to study the impact, if any, of the 
installation of EE technical improvements to reduce gas consumption in 
households. For most quasi-experimental applications of Differences in 
Differences (DiD) approaches, the method comprises two groups i.e. 
treatment and control groups; and two periods i.e., before and after the 
intervention -in this case, the installation of the improvement-. With this 
identification, we would be able to calculate the average treatment ef
fect on the treated, assuming the common trends assumption holds 
(Goodman-Bacon, 2021). 

In this paper the installation of EE measures differs in the time in that 
different households carried out the EE improvements over the course of 
the 12 years covered by the panel data. In this situation, the afore
mentioned canonical approach for a DiD methodology is not appropriate 
to show the effect of the event on the outcome variable because the EE 
improvements are implemented at particular points in time that vary 
depending on the household. After the EE installation, each dwelling 
will remain in the treatment group since it is rare for cavity walls and loft 
insulation to be removed shortly after installation. Taking this into 
consideration, we identify and estimate the effect of the treatment using 
a generalization of the DiD approach with multiple time periods to ac
count for variations in the treatment timing and for the parallel trends 
assumption after controlling for possible confounding covariates, 
through a staggered differences in differences methodology. This 
approach allows us to evaluate the effect observed when certain units in 
a panel receive a treatment at different moments in time (Borusyak 
et al., 2021). For the purpose of this paper we will define the treatment 
as the adoption of one EE technical measure. 

Cerulli and Ventura (2019) developed an estimation procedure to 
apply to the case of binary time-varying treatment with pre- and post- 
intervention periods. We use their method to analyse the differences 
in the gas consumption of households up to five years before and after 
the adoption of EE improvements. With this approach, we cannot only 
analyse the effect of the EE improvements but also if we observe 
anticipatory or delay effects in gas consumption. 

To start with, we consider the installation of an EE measure whether 
loft insulation or cavity wall11 (a binary treatment indicator) for 
household i at time t: 

Fig. 2. Number of households in the sample broken down by the adoption of EE 
measures. 
Note: The blue bar denotes dwellings that have not adopted any EE improve
ment, the red bar one improvement i.e., either cavity wall or loft insulation, and 
the green bar denotes households that have implemented both improvements. 
Source: Own elaboration with NEED data 2019. 

8 DECC became part of the UK Department of Business, Energy, Innovation 
and Skills—BEIS—in 2016.  

9 Unfortunately, the NEED data does not provide information about the size 
of the household measured as the number of people living in the household i.e. 
occupancy. We use here therefore the size of the dwelling measured as the 
surface in squared metres as a proxy given that these two variables, when 
available, tend to be highly correlated (Henderson, 2008; Hopkin et al., 2019). 

10 This test is used to check whether two samples are likely to derive from the 
same population.  
11 We also consider households that have adopted the two types of energy 

efficiency installations vs. those who did install none, and/or one. This analysis 
is included in Table A5 in the SI. 
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EEMit =

{
1 if household i is treated at time t

0 otherwise 

For a regular generalised DiD, we would only allow for treatment 
effect heterogeneity in terms of the observed covariates and time, i.e. 
every household becomes treated (EEMit = 1) at the time when the first 
EE measure is installed, and that time varies across households. In the 
first application, we do not consider dynamic treatment effects allowing 
the possibility of having some effect before and after the period of 
intervention (1). 

ln(yit) = α+ βEEMit + γXit + θi + μt + εit (1) 

Where yit is the annual energy consumption i.e., gas consumption in 
KWh (the outcome variable), i denotes the household and t the year. 
EEMit represents our variable of interest that identifies the introduction 
of a specific energy efficiency measure, whether loft insulation or cavity 
wall, in the analysed households. The variable of interest is set to one in 
the year of the installation in household i and in all the following years. 
Xit is a vector of time-varying household related variables, i.e. gas price 
paid by the household normalised by the region in which the dwelling is 
located and the heating degree days of the region, θi are the households 
fixed effects while, μt is a time fixed effect to control for shocks that are 
common to all households. With this approach we consider the same 
household as a treatment unit in certain years and as controls in others 
(Gonçalves et al., 2020). 

With this staggered DiD methodology we overcome one of the main 
limitations of a canonical two-way fixed effects model with a binary 
post-treatment variable. With a staggered DiD approach we avoid the 
bias generated with an estimator that represents the weighted average of 
all possible two-group and two-period DiD in case the effect changes 
overtime (Goodman-Bacon, 2021). However, a more generalised DiD 
methodology is not exempted of limitations related to controlling 

characteristics of the households that may vary along time and for some 
non-observable factors fixed over time. This can generate endogeneity 
problems. We address this issue including control variables. Like in any 
DiD analysis, this approach does not completely exclude a possible role 
for selection bias. In other words, although we include important control 
variables, the DiD method still has inherent limitations in terms of its 
ability to control for other unobservable household characteristics that 
may be correlated to the treatment. Having said that, although in this 
case the treatment takes place at various points in time and therefore, 
the possibility of bias from individual events is reduced; we also 
implement a propensity score matching approach as a robustness check, 
as shown in the section 4.3 and in the SI. 

Second, we consider dynamic treatment effects. We use an extension 
of the DiD estimator by including five leads and lags of the treatment as 
regressors to estimate the average dynamic effect of discrete shocks on 
non-transient treatments. This second quasi-experimental exercise al
lows us to analyse the extent and duration of the effectiveness of the 
implementation of EE measures in reducing energy consumption in the 
residential sector. For this purpose, we adopt Cerulli and Ventura (2019) 
approach, which allows us to analyse simultaneously the average 
treatment effect (ATE) together with the pre- and post-treatment effects. 

ln(Yit) = α+
∑J

j=1
βpre,jEEMi,t+j +

∑K

k=0
βkEEMi,t− k + γXit + θi + μt + εit (2)  

where EEMi, t− k are year–specific indicators that denote whether a spe
cific household i in year t − k has installed one EE improvement; and t + j 
will indicate if a household i will have EE improvements implemented in 
j years in future periods. The next stage will be testing the significance of 
those coefficients βpre, j to understand if there are pre-existing trends in 
the outcome variables of interests. The introduction of βk will also allow 
for testing lags in the effects of EE measurement and treatment 

Table 1 
Descriptive statistics for variables in the control and treatment groups.    

Treated Non-treated Difference  

Units Mean Median Mean Median Mean 

Age Dwelling Dwelling age band 1 to 4 
1 = Pre 1930 
2 = 1930–1972 
3 = 1973–1999 
4 = 2000 or later 

2.079 2 2.21 2 − 0.131*** 

Property type Property type 
1 = Flat 
2 = Semi detached 
3 = Detached 
4 = Mid terrace 
5 = End terrace 
6 = Bungalow 

3.31 3 2.899 3 0.411*** 

IMD band Index of multiple deprivation quintiles 
1 = Highest Deprivation 
To 5 = Lowest Deprivation 

2.92 3 3.012 3 − 0.092*** 

Surface area Floor area band 1 to 5 
1 = Under 50 sqm 
2 = 51 to 100 sqm 
3 = 101 to 150 sqm 
4 = 151 to 200 sqm 
5 = over 200 sqm 

2.368 2 2.289 2 0.079*** 

Conservatory 1 = Yes 
0 = No 

0.047 0 0.04 0 0.007*** 

Annual gas consumption kWh/yr 14,107.85 13,100 15,632.01 14,300 1524.163*** 
Annual electricity 

consumption 
kWh/yr 3958.486 3200 4720.746 3700 762.260 *** 

HDD Difference between a reference temperature (T*) (15.5 ◦C) and the average daily 
temperatures (Ta) 
HDD =

∑
i=1
n max (0;T* − Ta) 

2776.998 2760.2 2692.238 2663.79 − 84.760*** 

Gas Price Cents/KWh 4.182 4.287 3.752 3.816 − 0.430*** 
Electricity price Cents/KWh 14.300 14.919 13.111 13.325 − 1.189*** 
Number of households  35,422  18,930   

* Significant at the 90% confidence level. **Significant at the 95% confidence level. ***Significant at the 99% confidence level. 
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heterogeneity by exposure time. We aim to capture a pre-installation 
period and a post-installation period of 5 years allowing us to detect 
whether the impact of the treatment changes over time. 

