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 22 

ABSTRACT 23 

Night shift work, characterized by behavioral circadian disruption, increases 24 

cardiometabolic disease risk.  Our long-term goal is to develop a novel methodology to 25 

quantify behavioral circadian disruption in field-based settings and to explore relations 26 

to four metabolic salivary biomarkers of circadian rhythm.  This pilot study enrolled 36 27 

police academy trainees to test the feasibility of using wearable activity trackers to 28 

assess changes in behavioral patterns.  Using a two-group observational study design, 29 

participants completed in-class training during dayshift for six weeks followed by either 30 

dayshift or nightshift field-training for six weeks.  We developed a novel data-post 31 

processing step that improves sleep detection accuracy of sleep episodes that occur 32 

during daytime.  We next assessed changes to resting heart rate (RHR) and sleep 33 

regularity index (SRI) during dayshift versus nightshift field training.  Secondarily, we 34 

examined changes in field-based assessments of salivary cortisol, uric acid, 35 

testosterone, and melatonin during dayshift versus nightshift.  Compared to dayshift, 36 

nightshift workers experienced larger changes to resting heart rate, sleep regularity 37 

index (indicating reduced sleep regularity), and alternations to sleep/wake activity 38 

patterns accompanied by blunted salivary cortisol.  Salivary uric acid, testosterone, and 39 

melatonin did not change.  These findings show that nightshift work—a form of 40 

behavioral circadian rhythm disruption—was detectable in police trainees using activity 41 

trackers alone and in combination with a specialized data analysis methodology.   42 

 43 

KEY WORDS: circadian rhythm, circadian disruption, circadian misalignment, shift 44 

work, cortisol 45 
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KEY POINTS 47 

• Night shift work increases cardiometabolic disease risk and this may be a 48 

consequence of behavioral circadian misalignment.     49 

• To advance this hypothesis, methodologies to quantify behavioral irregularities 50 

during nightshift in field-based settings are needed. 51 

• In this pilot study, commercially available activity trackers combined with a novel 52 

data processing step were used to assess alterations in sleep/wake patterns in 53 

police trainees during dayshift versus nightshift.   54 

• We also explored relations with four metabolic salivary biomarkers of circadian 55 

rhythm during dayshift versus nightshift. 56 

• Compared to dayshift, nightshift resulted in larger perturbations of resting heart 57 

rate, sleep regularity index (indicating reduced regularity), and alterations in 58 

sleep and activity patterns; this was accompanied by blunted cortisol. 59 

• This novel data processing step extends commercially available technology for 60 

successful application in real-world shift work settings. 61 

  62 
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INTRODUCTION 63 

Diverse occupational sectors—transportation, healthcare, manufacturing, and 64 

public safety—rely on shiftwork schedules in order to meet work sector demands.  65 

Mounting evidence suggests circadian disruptions caused by shiftwork schedules result 66 

in increased chronic disease risk (Antunes et al., 2010; Pan et al., 2011; Lieu et al., 67 

2012; Barbadoro et al., 2013; Depner et al., 2014; Vetter et al., 2016; Manohar et al., 68 

2017; Shan et al., 2018; Gao et al., 2019; Dutheil et al., 2020; Rivera et al., 2020; 69 

Schilperoort et al., 2020; Maidstone et al., 2021).  For example, shiftwork is associated 70 

with obesity, type 2 diabetes (Antunes et al., 2010; Shan et al., 2018; Gao et al., 2019), 71 

hypertension (Manohar et al., 2017), dyslipidaemia (Dutheil et al., 2020), asthma 72 

(Maidstone et al., 2021), as well as increased breast cancer risk and stroke (Rivera et 73 

al., 2020).  While the relationship between shiftwork and chronic disease susceptibility is 74 

likely complex, it is hypothesized that temporal misalignment between the internal 75 

circadian clock and worktimes play a role.   76 

To advance our understanding of the relationship between circadian disruption 77 

introduced by shiftwork and increased chronic disease risk, a feasible, straightforward 78 

methodology for assessing field-based behavioral circadian disruption is needed.  This 79 

requisite was recently highlighted in a white paper summarizing discussions at the 2018 80 