In order to infer a causal interpretation we need to test that: i) the 
conditional parallel trends are valid, which is needed to be able to as
sume that, in the absence of treatment, similar households would follow 
similar energy consumption trends; ii) there has not been an anticipation 
of the treatment, implying that households have not adjusted their gas 
consumption proactively prior to the to the installation of the measure; 
and iii) there has not been selective treatment timing (no causal effect on 
the outcome, with respect to an early versus a later adoption) 
(Goodman-Bacon, 2021). The violation of these assumptions would 
imply that caution must be exercised while interpreting the results. We 
test those assumption and therefore whether households introducing a 
technical energy efficiency measure differ from the non-treated house
holds (H1) by checking that the coefficients of EEMi,t-k are not 

significant. Test results on the parallel trend assumption can be found in 
the tables in the result section. Also, a summary of the parallel trend tests 
associated to the main regressions performed in section 4.1 and 4.2 can 
be found in table A4 in the SI. If the coefficient is statistically insignif
icant, we can assume that both groups followed the same trend.12 

Regarding the third assumption, recently some authors have high
lighted the existence of potential biases when using Differences-in- 
Differences estimators with homogeneous treatment effects in non- 
canonical applications of these quasi-experimental design as they as
sume that the treatment effect is constant, between groups and overtime 
(de Chaisemartin and D’Haultfoeuill, 2020; de Chaisemartin and 
d’Haultfoeuille, 2021; Callaway and Sant’Anna, 2021; Sun and 
Abraham, 2021; Roth et al., 2022; Goodman-Bacon, 2021). With the 
dynamic model that we use in this paper we are already testing lags in 
the effects of EE measurement and treatment heterogeneity by exposure 
to time. In addition, we apply a diagnostics tool for two-ways fixed 

Table 2 
Baseline results (staggered DiD with covariates).   

(1) (2) (3) (4) (5) (6)  

Fe OLS 

Gas Consumption Any Loft Cavity Any Loft Cavity 

EE (t-5) − 0.0015 
(0.0221) 

0.0034 
(0.0506) 

0.0105 
(0.0239) 

0.07890*** 
(0.0193) 

0.0252*** 
(0.0310) 

0.0967*** 
(0.0200) 

EE (t-4) − 0.0036 
(0.0151) 

− 0.0006 
(0.0206) 

0.0022 
(0.0166) 

− 0.0194 
(0.0192) 

0.0141 
(0.0305) 

− 0.0317 
(0.0194) 

EE (t-3) 0.0101 
(0.0133) 

0.0053 
(0.0189) 

0.0205 
(0.0126) 

− 0.0006 
(0.0145) 

0.0108 
(0.0207) 

0.0067 
(0.0149) 

EE (t-2) − 0.0136 
(0.0118) 

− 0.0146 
(0.0149) 

− 0.0130 
(0.0123) 

− 0.0155 
(0.0140) 

− 0.0127 
(0.0183) 

− 0.0141 
(0.0151) 

EE (t-1) − 0.0028 
(0.0070) 

0.0017 
(0.0076) 

− 0.0138 
(0.0091) 

− 0.0107 
(0.0083) 

− 0.0125 
(0.0090) 

− 0.0061 
(0.0111) 

EE (t) − 0.0462*** 
(0.0050) 

− 0.0348*** 
(0.0056) 

− 0.0776*** 
(0.0064) 

− 0.0460*** 
(0.0060) 

− 0.0402*** 
(0.0065) 

− 0.0691*** 
(0.0082) 

EE (t + 1) − 0.0239*** 
(0.0053) 

− 0.0145** 
(0.0062) 

− 0.0371*** 
(0.0072) 

− 0.0222*** 
(0.0067) 

− 0.0181** 
(0.0078) 

− 0.0269*** 
(0.0090) 

EE (t + 2) 0.0030 
(0.0049) 

0.0031 
(0.0060) 

0.0099 
(0.0060) 

− 0.0045 
(0.0068) 

− 0.0088* 
(0.0083) 

− 0.0012 
(0.0089) 

EE (t + 3) 0.0050 
(0.0049) 

0.0048 
(0.0062) 

0.0118* 
(0.0062) 

− 0.0145** 
(0.0065) 

− 0.0143 
(0.0079) 

− 0.0114 
(0.0084) 

EE (t + 4) 0.0107* 
(0.0055) 

0.0099 
(0.0068) 

0.0120* 
(0.0066) 

0.0010 
(0.0073) 

0.0091 
(0.0089) 

− 0.0092*** 
(0.0089) 

EE (t + 5) 0.0097 
(0.0069) 

0.0114 
(0.0089) 

0.0219*** 
(0.0081) 

0.0032 
(0.0084) 

0.0057 
(0.0111) 

0.0131 
(0.0101) 

Time-variant controls       
Lhdd 0.1910*** 

(0.0061) 
0.1914*** 
(0.0061) 

0.1907*** 
(0.0061) 

0.1164*** 
(0.0123) 

0.1093*** 
(0.0123) 

0.1138*** 
(0.0122) 

Lgasprice − 0.2744*** 
(0.0115) 

− 0.2867*** 
(0.0108) 

− 0.2832*** 
(0.0107) 

− 0.2189*** 
(0.0117) 

− 0.2349*** 
(0.0116) 

− 0.2365*** 
(0.0114) 

Time-invariant 
controls 

No No No Yes Yes Yes 

Intercept 8.3173*** 
(0.0535) 

8.3190*** 
(0.0541) 

8.3250*** 
(0.0525) 

8.1015*** 
(0.1046) 

8.1766*** 
(0.1047) 

8.1766*** 
(0.1047) 

Test parallel trend 1 Yes Yes Yes No No No 
Test parallel trend 2 No Yes Yes No Yes Yes 
Observations 127,384 127,384 127,384 127,384 127,384 127,384 
F test F(13,43,100) =

186.88 
(0.0000) 

F(13,43,100) =
180.78 
(0.0000) 

F(13,43,100) = 196.23 
(0.0000) 

F(24, 43,100) =
833.93 
(0.0000) 

F(24, 43,100) =
827.93 
(0.0000) 

F(24, 43,100) =
834.38 
(0.0000) 

R-Squared 0.0019 0.0024 0.0029 0.2809 0.2800 0.2808 

Notes: Clustered standard errors in parentheses by household. * Significant at the 90% confidence level. **Significant at the 95% confidence level. ***Significant at the 
99% confidence level. 

12 The parallel trend assumptions are tested through a time-trend approach 
based on two types of tests. One, whether all the leads’ coefficients (β + s’s) are 
jointly equal to zero, i.e. the parallel trend assumption holds and/or, second, 
through dropping lags and leads and augmenting Eq. (2) with a time-trend 
variable t and its interaction with the treatment variable. If the interaction 
term is statistically significant, the parallel trend assumption can be rejected 
(Cerulli and Ventura, 2019). 
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effects staggered models to test for the presence or absence of hetero
geneous effects (Goodman-Bacon, 2021). This analysis is included in 
Fig. A2 in the SI. The Goodman-Bacon decomposition diagnostic plot 
confirms that most of weight and differences found between households 
in the sample come from households that are never treated vs. those 
treated at some point in the sample (~75% of the total weight) and 
differences between households treated at different points in time 
represent a smaller proportion (~15%). Due to this, we consider that our 
dynamic staggered Diff-in-Diff approach is robust. As an additional 
robustness check, we include regression results using different seg
mentations of the sample in section 4.2 and in the SI. 

Both Eqs. (1) and (2) are estimated using fixed effects and ordinary 
least squares with the inclusion of covariates. We report the results using 
robust clustered standard errors with clusters defined at the household 
level. 

4. Results 

4.1. Impact of adoption of EE measures on gas consumption 

Table 2 shows results from Eq. (2) where we consider a staggered DiD 
with dynamic treatment effects. We perform conditional estimations and 
test specifications under a set of control variables and fixed effects. For 
all of our estimations we control for the unitary price of gas and the 
temperature conditions proxied by the number of heating degree days, 
both standardized by region. Our preferred model (see columns 4–6 in 
Table 2) includes the covariates as we see differences on those variables 
between control and treatment group (see Table 1). The baseline results 
of the estimation from the staggered DiD can be seen in Table A3 in the 
SI. Table A3 includes the results on the effect of an EE installation (in 

year t) in the period before and after the installation of the energy ef
ficiency measure by estimating Eq. (1). 

Columns (1) to (6) in Table 2 report the estimations for the staggered 
diff-in-diff approach with dynamic effects (see Eq. (2)).13 Table 2 in
cludes both results derived from a fixed effect model with time and 
household fixed effects and also an OLS model with covariates. The 
columns (1), (2) and (3) of Table 2 depict the results from the dynamic 
staggered DiD approach when we consider the installation of any type of 
EE technical measure, a loft installation or a cavity wall installation in 
year t, respectively. Time and household fixed effects are introduced in 
those estimations. Columns (4), (5) and (6) show the relationship be
tween economic, weather and building characteristics and changes in 
gas consumption i.e., we introduce the specific covariates to control for 
the characteristics of the dwelling in the sample, specifically the age of 
the building, the type of property, the size of the property and the 
economic characteristics of the areas in which the households are situ
ated as a proxy of the income levels of the household. We will focus the 
discussion on the latter given the significant differences in those vari
ables between control and treatment groups. The results in columns (4), 
(5) and (6) confirm, in line with literature, that energy efficiency tech
nical improvements in households reduce energy consumption on those 
households undertaking such measures in the short term (Hypothesis 1). 
While we cannot translate this result into an estimate of the rebound 
effect, given that we do not have an assessment of the ex-ante expected 
energy savings of the improvements for each household, we see that the 
rebound effect does not completely erase the gains of the technical 
improvement, at least one to two years after the introduction. 