Sleep Research Society’s sponsored workshop, “International Biomarkers Workshop 81 

and Wearables in Sleep and Circadian Science” (Depner et al., 2020).  The widespread 82 

development of commercially available activity trackers affords researchers new 83 

opportunities to survey novel behavioral patterns in community settings that can be 84 
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linked to key health indicators (Shcherbina et al., 2017).  Wrist-worn smart watches 85 

provide information on behavioral regularity of when an individual sleeps and exercises.     86 

Current activity tracker technology is optimized for use in settings when “typical” 87 

sleep/wake behaviors occur, in that devices are more likely to accurately detect activity 88 

during daytime hours and sleep during nighttime hours.  However, this may be 89 

problematic used in the shift work setting.  Shiftwork requires an individual to be active 90 

during the nighttime hours and sleep during daytime hours.  These misaligned 91 

behaviors are likely to go undetected, leading to inaccurate quantification.  This 92 

shortcoming may be overcome by developing a novel data post-processing step that 93 

removes external clock time bias, thereby increasing sleep label detection accuracy in 94 

the shiftwork setting. 95 

We anticipated that proprietary sleep algorithms originally developed for use by 96 

consumers with regular sleep patterns might perform poorly during night shiftwork: 97 

daytime sleep episodes would go undetected. Therefore, the first aim of this study was 98 

to develop a novel algorithm for sleep detection that is not biased by external clock time, 99 

in a sample of shift working police trainees.  The second aim was to assess the 100 

feasibility of concurrent field-based salivary sampling to detect changes in known 101 

biomarkers of circadian patterns.  We hypothesized that our novel algorithm would 102 

accurately detect daytime sleep episodes that are missed by commercial technology; 103 

and, secondly, that nightshift work would be reflected by aberrations in biological 104 

samples (cortisol, uric acid, testosterone, and melatonin). 105 

 106 
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METHODS 107 

Study Design 108 

 This was a two-group observational, repeated measures study design, leveraging 109 

the established schedule followed by 36 police recruits.  Schedules of police recruits 110 

involve 24 weeks of in-class training followed by 14 weeks of field-training.  This pilot 111 

study lasted approximately twelve weeks and occurred during the last six weeks of in-112 

class training (baseline phase) and the first six weeks of field-training.  During in-class 113 

training, classes were held Monday through Friday during daytime (7:30 AM-5:00 PM) 114 

hours; this represented normal circadian alignment.  This baseline phase was 115 

subsequently followed by six weeks of field training.  During the field-training phase, 13 116 

participants maintained a normal daytime schedule, representing circadian alignment 117 

and 14 participants switched to night shift work, representing circadian misalignment 118 

(Figure 1). During the second phase (circadian misalignment), trainees were assigned 119 

to one of the following four shift work schedules: 120 

 Schedule A: 6 AM-5 PM (circadian alignment) 121 

 Schedule B: 10 AM-9 PM (circadian alignment) 122 

 Schedule C: 4 PM-3 AM (circadian misalignment) 123 

 Schedule D: 8 PM-7 AM (circadian misalignment) 124 

Two of these four field-training schedules (A and B) align with the 24h day/night 125 

cycle and represented a maintenance of behavioral circadian alignment.  One 126 

participant engaged in office work continued to follow a 8 AM-5 PM schedule.  The other 127 

two schedules (C and D) were misaligned with the day/night cycle and represented 128 

acute circadian misalignment.  Work schedules were maintained for four consecutive 129 
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days, followed by four consecutive days off.  Activity monitors were worn continuously, 130 

and thus capture behavior during both the in-class training phase and the field training 131 

phase.  Three salivary samples were collected during the in-class training phase and six 132 

samples were collected during the field training phase, totaling 9 salivary samples for 133 