However, a new, challenging and policy relevant result emerges in 
our ex-post analysis: energy efficiency effects resulting from the instal
lation of technical measures are not long-lasting and energy efficiency 

a Loft insulation installation in t(%) b Cavity wall installation in t (%)

Fig. 3. Graph of the pre- and post-treatment pattern for the relation between household adoption on an EE measure and gas consumption. 
a. Loft insulation installation in t (%). b. Cavity wall installation in t (%). 
Outcome variable: Ln gas consumption / Treatment variable: Loft insulation or Cavity wall / X variables: Ln Heating degree days, Ln gas price / Time-invariant 
controls: surface area (sqm), index of multiple deprivation band, property type, age of the dwelling. 
Note: The vertical axis shows the variation in gas consumption (percentage change). The blue bars represent the confidence intervals. The horizontal axis measures 
the effect five years before and after the adoption. 

13 Due to the characteristics of the NEED, we cannot know the month in which 
the EE measure has been installed by the households in the sample. To over
come a possible limitation associated to households in the sample having 
adopted an EE measure later in the year, an additional robustness check has 
been included in the SI considering as the year of treatment t + 1 instead of t for 
our preferred model with covariates (See Table A6 and Fig. A4 in the SI). The 
results are robust to this additional test. 
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gains disappear around one to four years after the treatment. 
The results indicate that cavity wall retrofits are more effective at 

reducing gas consumption than loft insulations after the installation of 
the EE measure (Table 2 column 6). Cavity wall insulation generates, for 
our preferred model with covariates (6), an observed reduction on gas in 
the range of approximately a 6.9% in comparison with the pre-treatment 
period. The effect shows a decreasing pattern and the effective reduction 
in consumption only lasts up to four more years. For the second period 
after treatment, the observed reduction in gas consumption oscillates 
around 2.7%. After four periods, when the reduction of gas consumption 
is only of 0.9%, the gas consumption returns to the levels prior to the 
installation, suggesting that behavioural interventions are as needed in 
addition to technical ones if the goal is to get long-lasting energy effi
ciency gains. Loft insulation (Table 2 column 5) seems to be half as 
effective as cavity wall installation, leading to reductions on gas con
sumption around 4%. Unlike cavity wall reforms, loft insulation effects 
on gas reduction only last for one to two years after the installation of the 
technical energy efficiency measure with a reduction of 1.8% and 0.9% 
respectively. 

In terms of the effectiveness of the different measures, results are 
aligned with Adan and Fuerst (2016), who conclude that one year after 
the treatment, cavity walls are the most effective technical measures in 
reducing gas and energy consumption. Fig. 3a and b represent the dy
namic treatment effects for the OLS model with covariates for both, loft 
(3a) and cavity wall installations (3b). One reason for this could be 
technology decay. One of the known barriers to the implementation of 
energy efficiency measures in the building sector, particularly in the UK, 
is the lack of skills and expertise for energy professionals and technicians 
(Kangas et al., 2017; Bagaini et al., 2020). For example, loft insulation 
installed under the roof could, if not properly installed, lead to a lack of 
ventilation between insulation and timbers generating damp, humidity 
and a faster decay. However, given the size of the sample, it seems more 
plausible that the differences in energy savings per family are due to 
aspects associated to occupant behaviour, especially after controlling for 
important covariates. Therefore, there seems to be a need for additional 
behavioural changes to realize the full saving potential of the adoption 
of EE improvements. 

We note that most of our control variables are statistically signifi
cant. Irrespective of the estimation, the size of the dwelling, the age of 
the household, the type of property, and the number of HDD have a 
statistically significant positive impact on gas consumption. Regarding 
the latter variable i.e., HDD, our data does not allow us to disentangle 
the month in which the EE measure has been installed. However, pre
vious studies on energy demand in households have determined that the 
higher the amount of HDD, the higher the energy consumption per 
household (e.g., Meier and Rehdanz, 2017 for the UK, Romero-Jordán 
et al., 2014 for Spain). While a seasonality analysis is not possible for 
data reasons, the HDD variable is positive and statistically significant 
and it is likely to go some way towards addressing the possible impact of 
seasonality. The results for HDD might be a sign of the existence of an 
‘intensive’ margin effect—namely, that households may be more in
clined to turn up the thermostat higher during a particularly cold winter 
after a retrofit. We include a segmentation of the sample per region to 
disentangle this possible intensive margin effect in the SI (See table A7 
and Fig. A5). 

In addition, a household’s probability of adopting energy efficiency 
retrofits may also increase after a particularly cold winter, something 
that we refer to as an ‘extensive’ margin effect. We can disentangle this 
effect by analysing if households in different regions with different cli
mates (proxied by their temperature profiles) in the UK are more or less 
prone to adopting an EE measure. Table A8 in the SI includes a panel 
probit estimation of the probability of adopting an EE measure as a 
function of the region in which the household is located, the charac
teristics of the households and the number of HDDs to separate the 
contributions of the extensive margin. We find evidence of an extensive 
margin and the probability of adopting an EE measure is higher when 

the households have experienced particularly cold temperatures the 
year before (see Table A8 and Fig. A6). 

An important observation arises from Fig. 3. The installation of loft 
insulation and, importantly, of cavity walls seems to result in a more 
stable pattern in gas consumption in the years after the installation of an 
energy efficiency measure. This result in itself suggests an important 
positive outcome derived from energy efficiency retrofitting as upgrades 
act as factors reducing the volatility of energy demand. This is particu
larly relevant in the context of the current energy crisis as the value of 
reducing the volatility around gas consumption is clear. 

We also consider the extent to which fuel switching from gas to 
electricity may be a factor in our results. This could be important 
because one of the suggestions made by many analysts regarding how 
the UK Government could navigate this energy crisis and the increase in 
gas prices for households is fuel switching. At the moment, only around 
5% of UK households use electricity as a heating source (Ministry of 
Housing, Communities and Local Governments, 2021). In order to detect 
potential fuel switching behaviour during the period of analysis as a 
result of, for example, increases in gas prices, we have added three 
additional regressions in the SI mirroring the baseline results to control 
for possible omitted variable bias from electricity prices. The first set of 
additional analysis includes the cross-price elasticity of electricity 
together with the gas-price elasticity (See table A9). The second set 
jointly controls for the cross-price elasticity of electricity and the elec
tricity consumption together with gas-price elasticity (Table A10). Given 
that the National Energy Efficiency Database (NEED) provides a variable 
indicating whether the property uses gas as its main heating fuel or not, 
the third additional robustness check involves running the baseline re
gressions for those households that do not use gas as their main heating 
source (Table A11). During the period of analysis included in this paper, 
gas prices were relatively low during most of the period under consid
eration, and the barriers associated to the lack of interest and under
valuing of energy efficiency in the building sector are higher in the UK 
than in other European countries (Bagaini et al., 2020). Fuel switching 
therefore was not happening to a significant extent in the UK between 
2005 and 2017 and we did not detect clear differences –increases- in the 
consumption of electricity in those households with gas as a result of fuel 
switching (See Table A11, A12 and brief explanation in the SI). 

As previously noted, the reliability of the causal inferences of the 
effects in a staggered diff-in-diff approach with dynamic effects depends 
on confirming non-anticipatory effects of the treatment (Gonçalves 
et al., 2020). Anticipatory effects are not observed for the dynamic 
model with covariates.14 While the results for any type of installation, do 
not comply with the parallel trend assumption and therefore, causal 
inferences derived from those estimations should be considered care
fully, when we restrict by type of EE measure, the parallel trend 
assumption cannot be rejected by using a time-trend significant test 
(Cerulli and Ventura, 2019). For our preferred estimations, i.e. OLS 
staggered diff-in-diff with dynamic treatment effects controlling for 
covariates (Columns 4 to 6 in Table 2), anticipatory effects cannot be 
detected and the parallel trend assumption cannot be rejected, indi
cating that the conditions for applying DiD are met. 

The analysis performed with 5 leads and 5 lags reduces the sample 
size to a set of households that can be followed within the dataset spe
cifically on those numbers of years. Considering the dataset runs from 
2005 to 2017, this analysis allows us to explore the variation in energy 
consumption mostly in households that have adopted energy efficiency 
measures between 2010 and 2012, i.e. under the CERT and the CESP 
Government programmes. In order to expand the results to include some 
of the households under the ECO and Green Deal programme, we run a 

14 Anticipatory effects are only observed for the uncontrolled general model 
without covariates and with fixed effects. However, these models do not comply 
with the parallel trend assumption and therefore, causal inferences derived 
from those estimations should be considered carefully. 