each participant.  This study design was advantageous because it controls for the job 134 

transition from in-class training to field-training due to nightshift and dayshift transition 135 

comparisons. 136 

 137 

Ethical Approval 138 

This study was approved by the Duke University Health System Institutional 139 

Review Board for Clinical Investigations (IRB# Pro00077319).  All participants provided 140 

written informed consent prior to study participation. 141 

 142 

Participants  143 

Study inclusion criteria were as follows: 1) enrolled in a local public safety 144 

training program and 2) owned a smartphone.  We conducted on-site recruitment 145 

events to raise general study awareness by partnered with a local policy department.  146 

We presented the study to a total of 77 trainees, or four academy classes and enrolled 147 

36 participants.  Participants provided informed consent electronically using a secure 148 

web application (REDcap).    149 

 150 

Study Protocol 151 
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 7 

 As a field-based study, all assessments were collected outside of the laboratory.  152 

After providing informed consent, participants were instructed on use of the activity 153 

tracker (Garmin vívosmart® HR, Olathe, KS) and supplied with six self-administered 154 

saliva collection kits, using either drool sampling (SalivaBio Passive Drool, Salimetrics®) 155 

or oral swab method (SalivaBio Oral Swab, Salimetrics®), and then instructed on their 156 

use and the collection protocol. 157 

    158 

Activity Tracker Assessments 159 

Activity monitors were worn on the wrist 24/7 (except for when the watch was 160 

being charged). The Garmin vívosmart® HR recorded observations of activity level, 161 

heart rate, and algorithmically-generated sleep/wake labels every 15 minutes, totaling 162 

96 measurements per person during a 24h period.  Wear time was required to be at 163 

least 80% over a given 24h period and individuals meeting this criterion for at least 50% 164 

of the days were considered complete and included in the analysis.  From these data, 165 

changes in resting heart rate and in sleep regularity using the methods described 166 

subsequently were evaluated. 167 

 Novel Sleep Labelling Method Development.  Garmin vívosmart® HR relies on 168 

user input of anticipated regular bedtime—a key input to the sleep detection algorithm.  169 

However, shift workers followed irregular sleep/wake patterns and this may potentially 170 

contribute to inaccuracies in sleep detection, particularly during daytime hours.  We 171 

posit that a novel sleep labeling method that does not require user input information, 172 

such as anticipated bedtime, will increase sleep detection accuracy in the shift work 173 

setting.  Thus, we developed a novel logistic regression-based sleep labeling algorithm 174 
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that relies on heart rate and activity data—rather than anticipated bedtime—as input 175 

information to detect sleep episodes.  Specifically, we developed a model that labels 15-176 

minute epochs as sleep or wake based on new input information—heart rate and 177 

activity data—collected by Garmin vívosmart® HR and application.   178 

To accomplish this, we first defined our ground truth data set using the following 179 

rationale.  We acquired reliable sleep periods detected by the Garmin vívosmart® HR 180 

and application.  Given that Garmin technology is optimized for a typical circadian 181 

aligned schedule, we assumed that Garmin vívosmart® HR sleep labels (positive 182 

labels) collected during in-class training (which follows a daytime schedule) were 183 

reliable.  Specifically, reliable wake labels were defined as periods 4 to 8 hours before 184 

the sleep period start and 4 to 8 hours after the sleep period end.  Next, the ground truth 185 

dataset was split into training (n=148256) and test sets (n=37064) for algorithm 186 

development.  187 

 Resting Heart Rate.  Daily resting heart rate was calculated as the mean heart 188 

rate at rest, or when the maximum Motion Intensity < 3. Motion Intensity was derived 189 

from minute-level accelerometry data and is an aggregate measure of overall activity 190 

level for each 15-minute epoch. Motion Intensity takes integer values between 0 and 7 191 

inclusively, with 0 corresponding to stillness and higher scores corresponding to more 192 

activity.   193 

 Sleep Regularity Index.  We calculated a sleep regularity index, using sleep/wake 194 

labels obtained after the sleep labelling algorithm, to quantify day-to-day sleep regularity 195 

over the course of five consecutive days.  This a previously established index that 196 

ranges from 0-100, in which a greater value indicated increased sleep regularity.  The 197 
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equation for calculation of the sleep regularity index has been described previously.  It 198 

was used initially used on ActiGraph’s sleep/wake label data streams; and therefore, 199 

could be easily applies to sleep/wake labels derived from Garmin vívosmart® HR 200 

activity and heart rate data (Lunsford-Avery et al., 2018) for use in the current study.  201 

 202 

Salivary Assessments 203 

Saliva samples were self-collected using either the cheek cotton swab method or 204 

the passive drool method, in which saliva is passed into a collection container via straw.  205 

Participants stored saliva samples in their home -20oC freezer until collected by study 206 

staff at the following protocol visit.  Samples were then stored at -80°C until batched 207 

analyses.  During in-class training, which represents baseline, participants collected 208 

three samples: before bed, upon waking, and 30 minutes after waking (sample must be 209 

collected within 60 minutes after waking to be included in final analysis) on a workday 210 

(totaling 3 samples).  During field-training, participants collected three samples at the 211 

same behavioral events on a workday and non-workday (totaling 6 samples).  The 212 

workday and non-workday samples were averaged, to represent the behavioral 213 

timepoints for field training.   214 

The differences between in-class training and field-training (average of workday 215 

and non-workday) were calculated for each behavioral time point: 216 

a)  before bed(in class-training) – before bed(field training; average of workday and non-workday) 217 

b) upon waking (in class-training) – upon waking(field training; average of workday and non-workday) 218 

c) wake + 30 min(in class-training) – wake +30 min (field training; average of workday and non-workday) 219 
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Assessment timepoints are shown in Figure 2.  These calculations were performed on 220 

salivary biomarkers: cortisol, uric acid, testosterone, and melatonin.  Next, we compared 221 

to deltas between in-class dayshift versus those during in-class nightshift. 222 

 Salivary Circadian Biomarker Assays.  To assess salivary biomarkers, 223 

manufacturer’s instructions were followed using commercially available immunoassay 224 

kits; salivary cortisol (Salimetrics #1-3002), salivary uric acid (Salimetrics #1-3802), 225 

salivary testosterone (Salimetrics #1-2402), and salivary melatonin (Salimetrics #1-226 

3402).  To minimize batch effects, all three behavioral timepoints from a participant 227 

were analyzed on the same plate (e.g., saliva sample collected at baseline, upon 228 

waking, and wake + 30 min during both in-class training and field-based training).  229 

Manufacturer-provided controls were run in duplicate on each plate in order to assess 230 

intra- and inter-assay variability and to establish an acceptable control range.  Lab 231 

personnel were blinded to study condition. 232 

 233 

Statistical Analysis 234 

 Data are presented as mean ± standard deviation unless otherwise noted.  235 

Python 3.6 (packages statmodels 0.11.0 and pingouin 0.3.11) was used for statistical 236 

analyses.   237 

Aim 1: Novel Algorithm Performance:  We tested agreement between our novel 238 

algorithm and reliable Garmin sleep labels by evaluating the following: testing and 239 

training accuracy, testing F1-score, and testing ROC-AUC.  To accomplish this, we 240 

used four performance evaluation models: logistic regression, random forest, adaboost, 241 
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and support vector machine (radial basis function).  We considered 0.90 testing F1- 242 

score and testing ROC-AUC as acceptable performance.   243 

Aim 2: Within each group, differences between in-class training versus field-244 

training were determined using the Wilcoxon signed-rank test for activity monitor 245 

measures (resting heart rate and sleep regularity index) and salivary measures (cortisol, 246 

uric acid, testosterone, and melatonin).  Between group differences (circadian 247 

misalignment vs. circadian alignment) during the transition from in-class to field-training 248 

were determined using the non-parametric Kruskal Wallis test for both activity monitor 249 

measures (resting heart rate and sleep regularity index) and salivary measures (cortisol, 250 

uric acid, testosterone, and melatonin).  The significance threshold was P<0.05.   251 