C. Peñasco and L.D. Anadón                                                                                                                                                                                                                 



Energy Economics 117 (2023) 106435

11

sensitivity analysis with combinations of periods from 2 lags (2 years 
before the installation of the EE measure) to 5 leads (5 years after the 
installation of the EE measure). Results are summarized in Table A13 in 
the SI. The effects of the implementation of both technical improve
ments simultaneously (the simultaneous installation of cavity walls and 
loft insulations) when compared to those households in which none of 
them has been installed are also included in the SI. The additional effect 
of a subsequent energy efficiency installation when compared to 
households that have installed in the past already one measure can be 
found in the SI (Table A5 and Fig. A3). 

Results derived from Table 2 allow us to confirm our first hypothesis, 
H1. Results support the idea that the installation of EE technical im
provements in households generates significant reductions in the 
amount of gas consumed by dwellings when compared to those that 
have not adopted them. The results also support H2. We find that the 
reduction in household gas consumption in the UK after the installation 
of an EE technical improvement does not last 3–5 years after the 
installation. Interestingly, the period by which the EE installations 
generate gas consumption reductions (2 to 4 years depending on the 
type of EE technical measure) approximately coincides with the payback 
time for those types of installations. As mentioned in section 2, on 
average, the payback time for a cavity wall installation may oscillate 
between 3 and 4 years after the installation. For loft insulation, the 
payback period tends to be slightly lower at around 1.5–3 years. This 

result suggests the value of exploring aspects related to behavioural 
economics and consumer psychology in future work. 

4.2. Segmentation of the sample 

4.2.1. Conservatory vs. non conservatory 
Besides gas unitary prices per region and weather conditions, we 

have controlled for time-invariant household characteristics. The coef
ficient of the EE installation captures then the total effect of the adoption 
of an EE technical measure in a household on their gas consumption. 
However, most of the time, and as stated in the literature review, EE 
measures are implemented alongside other home improvements such as 
extensions which are very popular in the UK. In those cases, the possible 
correlation between EE measure implementation and other building 
work which may lead to increased energy use, might result in no 
reduction in energy consumption at the household level on those 
households. 

Table 3 shows a segmentation of the sample breaking down the gas 
consumption reduction effects of EE installations in those households 

Table 3 
Staggered DiD gas consumption with segmentation of sample by conservatory.   

Any EE improvement Loft Insulation Cavity wall  

(7) (8) (9) (10) (11) (12) 

Gas Consumption Conservatory No conservatory Conservatory No conservatory Conservatory No conservatory 

EE (t-5) 0.1380*** 
(0.0552) 

0.0752*** 
(0.0200) 

0.1529* 
(0.0763) 

0.0166 
(0.0325) 

0.0584 
(0.0610) 

0.0984*** 
(0.0209) 

EE (t-4) − 0.1858*** 
(0.0702) 

− 0.0111 
(0.0198) 

− 0.1501 
(0.0988) 

0.0245 
(0.0318) 

− 0.1095 
(0.0700) 

− 0.0282 
(0.0202) 

EE (t-3) 0.1023 
(0.0690) 

− 0.0052 
(0.0149) 

0.1173 
(0.1000) 

0.0062 
(0.0211) 

0.0672 
(0.0606) 

0.0036 
(0.0153) 

EE (t-2) − 0.0855 
(0.0525) 

− 0.0121 
(0.0144) 

− 0.1670** 
(0.0784) 

− 0.0060 
(0.0188) 

− 0.0154 
(0.0563) 

− 0.0138 
(0.0156) 

EE (t-1) 0.0396 
(0.0324) 

− 0.0130*** 
(0.0085) 

0.0310 
(0.0366) 

− 0.0146 
(0.0093) 

0.0313 
(0.0362) 

− 0.0077 
(0.0114) 

EE (t) − 0.0457** 
(0.0202) 

− 0.0460*** 
(0.0062) 

− 0.0514** 
(0.0223) 

− 0.0395*** 
(0.0067) 

− 0.0526* 
(0.0292) 

− 0.0699*** 
(0.0085) 

EE (t + 1) 0.0008 
(0.0250) 

− 0.0235*** 
(0.0069) 

0.0214 
(0.0294) 

− 0.0202** 
(0.0081) 

− 0.0258 
(0.0348) 

− 0.0272*** 
(0.0093) 

EE (t + 2) − 0.0099 
(0.0243) 

− 0.0041 
(0.0070) 

− 0.0009 
(0.0302) 

− 0.0092 
(0.0090) 

− 0.0375 
(0.0323) 

0.0010 
(0.0092) 

EE (t + 3) − 0.0050 
(0.0200) 

− 0.0149** 
(0.0068) 

0.0224 
(0.0278) 

− 0.0160* 
(0.0082) 

− 0.0146 
(0.0239) 

− 0.0113 
(0.0088) 

EE (t + 4) − 0.0440 
(0.0267) 

0.0033 
(0.0075) 

− 0.0871** 
(0.0348) 

0.0140 
(0.0092) 

− 0.0220 
(0.0309) 

− 0.0086 
(0.0092) 

EE (t + 5) 0.0180 
(0.0341) 

0.0024 
(0.0087) 

0.0466 
(0.0473) 

0.0039 
(0.0114) 

0.0374 
(0.0396) 

0.0117 
(0.0104) 

Time-variant controls      
Lhdd 0.1445*** 

(0.0473) 
0.1166*** 
(0.0126) 

0.1370*** 
(0.0474) 

0.1095*** 
(0.0126) 

0.1417*** 
(0.0468) 

0.1140*** 
(0.0126) 

Lgasprice − 0.1419*** 
(0.0426) 

− 0.2225*** 
(0.0121) 

− 0.1600*** 
(0.0429) 

− 0.2386*** 
(0.0120) 

− 0.1511*** 
(0.0412) 

− 0.2402*** 
(0.0118) 

Time-invariant 
controls 

Yes Yes Yes Yes Yes Yes 

Intercept 7.6444*** 
(0.4157) 

8.1023*** 
(0.1077) 

7.7261*** 
(0.4166) 

8.1772 
(0.1079) 

7.6607*** 
(0.4105) 

8.1448*** 
(0.1072719) 

Test parallel trend 1 No No Yes No Yes No 
Test parallel trend 2 Yes No No Yes Yes Yes 
Number of 

observations 
5766 121,618 5766 121,618 5766 121,618 

F test F(24, 1943) = 33.23 
(0.0000) 

F(24, 41,156) =
789.69 
(0.0000) 

F(24, 1943) =
33.35 
(0.0000) 

F(24, 41,156) = 784.14 
(0.0000) 

F(24, 1943) = 33.19 
(0.0000) 

F(24, 41,156) = 789.83 
(0.0000) 

R-squared 0.2637 0.2785 0.2628 0.2775 0.2640 0.2784 

Notes: Clustered standard errors in parentheses by household. * Significant at the 90% confidence level. **Significant at the 95% confidence level. ***Significant at the 
99% confidence level. 
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with conservatories and those without conservatories.15 

Analysing this result is of special importance for the UK where 
conservatories remain one of the most popular modifications to a 
property. In 2011, almost 20% of households in England had conser
vatories and around 80% of them had some type of heating (DECC, 
2013). Half of those conservatories are connected to central heating 

systems and approximately the other half use electric heaters. The 
market for conservatory and glazed extensions increased by 3% in 2018 
(AMA Research, 2018). 

H3 tested the hypothesis that households installing EE technical 
improvements alongside other renovations in dwellings may not expe
rience significant gas consumption reductions. We found that those 
dwellings with conservatories i.e., those that have carried out extensions 
of a building with more than 50% of its wall surface glazed experienced 
less long-lasting effects than those without conservatories. While mod
ern conservatories can be built to high efficiency specifications, it is 
possible that the increase in space to be heated is at least partly 

a Loft insulation in t conservatory(%)  b Loft insulation in t without conservatory(%) 

Fig. 4. Graph of the pre- and post-treatment pattern for the relation between household adoption on loft insulation and gas consumption in households with 
conservatory vs. non conservatory. 
a. Loft insulation in t conservatory (%). b. Loft insulation in t without conservatory (%). 
Outcome variable: Ln gas consumption / Treatment variable: Loft insulation / X variables: Ln Heating degree days, Ln gas price / Time-invariant controls: surface 
area (sqm), index of multiple deprivation band, property type, age of the dwelling. 
Note: The vertical axis shows the variation in gas consumption (percentage change). The blue bars represent the confidence intervals. The horizontal axis measures 
the effect five years before and after the adoption. 

a Cavity wall installation in t with conservatory (%) b Cavity wall insulation in t without conservatory (%) 

Fig. 5. Pre- and post-treatment changes in gas consumption for households adopting cavity walls in households with conservatory vs. non conservatory. 
a. Cavity wall in t with conservatory (%). b. Cavity wall in t without conservatory (%). 
Outcome variable: Ln gas consumption / Treatment variable: Cavity wall / X variables: Ln Heating degree days, Ln gas price / Time-invariant controls: surface area 
(sqm), index of multiple deprivation band, property type, age of the dwelling. 
Note: The vertical axis shows the variation in gas consumption (percentage change). The blue bars represent the confidence intervals. The horizontal axis measures 
the effect five years before and after the adoption. 

15 While not perfect, we use the existence of a conservatory as a proxy of 
having proceeded with renovations involving an extension, of some nature, of 
the usable surface of the dwelling. 
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responsible for lower gas consumption reductions for those households 
that implement EE measures alongside an extension. 

For any EE measure installed, we see more or less the same reduction 
on gas consumption in the first year (~4.6% reduction) for households 
that implement them without a conservatory. However, the effect for 
those households with conservatories disappears almost immediately 
after the first year. We see positive energy efficiency gains associated 
with the installation of loft insulation or cavity walls for those dwellings 
with no conservatories but, as in the general case, the energy efficiency 
gains tend to disappear over time suggesting there may be behavioural 
aspects determining energy use. Due to data limitations it is out of the 
scope of this paper, to determine what those reasons are. 

Interestingly, in Fig. 4 we see that, for loft insulation installations in 
dwellings with a conservatory, the pattern of consumption in the years 
before the installation is pretty unstable when compared to the house
holds without conservatories. This can be explained by the fact that 
different weather conditions affect those dwellings with conservatories 
to a greater extent. For those households with conservatories, the size of 
the weather control variable is larger than for those households without 
conservatories (0.14 vs. 0.11 for households with conservatory and 
without conservatory, respectively). In those dwellings with conserva
tories, the reduction in gas consumption after a loft insulation installa
tion happens only the first year after the adoption (− 5.1%). There are 
positive energy efficiency gains for those without conservatories but, 
just like when we analysed the sample without the conservatory/no- 
conservatory distinction, the energy efficiency gains tend to disappear 
over time suggesting there may be behavioural aspects that we are not 

able to measure. This suggests the possible value of further efforts in 
education or informational campaigns in the long-run. For the case of 
households installing loft insulation, what stands out from Fig. 3 is that, 
even if the reductions are not long-lasting, the installation of the EE 
measures seems to stabilise the pattern of gas consumption in the 
households. On top of that, the reduction in gas consumption is bigger 
than in those households without conservatory (− 5.1% vs. -3.9%) a year 
after installation (time t) but it does not last as long as the reductions in 
households without a conservatory. We find that, when compared to 
cavity walls (Fig. 5), loft insulations are more effective for those 
households with conservatory vs. those without which one may expect 
given that cavity walls cannot be installed in glass walls, which are used 
in many conservatories.16 

For the case of cavity wall installations, the effect of those in
stallations in gas consumption is smaller in households with conserva
tories (~5% only in the first year after the installation), than in those 
dwellings without conservatories (~7% one year after the installation 
plus additional reductions in gas consumption of around 3% during the 
second year) (see Table 3 and Fig. 5). However, as we have seen for the 
whole sample (Table 2 and Fig. 3), the effect in this case disappears in 
two years corresponding approximately with the payback time of an 
installation. 

One interesting fact for analysis is the variation of electricity 

Table 4 
Staggered DiD of gas consumption with segmentation of the sample by bands of the index of deprivation.  

Any EE improvement  

(13) (14) (15) (16) (17) 

Gas Consumption IMD1 IMD2 IMD3 IMD4 IMD5 

EE (t-5) 0.1049** 
(0.0453) 

0.0735 
(0.0478) 

0.0965** 
(0.0490) 

0.0452*** 
(0.0397) 

0.0823** 
(0.0346) 

EE (t-4) − 0.0701 
(0.0459) 

− 0.0012 
(0.0474) 

− 0.0114 
(0.0454) 

0.0047 
(0.0393) 

− 0.0207 
(0.0328) 

EE (t-3) 0.0431 
(0.0357) 

0.0051 
(0.0294) 

− 0.0473 
(0.0305) 

− 0.0205 
(0.0288) 

− 0.0159 
(0.0297) 

EE (t-2) 0.0102 
(0.0263) 

− 0.0358 
(0.0332) 

− 0.0038 
(0.0339) 

− 0.0032 
(0.0316) 

− 0.0331 
(0.0316) 

EE (t-1) − 0.0210*** 
(0.0182) 

− 0.0043 
(0.0200) 

− 0.0159*** 
(0.0194) 

5.96E-05 
(0.0177) 

0.0006 
(0.0165) 

EE (t) − 0.0304** 
(0.0153) 

− 0.0353** 
(0.0142) 

− 0.0552*** 
(0.0144) 

− 0.0566*** 
(0.0125) 

− 0.0503*** 
(0.0104) 

EE (t + 1) − 0.0371** 
(0.0172) 

− 0.0093 
(0.0163) 

− 0.0205 
(0.0155) 

− 0.0154*** 
(0.0142) 

− 0.0277** 
(0.0118) 

EE (t + 2) − 0.0273 
(0.0186) 

0.0009 
(0.0164) 

0.0229 
(0.0158) 

− 0.0128 
(0.0140) 

− 0.0033 
(0.0116) 

EE (t + 3) − 0.0397** 
(0.0195) 

− 0.0211 
(0.0161) 

− 0.0083 
(0.0146) 

− 0.0057 
(0.0125) 

− 0.0047 
(0.0105) 

EE (t + 4) 0.0343*** 
(0.0195) 

− 0.0005 
(0.0166) 

− 0.0056 
(0.0162) 

− 0.0220 
(0.0167) 

− 0.0110*** 
(0.0121) 

EE (t + 5) 0.0362* 
(0.0200) 

0.0187 
(0.0185) 

− 0.0327* 
(0.0199) 

− 0.0119 
(0.0194) 

− 0.0233 
(0.0158) 

Time-variant controls     
Lhdd 0.0065 

(0.0313) 
0.1196*** 
(0.0287) 

0.1168*** 
(0.0279) 

0.1699*** 
(0.0257) 

0.1660*** 
(0.0223) 

Lgasprice − 0.4000*** 
(0.0310) 

− 0.2237*** 
(0.0281) 

− 0.2164*** 
(0.02703) 

− 0.1565*** 
(0.0233) 

− 0.1134*** 
(0.0209) 

Time-invariant controls Yes Yes Yes Yes Yes 
Intercept 9.1501*** 

(0.2675) 
8.1336*** 
(0.2448) 

8.1874*** 
(0.2381) 

7.7863*** 
(0.2187) 

7.7123*** 
(0.1899) 

Test parallel trend 1 No Yes Yes Yes Yes 
Test parallel trend 2 Yes Yes Yes Yes Yes 
Number of observations 26,187 25,348 24,087 24,620 27,142 
F test F(20, 8950) = 123.18 (0.0000) F(20, 8570) = 130.22 (0.0000) F(20, 8139) = 152.97 

(0.0000) 
F(20,8292) = 185.59 
(0.0000) 

F(20, 9145) = 259.83 
(0.0000) 

R-squared 0.1843 0.2118 0.2448 0.2842 0.3336 

Notes: Clustered standard errors in parentheses by household. * Significant at the 90% confidence level. **Significant at the 95% confidence level. ***Significant at the 
99% confidence level. 

16 Certain types of conservatories might still have a non-glass roof that allows 
to use loft insulation. 
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a EE measure in t IMD 1 (%) b EE measure in t IMD 2 (%) 

c EE measure in t IMD 3 (%) d EE measure in t IMD 4 (%)

e EE measure in t IMD 5 (%)

Fig. 6. Pre- and post-treatment patterns of the relationship between household adoption of any type of EE measure and gas consumption in households belonging to 
different deprivation areas. 
a. EE measure in t IMD 1 (%). b. EE measure in t IMD 2 (%). 
c. EE measure in t IMD 3 (%). d. EE measure in t IMD 4 (%). 
e. EE measure in t IMD 5 (%). 
Outcome variable: Ln gas consumption / Treatment variable: Loft insulation or Cavity wall / X variables: Ln Heating degree days, Ln gas price / Time-invariant 
controls: surface area (sqm), index of multiple deprivation band, property type, age of the dwelling. 
Note: IMD1 is the category with the highest deprivation and IMD5 with the lowest. The vertical axis shows the variation in gas consumption (percentage change). The 
blue rectangles represent the confidence intervals. The horizontal axis measures the treatment effect five years before and after the adoption. 
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consumption, instead of gas, in those households that, having gas as a 
main source, have conservatories. This is important because after an EE 
renovation, many of those conservatories might be heated with electric 
devices. We could expect that, if fuel switching is happening in those 
households with conservatories and gas as the main source, they would 
reduce electricity consumption after an EE renovation –if any- to a lesser 
extent than those households not using gas as their main heating source. 
Unfortunately, the available data does not allow us to test for fuel 
switching given that we cannot disentangle the amount of electricity 
used only for heating purposes; so we leave this venue open for future 
research. 

In sum, results partially supports hypothesis 3 in that households 
performing other type of renovations alongside EE technical improve
ments will not experience the same level of statistically significant gas 
consumption reductions when compared to those installing only EE 
technical improvements. 