Salivary biomarkers were adjusted for multiple comparisons using Bonferroni 252 

corrections.  Outliers were identified by Grubb’s test. 253 

 254 

RESULTS 255 

Participant Characteristics 256 

The study cohort was predominately male (67%; 18 M/9 F).  The mean age was 257 

28 years old (6.2) ranging from 21 to 47 yrs.  The mean BMI was 27 kg/m2 ( 3.4) 258 

ranging from 21 to 33 kg/m2.    A consort figure is shown in Figure 3.  Nine of 36 enrolled 259 

participants did not have data due to various reasons (e.g. lost to follow up, did not 260 

follow sample collection instructions; Fig 3).   261 

 262 

Activity Tracker Sleep Detection Performance During Shift Work 263 
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 Of the 27 participants that completed both phases, we had complete data for 25 264 

participants.  We excluded activity tracker data from two participants as they did not 265 

meet our wear time criteria. 266 

To determine whether we can rely on sleep provided by Garmin, we evaluated 267 

the performance of Garmin sleep detection during both dayshift and nightshift.  We 268 

expect trainees to have at least one main sleep event every 24h, which we defined as 269 

the largest block of time spent asleep or in bed exceeding 4h, regardless of circadian 270 

alignment.  We compared the number of Garmin-generated sleep periods to this 271 

expectation and observed that during the day shift field-training (circadian alignment), 272 

89.7% of main sleep events were detected.  However, during the night shift field-training 273 

(circadian misalignment) only 49.7% of main sleep events were detected.  We 274 

interpreted this to mean activity tracker proprietary algorithms have high sleep detection 275 

accuracy used during typical circadian aligned schedule, but poor sleep detection 276 

performance during circadian misalignment.  These findings re-affirm the need to 277 

improve algorithm sleep detection performance during nightshift. 278 

 279 

Novel Sleep Labeling Development 280 

Our algorithm demonstrated high epoch-by-epoch prediction accuracy on the test 281 

dataset, with logistic regression achieving a testing accuracy, or level of agreement with 282 

the Garmin algorithm, of 94% (Table 1).  While all four models demonstrated high level 283 

of agreement, we ultimately chose logistic regression because of model simplicity and 284 

less risk of overfitting.  We then used the logistic regression model to determine sleep 285 

versus wake labels for each epoch during nightshift work (circadian misalignment) and 286 
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imputed the labels previously missed by the activity tracker’s proprietary sleep detection 287 

algorithm.   288 

Figure 4 compares sleep labeling detected by activity tracker propriety software 289 

(gray shading) versus sleep labeling detected by our novel sleep labeling method 290 

(overlaid orange shading) over the course of four days, plotted as heart rate (Panel A), 291 

Mean Motion Intensity (Panel B) and Max Motion Intensity (Panel C).  These data 292 

shown that activity tracker labeling detected a main sleep event during the first 24h 293 

period but missed sleep events during subsequent three nights.  In contrast, our sleep 294 

labeling method detects a main sleep event for each 24h period.  These four days were 295 

chosen arbitrarily.   296 

 297 

Activity Tracker Assessments 298 

 To determine whether physical activity and algorithm-derived sleep patterns 299 

across phases of the day were indicative of the occurrence of a circadian misalignment, 300 

we developed a polar plot to visualize activity and sleep behavior fluctuations during 301 

both daytime training versus night shift field-training, totaling 42 days.  As shown (Figure 302 

5), the polar plots depict behavioral pattern shifts relative to the external clock time over 303 

long durations (e.g., several weeks) and demonstrate the dramatic shift in the 304 

sleep/wake routine relative to the external clock time that is absent during dayshift work 305 