4.2.2. By bands of the index of deprivation 
Energy efficiency policy instruments in the UK have traditionally 

focused on improving energy efficiency in all households but especially 
in low-income households (EEC1, EEC2 programmes and CERT) and in 
households in deprived areas in Britain (CESP). 

However, looking at the results derived from Table 4 we see that 
those households in more deprived areas experience half of the gas 
consumption reductions in percentage terms of their peers in the richer 
areas of the country. When we segment the sample by deprivation index, 
in those areas in which the deprivation is the highest, the installation of 
such measures generates the lowest reduction in gas consumption that is 
statistically significant. This is probably because those households 
already consume little energy and display a higher energy price elas
ticity than their wealthier peers. 

Controlling by gas prices, weather conditions and household char
acteristics, those households installing EE measures in more deprived 
areas will experience statistically significant gas consumption re
ductions of around 3% during the first and second year after installation 
of the technical measure. Similar households in less deprived areas can 
expect reductions in gas consumption of around 5.6%. Results are 
consistent across energy efficiency technical measures adopted (see 
Table A14 in the SI). 

However, an important result is that the most deprived households 

can expect statistically significant increases in the energy consumption 
four and five years after the EE installation. These increases would 
completely offset the initial consumption reductions during the year of 
installation reaching increases in gas consumption of around 3.6%. 

These results in Table 4 confirm that, generally, the demand of those 
households in more deprived areas mostly covers basic needs, and 
therefore the installation of new energy efficiency improvements does 
not, on average, generate a decrease in the energy consumption. It may 
however result in a higher flexibility to adjust to prices and therefore it 
makes it possible for people to not just meet their basic needs but to also 
reduce fuel poverty. For households on less deprived areas, the instal
lation of energy efficiency measures represents a way to reduce con
sumption, at least during the first year, which makes them less sensitive 
to changes in gas prices. This result is very interesting because it suggests 
that the adoption of EE technologies in households makes gas demand 
more flexible in deprived areas. The pattern for gas price elasticities 
starts relatively high for deprived areas, and it goes down steadily for 
medium deprived areas and for low deprived areas. These results suggest 
that the poorest segments of the population are more sensitive to gas 
price variations than medium-income households when they have 
installed an energy efficiency improvement. 

Fig. 6 shows the pre- and post-treatment pattern of the relationship 
between household adoption of any type of EE measure and gas con
sumption in households belonging to different deprivation areas.17 We 
find that for the higher deprivation areas (IMD1 and IMD2) after 4 or 5 
years the energy savings have most likely disappeared and they increase 
their gas consumption. 

5. Robustness checks 

5.1. Propensity Score Matching (PSM) and common support of household 

Selection biases may occur if there are non-random factors affecting 
the decision of a household to adopt an energy efficiency measure. The 

a Loft insulation on common support b Cavity wall on common support 

Fig. 7. Pre- and post-treatment patterns of the relationship between household adoption on loft insulation / cavity walls and gas consumption on common support. 
a. Loft insulation on common support. b. Cavity wall on common support. 
Outcome variable: Ln gas consumption / Treatment variable: Loft insulation or Cavity wall / X variables: Ln Heating degree days and Ln gas price. 
Note: The vertical axis shows the variation in gas consumption (percentage change). The blue rectangles represent the confidence intervals. The horizontal axis 
measures the treatment effect five years before and after the adoption. 

17 Because results are consistent across energy efficiency technical measures 
and because of space reasons, the graphs by loft insulation and cavity walls 
installations are not included. The graphs are available from the authors upon 
request. 
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use of propensity score matching can help us mitigate selection biases 
issues related to observable variables in the sample (Tucker, 2011). As 
an additional robustness check, we run the baseline regression on a 
common support sample of households similar to the ones that adopted 
the EE measures in terms of pre-treatment observed characteristics. We 
use the same covariates included in regressions (4), (5) and (6) in 
Table 2, i.e., type of property, age of the dwelling, index of multiple 
deprivation band, size (sqm); in addition, we match households ac
cording to the region in which they are located. In order to do this we 
estimate the propensity score, i.e. the probability of installing an EE 
measure, with a probit regression (See Table A15 in the SI). To do so we 
use a k-nearest neighbour matching algorithm (See Table A16 in the SI). 
We then restrict the sample to a common support area based on the 
calculated propensity scores (Fig. A7 SI). Lastly, we estimate Eq. (2). See 
SI for further details on the estimation process. 

After the application of PSM the differences between treated and 
control households in terms of the covariates is significantly reduced 
(See Fig. A8 in the SI). The results in section 4.1 are consistent with those 
in Fig. 7 below: we find similar effects around 3.7% reduction and 6.9% 
for loft and cavity wall respectively in t that half on t + 1 following the 
installation of the EE measure (see Table 5 and Fig. 7). 

5.2. Placebo test 

In order to further rule out identification issues, we include an 
additional robustness check: a falsification test. Mirroring the strategy 
followed by other authors like Cai et al. (2016), or La Ferrara et al. 
(2012), we run a placebo test (falsification) test, by randomly assigning 
the adoption of an EE measure to a group of households different from 
the ones in the treated group in our analysis. Our estimations include 
18,930 household that have received some kind of treatment. We first 
randomly select a group of households from the whole sample and we 
consider them as treated units having installed at least an EE measure. 
Then we generate a random false year of installation between 2005 and 
2017 for the falsely treated households. With this, we re-estimate our 
baseline model using the placebo-false energy efficiency installation 
variable. The randomization process should ensure that the placebo 
treatment variable has no effect on gas consumption and therefore that 
there are no significant omitted variable biases. If the false treatment 
was significant, this would be a signal of misspecification problems in 
our estimation strategy. We store the estimates and repeat the exercise 
500 times. Fig. 8 shows the cumulative distribution function and density 
of the estimated coefficients on the installation of any type of energy 
efficiency installation. Figs. A10 and A11 in the SI shows the cumulative 
distribution function and density of the estimated coefficients on the 
installation of loft insulation and cavity walls respectively. The distri
bution of the estimated coefficient on the placebo energy efficiency 
installation is centered around zero as expected, and our baseline esti
mation clearly lies outside the range of coefficients estimated in the 
simulation exercise. The results shown in the aforementioned figures 
and summarized in Table 6 enhance the confidence that the findings of 
our analysis are not spurious. 

5.3. Heterogeneous effects: assessing energy savings inequality using 
percentile shares 

In section 4.2.2, we found that the impact of the adoption of the two 
EE technical measures under consideration varies considerably 
depending on the level of deprivation of the areas in which households 
are located (see Table 4). The variation found in that analysis let us 
confirm heterogeneous effects. The smaller reduction on energy con
sumption seen on the poorest segments of the population, proxied by the 
quintile levels of the index of multiple deprivations by area, may provide 
a rationale to focus the attention on the barriers that may prevent those 
households to get potential energy savings derived from the adoption of 
EE measures. In order to further explore results to test our fourth hy
pothesis, we will analyse the gas consumption distribution using 
percentile shares. We present estimates of the distribution of gas con
sumption for those households installing a technical energy efficiency 
measure vs. those in the control group. We analyse outcomes for ten 
distribution groups (deciles) in absolute (Table 7) and relative terms 
(See Table A18 and Figs. A11 in the SI). 

Percentile analysis has been widely used in inequality research to 
study the distribution of income and wealth, see e.g., Piketty (2014), 
Anand and Segal (2015), and Milanovic (2012), among others. The 
assessment of percentile shares allows us, in this case, to separate 
households into groups according of gas consumption and quantify the 
proportion of total gas consumption from 2005 to 2017 that will go to 
our defined groups in terms of their absolute and relative rank in the gas 
distribution. We use the analysis developed by Jann (2016) to estimate 
the differences in the gas consumption distribution between households 
that have adopted an EE measure when compared to those that have not 

Table 5 
Staggered DiD for gas consumption on common support area after PSM.   