(Figure 5A) but present during night shiftwork (Figure 5B).  Hence, we concluded that 306 

the following a nightshift schedule resulted in behavioral circadian misalignment. 307 

 Resting Heart Rate.  For the trainees remaining in circadian alignment, resting 308 

heart rate was 63.5 ± 6.4 bpm (beats per minute) during in-class training, and increased 309 
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to 65.4 ± 6.7 bpm during field-training.  Whereas for the trainees who underwent 310 

circadian misalignment, resting heart rate increased from 66.1 ± 4.5 during in-class 311 

training to 72.5 ± 6.0 bpm during field-training.  Circadian misalignment resulted in a 312 

significantly larger change in resting heart rate (P=0.009, Table 2).   313 

Sleep Regularity Index.  For the trainees remaining in circadian alignment, Sleep 314 

Regularity Index was 65.5 ± 13.4 during in-class training and changed to 67.0 ± 10.2 315 

during field-training.  Whereas for the trainees who underwent circadian misalignment, 316 

Sleep Regularity Index was 64.5 ± 8.2 during in-class training and increased to 55.0 ± 317 

9.8 during field-training.  Circadian misalignment resulted in a significantly larger 318 

decrease in Sleep Regularity Index (P=0.050, Table 2) 319 

 320 

Salivary Assessments  321 

 Salivary data were analyzed from 19 participants.  For the trainees 322 

remaining in circadian alignment, cortisol measured 30 minutes after waking was 0.31 ± 323 

0.15 µg/dL during in-class training and changed to 0.35 ± 0.16 µg/dL during field-324 

training.  Whereas for the trainees who underwent circadian misalignment, cortisol 325 

measured 30 minutes after waking was 0.57 ± 0.25 during in-class training and 326 

decreased to 0.25 ± 0.14 µg/dL during field-training.  Circadian misalignment resulted in 327 

a significantly larger decrease in cortisol measured 30 minutes after waking (P=0.0002, 328 

Table 2).  Cortisol measures before sleep and upon waking did not significantly change 329 

during circadian alignment versus circadian misalignment (Table 2).   330 

Uric acid measured before bed, upon waking, and 30 minutes after waking, 331 

testosterone measured before bed, upon waking, and 30 minutes after waking, and 332 
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melatonin measured before bed, upon waking, and 30 minutes after waking did not 333 

significantly change during circadian alignment versus circadian misalignment (Table 2).   334 

 335 

DISCUSSION 336 

Night shift work is associated with increased chronic disease risk (Antunes et al., 337 

2010; Pan et al., 2011; Lieu et al., 2012; Barbadoro et al., 2013; Depner et al., 2014; 338 

Vetter et al., 2016; Manohar et al., 2017; Shan et al., 2018; Gao et al., 2019; Dutheil et 339 

al., 2020; Rivera et al., 2020; Schilperoort et al., 2020; Maidstone et al., 2021).  To 340 

further our understanding of the health risks associated with this highly prevalent 341 

occupational demand, we are in need of field-based methodologies that quantify 342 

behavioral circadian disruption (Depner et al., 2020).  Here, we used a commercially 343 

available wrist-worn activity tracker to assess alterations in activity and sleep patterns 344 

occurring as a result of changing from a dayshift to a nightshift work schedule.   345 

We developed a novel method to detect periods of sleep and wake. Using a data 346 

post-processing step, we are now able to use commercially available devices to assess 347 

behavioral patterns in shift workers.  Consumer activity trackers have long been used in 348 

research settings to assess behavior in various patient populations (Adams et al., 2021; 349 

Bayoumy et al., 2021).  However, this technology relies on external clock time and self-350 

reported sleep time of the user to detect sleep and wake episodes.  This approach has 351 

a risk of bias towards mislabeling periods of low activity during nighttime hours as 352 

“sleep”, which may not necessarily be accurate during nighttime shiftwork.  Reciprocally, 353 

there is a risk of bias towards mislabeling actual sleep episodes as “wake”, when sleep 354 
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occurs during daytime hours.  Hence, we adapted this novel sleep labeling method to 355 

overcome these limitations.  Our method relies on heart rate data as input information, 356 

which is a physiological indicator of activity, rather than anticipated bedtime, to label 357 

sleep/wake episodes.  We had approximately 7,340 event epochs per person and 76.5 358 

days of continuous data collected for each person.  This high frequency of data points 359 

yields a more accurate prediction compared to input variables collected with low 360 

frequencies (Dunn et al., 2021).  This approach is particularly advantageous for smaller 361 

samples sizes and was effective in our 36-person current sample size.   362 

  Behavioral regularity contributes to internal circadian timing, while behavioral 363 

irregularities contribute to mistiming, or internal circadian dyssynchrony (Bass & Lazar, 364 

2016).  Sleep and wake patterns, in addition to eating and exercise, are relevant 365 

behaviors impacting circadian timing (Bass & Lazar, 2016; Zhang et al., 2021).  The 366 

Sleep Regularity Index was established as a tool to quantify the degree of sleep 367 

regularity in a group of older adults (mean age=68.7 ± 9.2 y) (Lunsford-Avery et al., 368 

2018).  The initial validation study reports that greater sleep irregularity was associated 369 

with ten-year cardiovascular disease risk, as well as greater obesity, hypertension, 370 

fasting glucose, hemoglobin A1c, and diabetes status (Lunsford-Avery et al., 2018).  In 371 

our study, we compared the sleep regularity index assessed during circadian misaligned 372 

and circadian aligned behavioral conditions.  As expected, we observed a decline in 373 

sleep regularity during night shiftwork.  This decline in the sleep regularity index 374 

occurred concurrently with changes in activity and sleep patterns assessed using the 375 

novel sleep labeling method.  These complementary findings support the use of our 376 
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sleep labelling method as a novel tool to assess changes in activity and sleep 377 

behavioral patterns imposed by a night shift schedule.    378 

Circadian rhythms are intrinsic, self-sustaining patterns generated by internal 379 

molecular clocks residing in virtually all cells of the body (Takahashi et al., 2008).  The 380 

gold-standard for assessing circadian rhythm in human is the constant routine protocol 381 

(Duffy & Dijk, 2002).  Several hormones also display 24-hour oscillating rhythms.  382 

Alternatively, the secretion patterns of these hormones—including cortisol (Hofstra & de 383 

Weerd, 2008)—can be used to infer circadian phase. In this study, we assessed 384 

salivary cortisol using self-administered saliva detection kits.  We observed that salivary 385 

cortisol decreased during circadian misalignment.  This occurred in parallel with the 386 

decline in sleep regularity index as well as changes alternations in Garmin-reported 387 

activity and sleep.  In addition to cortisol, we examined changes in salivary testosterone, 388 

uric acid, and melatonin.  Testosterone and uric acid were unchanged during circadian 389 

misalignment.  Testosterone was highly variable, in part because 33% of the cohort was 390 

female; thus, we did not detect significant changes.  These data seem to suggest that 391 

the behavioral irregularities resulting from of a night shift schedule occurred without 392 

changes in endogenous circadian phase.    393 

Effective strategies combating increased disease risk associated with shiftwork are 394 

needed (Schilperoort et al., 2020).  However, understanding individual behavioral 395 

patterns and effects in real life settings will required field-tested methods.  To do so, we 396 

partnered with local police trainees and leveraged their established training schedule. 397 