(18) (19) (20) 

Gas 
Consumption 

Any Loft Cavity 

EE (t-5) 0.0885*** 
(0.0181) 

0.0544** 
(0.0274) 

0.0813*** 
(0.0204) 

EE (t-4) − 0.0247 
(0.0176) 

− 0.0032 
(0.0273) 

− 0.0175 
(0.0186) 

EE (t-3) 0.0002 
(0.0138) 

0.0140 
(0.0201) 

0.0030 
(0.0141) 

EE (t-2) − 0.0277** 
(0.0131) 

− 0.0404** 
(0.0166) 

− 0.0105 
(0.0144) 

EE (t-1) − 0.0061 
(0.0078) 

− 0.0071 
(0.0084) 

− 0.0052 
(0.0103) 

EE (t) − 0.0454*** 
(0.0056) 

− 0.0369*** 
(0.0061) 

− 0.0693*** 
(0.0077) 

EE (t + 1) − 0.0201 
(0.0062) 

− 0.0121* 
(0.0073) 

− 0.0281*** 
(0.0083) 

EE (t + 2) − 0.0045 
(0.0065) 

− 0.0078 
(0.0080) 

− 0.0023 
(0.0085) 

EE (t + 3) − 0.0106* 
(0.0061) 

− 0.0149** 
(0.0075) 

− 0.0048 
(0.0079) 

EE (t + 4) − 0.0057 
(0.0068) 

0.0038 
(0.0085) 

− 0.0176** 
(0.0084) 

EE (t + 5) − 0.0015 
(0.0081) 

0.0073 
(0.0106) 

0.0078 
(0.0098) 

Time-variant controls 
Lhdd 0.1331*** 

(0.0118) 
0.1254*** 
(0.0119) 

0.1331*** 
(0.0118) 

Lgasprice − 0.2084*** 
(0.0110) 

− 0.2276*** 
(0.0110) 

− 0.2257*** 
(0.0108) 

Time-invariant 
controls 

Yes Yes Yes 

Intercept 8.0646*** 
(0.1009) 

8.1466*** 
(0.1016) 

8.0884*** 
(0.1006) 

Test parallel 
trend 1 

No No No 

Test parallel 
trend 2 

No Yes Yes 

Number of 
observations 

114,145 113,671 113,927 

F test F(24, 39,151) =
722.23 (0.0000) 

F(24, 38,977) =
705.61 (0.0000) 

F(24, 39,076) =
717.89 (0.0000) 

R-squared 0.2711 0.2675 0.2700 

Notes: Clustered standard errors in parentheses by household. * Significant at 
the 90% confidence level. **Significant at the 95% confidence level. ***Sig
nificant at the 99% confidence level. 
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adopted such measures.18 The percentile shares represent on average 
how much of the total gas consumption each member in the percentile 
group gets in relation to the overall average (See Table 7). 

Expressing the results in average levels of gas consumptions, Table 7 
shows that the bottom two deciles i.e., the bottom 20%, of the gas 
consumption distribution increase their gas consumption after the 
installation of an EE technical measure. Only from the third decile we 
start seeing significant gas consumption reductions in absolute terms. 
Results are consistent across technical measures (See Fig. 9a and b). The 
differences in Fig. 9 reflect the overall variation in the gas consumption 
by percentile group. Another interesting result to explore is if those 
differences impact the distributional shape of gas consumption in rela
tive terms. Due to of space reasons those results are included in 
Table A19. Results in this subsection are important as they highlight that 
for those bottom two decile groups, the EE technical measures are not 
being effective in terms of reducing consumption. As previously 
mentioned, most UK EE policy instruments have targeted vulnerable 
households. However, those dwellings do not reduce their consumption 
but instead increase their energy use. This is not necessarily a bad 
outcome if the policy schemes are aimed at reducing fuel poverty in low- 
income households. Notwithstanding, to the extent that reducing energy 
consumption and consequently greenhouse gas emissions is at least one 

of several goals, those policies are not effective at delivering on all their 
missions. From a policy perspective, this result calls for mission-oriented 
energy policy measures distinguishing between groups. 

Given these results, we cannot reject our fourth hypothesis. All in all, 
results confirm that for the two EE measures investigated, vulnerable 
households do not reduce their gas consumption after installing an EE 
technical measure. Using the framework developed by Peñasco et al. 
(2021), this result indicates that the main goal pursued by governments 
with the promotion and subsidization of the installation of this type of 
energy measures is not achieved in vulnerable households, i.e., the 
policies have been not effective from an environmental point of view in 
vulnerable households. However, considering other outcomes like the 
distributional effects of the policy instruments, subsidizing EE measures 
may improve inequality indicators by reducing the energy consumption 
differences between different types of households and pushing people in 
deprived areas out of the dangers of fuel poverty. 

6. Discussion and conclusions 

This paper has analysed the responsiveness of household energy 
demand, specifically gas consumption, in England and Wales to the 
adoption of EE technical improvements during the period 2005–2017. 

Understanding the patterns of energy consumption in residential 
buildings and if energy efficiency technical measures generate the ex
pected energy savings modelled before the adoption of such measures, is 
a prerequisite for the formulation of accurate, effective and cost- 
effective energy policies. While the vast majority of literature has 
studied the energy performance gap and the rebound effects from an ex- 

Fig. 8. Placebo regressions for any type of insulation – distribution of estimated coefficients. Note: Cumulative distribution function (top panel) and density (bottom 
panel) of the estimated coefficients from 500 simulations using false date and treatment of an energy efficiency installation. 

18 Estimates of percentile shares might be affected by biases related to the size 
of the samples especially at the top of the distribution (Jann, 2016). Given the 
size of our global sample, i.e. more than 500,000 observations, we do not expect 
biases on these estimations. 
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ante perspective, studies using actual consumption data are few. To the 
best of our knowledge, this paper is the first one analysing longer-term 
effects of up to five years after the installation, of the adoption of energy 
efficiency technical improvements. 

Our study employs robust quasi-experimental estimation methods 
taking the form of a Staggered DiD analysis with micro-level data on a 
representative sample of more than 50,000 households in England and 
Wales. 

The results show that the adoption of EE measures in households 
leads to a decrease in the demand of gas consumption right after the 
adoption. However, the energy savings generated from the installation 
of those technical measures i.e., loft insulation and cavity walls, do not 
long-last. Energy savings disappear two to four years after the adoption 
for cavity wall installations. The reduced gas consumption from loft 
insulation only lasts one to two years. Attention must be paid to the fact 
that the impact of the adoption of these measures varies considerably 
depending on the level of deprivation of the areas in which households 
are located and the existence of conservatories in the households. 

The particular lack of reductions in gas consumption on the poorest 
segments of the population, proxied by the quintiles level of the index of 
multiple deprivations by area, shows the importance of considering the 
heterogeneous impacts of policies and further investigating the mech
anisms that prevent those households from realizing energy savings after 
the adoption of EE measures. Dwellings in deprived areas are more likely 
to receive full support for the costs of the energy efficiency improve
ment. Romero-Jordán et al. (2016) suggest that public policy should not 
inhibit price signals but instead provide rent transfer-oriented policies, 
such as annual payments or grants to vulnerable households. However, 
the policies in Fig. 1 reflect this and our analysis suggest that the 
reduction on energy consumption have not materialized in low income 
households. 

We found, however, that the introduction of EE technical improve
ments seems to procure a more stable pattern in gas consumption in the 
years following implementation. This result in itself suggests an 
important positive outcome derived from energy efficiency retrofitting 
as upgrades act as mediating factors for volatility in energy demand. 
Also, the introduction of EE technical improvements measures makes 
households on deprived areas more responsive to changes in energy 
prices. This represents a positive outcome as EE measures may be acting 
as tools for the flexibility of the energy demand in the residential sector. 
They also reduce inequalities between groups of consumers allowing 

Table 6 
Placebo regressions.   

(21) (22) (23) 

Gas Consumption Any Loft Cavity 

EE (t-5) − 0.0059 
(0.0091) 

− 0.0023 
(0.0065) 

− 0.0075 
(0.0091) 

EE (t-4) 0.0047 
(0.0087) 

0.0060 
(0.0062) 

0.0048 
(0.0087) 

EE (t-3) 0.0043 
(0.0084) 

− 0.0092 
(0.0061) 

0.0044 
(0.0085) 

EE (t-2) − 0.0010 
(0.0089) 

− 0.0084 
(0.0063) 

− 0.0001 
(0.0090) 

EE (t-1) − 0.0093 
(0.0090) 

0.0055 
(0.0062) 

− 0.0086 
(0.0091) 

EE (t) 0.0018 
(0.0089) 

0.0051 
(0.0062) 

0.0038 
(0.0089) 

EE (t + 1) − 0.0091 
(0.0085) 

0.0026 
(0.0075) 

− 0.0098 
(0.0086) 

EE (t + 2) 0.0037 
(0.0087) 

0.0074 
(0.0140) 

0.0013 
(0.0088) 

EE (t + 3) − 0.0040 
(0.0087) 

− 0.0202 
(0.0522) 

− 0.0024 
(0.0087) 

EE (t + 4) 0.0105 
(0.0090) 

− 0.0336 
(0.0559) 

0.0080 
(0.0090) 

EE (t + 5) 0.0015 
(0.0095) 

0.0004 
(0.0713) 

0.0029 
(0.0095) 

Time-variant controls   
Lhdd 0.1027*** 

(0.0122) 
0.1023*** 
(0.0122) 

0.1027*** 
(0.0122) 

Lgasprice − 0.2636*** 
(0.0113) 

− 0.2642*** 
(0.0121) 

− 0.2635*** 
(0.0113) 

Time-invariant 
controls 

Yes Yes Yes 

Intercept 8.2663*** 
(0.1041) 

8.2697*** 
(0.1047) 

8.2665*** 
(0.1041) 

Test parallel trend 
1 

Yes Yes Yes 

Number of 
observations 

127,384 127,384 127,384 

F test F(24, 43,100) =
823.56 
(0.0000) 

F(24, 43,100) =
823.13 
(0.0000) 

F(24, 43,100) =
823.58 
(0.0000) 

R-squared 0.2791 0.2791 0.2791 

Notes: Clustered standard errors in parentheses by household. * Significant at 
the 90% confidence level. **Significant at the 95% confidence level. ***Sig
nificant at the 99% confidence level. 

Table 7 
Effect of the installation of EE measures on percentile shares of the gas consumption and differences in percentile shares between treated and control households 
(annual KWh of gas consumption).   

Loft Cavity Any  

Control Treatment Diff Control Treatment Diff Control Treatment Diff 

0-10th 3858.90 
(26.2260) 

4314.05 
(52.3743) 

455.15*** 
(57.2987) 

3863.17 
(27.0865) 

4272.35 
(54.4260) 

409.18*** 
(59.4836) 

3819.84 
(28.1287) 

4247.23 
(43.1172) 

427.40*** 
(49.7865) 

10th -20th 7285.92 
(32.5524) 

7455.95 
(52.2542) 

170.03*** 
(59.8228) 

7289.35 
(31.5641) 

7437.06 
(56.8968) 

147.71** 
(63.6662) 

7267.87 
(34.6382) 

7433.95 
(44.6636) 

166.08*** 
(54.4237) 

20th -30th 9507.89 
(32.4978) 

9272.95 
(55.3686) 

− 234.94*** 
(62.1525) 

9507.41 
(32.5981) 

9287.18 
(53.6781) 

− 220.23*** 
(61.2836) 

9535.95 
(34.4509) 

9302.12 
(42.1033) 

− 233.84*** 
(52.1424) 

30th -40th 11,396.03 
(33.0195) 

10,852.87 
(55.6245) 

− 543.16*** 
(62.3111) 

11,416.16 
(33.2160) 

10,823.94 
(56.6769) 

− 592.22*** 
(63.9709) 

11,483.56 
(36.9807) 

10,880.60 
(44.5149) 

− 602.95*** 
(55.1288) 

40th -50th 13,200.86 
(34.8456) 

12,369.29 
(58.8539) 

− 831.57*** 
(65.6321) 

13,253.46 
(37.1026) 

12,255.59 
(55.5768) 

− 997.86*** 
(64.7691) 

13,354.96 
(39.1177) 

12,371.01 
(46.9530) 

− 983.97*** 
(57.8849) 

50th -60th 15,094.39 
(38.9596) 

13,915.21 
(63.5720) 

− 1179.19*** 
(71.1690) 

15,178.81 
(39.3776) 

13,698.71 
(60.0412) 

− 1480.10*** 
(69.3806) 

15,325.46 
(43.4407) 

13,887.73 
(50.5955) 

− 1437.73*** 
(62.7482) 

60th -70th 17,248.75 
(42.7966) 

15,645.59 
(72.5706) 

− 1603.16*** 
(80.1396) 

17,363.76 
(45.1207) 

15,316.30 
(65.3666) 

− 2047.46*** 
(76.4156) 

17,549.17 
(47.2311) 

15,581.35 
(54.7184) 

− 1967.82*** 
(67.5747) 

70th -80th 19,859.15 
(51.5342) 

17,776.19 
(86.0011) 

− 2082.96*** 
(94.8654) 

20,002.96 
(49.0403) 

17,282.49 
(79.4199) 

− 2720.47*** 
(89.6438) 

20,212.64 
(56.0563) 

17,674.90 
(68.3850) 

− 2537.74*** 
(82.1535) 

80th -90th 23,612.02 
(65.3558) 

20,982.95 
(120.1097) 

− 2629.07*** 
(129.1477) 

23,828.16 
(67.2652) 

20,164.21 
(97.5387) 

− 3663.95*** 
(113.336) 

24,066.70 
(68.9474) 

20,773.87 
(87.1330) 

− 3292.82*** 
(102.6858) 

90th -100th 33,056.36 
(101.4566) 

29,413.12 
(202.2680) 

− 3643.24*** 
(213.6883) 

33,328.13 
(105.5670) 

27,535.34 
(189.2132) 

− 5792.79*** 
(208.7648) 

33,619.65 
(107.4288) 

28,846.26 
(157.6647) 

− 4773.39*** 
(176.9825) 

Notes: * Significant at the 90% confidence level. **Significant at the 95% confidence level. ***Significant at the 99% confidence level. 
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households at the bottom of the gas consumption distribution to increase 
their gas consumption in absolute and relative terms regarding their 
peers at the top of the distribution. This result implies positive impacts of 
EE measures in reducing fuel poverty in deprived areas of the UK 
geography. 

Several implications derive from this research. First, our paper shows 
that energy efficiency gains derived from the technical installation of 
energy efficiency measures are only effective in the short-term. Further 
research is therefore needed in understanding the reasons behind the 
lack of longer-term effects that could be connected to technology decay 
and/or aspects related to occupant behaviour. We suggest that the 
implementation of energy efficiency schemes consisting of a mix of 
regulatory instruments (tighter standards for newly constructed dwell
ings and for renovations), financial incentives (grants, loans or sub
sidies), and soft instruments influencing behaviour is more likely to 
result in longer term reductions in gas consumption. Second, energy 
efficiency gains vary widely among households located in areas with 
different levels of deprivation. Considering the domains of the Index of 
Multiple Deprivation (IMD) of the UK Government, those households in 
the lowest quintiles of the IMD are likely to represent households with 
low-income levels, low education attainment and that are more likely to 
be hit by unemployment. Our results indicate that households in the first 
and second quintile of the IMD do not experience the same levels of 
energy efficiency gains after the installation of technical efficiency im
provements as the other groups. This conclusion is reinforced by the 
result obtained with the analysis of percentile shares of the total gas 
consumption distribution where we see that the bottom 20% of the 
distribution increases their gas consumption after the installation of EE 
measures. While energy efficiency policies therefore may be having a 
positive impact on reducing fuel poverty, the energy efficiency schemes 
are not effective in this segment of the population in terms of delivering 
energy savings. This result is relevant for the design of measures tar
geting different groups and policy goals e.g., reduction of fuel poverty 
vs. energy efficiency savings. Third, our results highlight the specific 
difficulties of the British housing stock associated to the very high nat
ural gas penetration and the traditional existence of conservatories in 
households that may be counteracting the positive effects of the energy 
efficiency technical improvements. The UK with a 62.7% share of gas in 
final energy consumption in the residential sector, has the second largest 
share in Europe after The Netherlands (70.9%) (EUROSTAT, 2017). 
These figures reinforce the idea that targeted policies may be needed, 
specifically, for the reduction of gas consumption. These findings 

regarding the specific challenges by income group and type of residence 
may also be important when thinking about designing new policies 
focusing on household heat electrification. Cultural and behavioural 
aspects need to be considered in the design of the policy schemes. This 
will be essential given the reluctance of citizens to shift to electric 
heating if the UK wants to get a net zero carbon economy by 2050. 

While technical measures result in some savings in the short-term, it 
seems that in order to get long-term effects additional policy support 
would be needed. Our results call for the urgent need to fully incorporate 
human behaviour into ex-ante modelling of energy use; and to com
plement financial and regulatory energy efficiency policy instruments 
with soft instruments to promote the behavioural changes needed to 
realize the full saving potential of the adoption of EE improvements. 
From a policy perspective, this result underlines the need to establish 
more tailored energy policies adapted to a wider set of household 
characteristics. 

Given that technical energy efficiency improvements are not suffi
cient to generate energy saving, additional initiatives are needed. First, 
energy reduction targets could be established for households instead of 
for energy companies. Energy reduction targets per household may be 
associated to waivers in the energy bills in the long run. Those house
holds complying with their energy targets can qualify for receiving those 
waivers –similar to the No stamp duty on zero carbon homes policy in the 
UK (HMRC, 2016)-. For those households in deprived areas, assistance 
measures to reduce barriers of those households may be needed. In this 
sense, the role of local governments can be essential as they have a better 
knowledge of the necessities and barriers faced by local communities. 
Successful examples can be found in schemes like the Pay-as-you-save 
(PAYS) in which using a tariff, the utility puts a fixed charge on the 
customer’s monthly bill smaller than the estimated savings expected by 
the adoption of the energy efficiency measure. This provides the final 
users an immediate and sustained economic savings (Lin, 2018). These 
types of policies would be equally relevant in a context in which the 
measures taken by households were oriented towards the electrification 
of heating in residential buildings e.g., adoption and/or substitution of 
gas boilers by electric heat pumps. While these are just some ideas, 
further research is needed to disentangle the reasons behind the lack 
fully. It is essential to understand what the actual nature of reasons is, 
since they could be related to social challenges e.g., vulnerable house
holds, behavioural challenges e.g., lack of information or incentives, or 
(more likely) both. 

a Absolute differences in loft insulation b Absolute differences in cavity wall

Fig. 9. Percentile histogram (average annual differences in gas consumption in KWh). 
a. Absolute differences in loft insulation. b. Absolute differences in cavity wall. 
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