We controlled for the stress of transitioning from in-class training to field-training through 398 

comparisons of both nightshift and dayshift schedules.  Aberrations observed in 399 
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physiological parameters such as heart rate and cortisol can be used to evaluate the 400 

impact of circadian dyssynchrony on health parameters.  Overall, there was high 401 

compliance to the study protocol.  This may be in part due to the fact that research staff 402 

largely conducted recruitment, consenting, and data collection at the work site (local 403 

police academy) and electronically rather than requiring in-patient laboratory visits.  We 404 

seek to overcome a critical methodological barrier by quantifying circadian rhythm 405 

disruption in field-based settings.  And as with any field-based study, there were some 406 

challenges.  The melatonin assay requires a relatively high sample volume (100 µL), 407 

whereas other biomarkers require lower volumes (salivary cortisol: 25 µL; salivary 408 

testosterone: 25 µL; salivary uric acid: 10 µL).  We initially used the oral swab method of 409 

sample collection; however, this did not capture adequate volume resulting in missing 410 

values for melatonin.  After 12 participants, we switched to the passive drool method in 411 

efforts to collect larger volumes; yet, this still resulted in inadequate volume.  Future 412 

field-based studies aiming to assess salivary circadian biomarker may consider cortisol 413 

as a reliable parameter of circadian disruption or dyssynchrony.   414 

Our long-term goal is to address this need by developing an index, or composite 415 

score, to quantify the impact of behavioral circadian disruption in humans.  The current 416 

work is the first step towards this goal.  We adapted commercially available wearable 417 

devices for use in the shiftwork setting by improving the accuracy of sleep labelling.  418 

Using heart rate and activity data as input rather than external clock time we were able 419 

to accurately identify sleep and activity episodes during both daytime and nighttime.  In 420 

line with alterations in activity and sleep patterns, we also observed declines in the 421 

sleep regularity index and lower salivary cortisol—an endogenous marker of circadian 422 
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phase.  These concurrent observations serve as internal validation of the novel sleep 423 

labelling method used to analyze wearable data.  We believe this progress in using a 424 

wearable to assess circadian-related metrics within the context of the shiftwork setting 425 

will allow us to conduct field studies of the effects of circadian misalignment on 426 

measures of human health.  Ongoing, we intend to incorporate other behaviors that 427 

impact circadian rhythm, such as the timing of meals and exercise, into a composite 428 

score quantifying circadian rhythm disruption (Wolff & Esser, 2012; Sato et al., 2019; 429 

Gabel et al., 2021).  We anticipate validating this score against transcriptional and 430 

metabolic markers of tissue circadian phase. Such a metric may eventually be used to 431 

guide the development of techniques mitigating the adverse health consequences 432 

associated with shiftwork.  Long-term, we expect this work will lead to healthier 433 

shiftwork populations, reduced healthcare costs, and reduced employee turnover. 434 
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Table 1: Novel Sleep Labelling Method Performance Statistics 435 

 Training 
Accuracy 

Testing 
Accuracy 

Testing 
F1-Score 

Testing 
ROC-AUC 

Logistic Regression (CV) 0.94 0.94 0.94 0.98 
Random Forest 0.95 0.95 0.95 0.98 
Adaboost 0.94 0.94 0.94 0.98 
SVM (rbf) 0.94 0.94 0.95 0.95 

SVM (rbf): Support vector machine (radial basis function). 436 

  437 
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Table 2 Behavioral and Biological Changes During Shift Work 438 

Outcome Measures 
Delta from In-Class Training to Field-Training 

 Dayshift: 
 Circadian Alignment 

 Nightshift: 
Circadian 

Misalignment 

P Value 

Activity Tracker Assessments -- -- -- 
     Resting Heart Rate, bpm  1.84 ± 2.33 6.48 ± 4.28 0.00898* 

     Sleep Regularity Index  1.44 ± 10.8 9.49 ± 10.9 0.0500 

Salivary Biomarker   -- 
  Cortisol    

      before bed -0.0018 ± 0.13 -0.046 ± 0.11 0.142 
      upon waking -0.00056 ± 0.15 -0.11 ± 0.21 0.310 

      wake+30 min 0.04 ± 0.18 -0.32 ± 0.23 0.00156* 

  Uric Acid    
      before bed 0.012 ± 1.32 -0.29 ± 3.1 0.280 

upon wake  -1.01 ± 3.79 2.81 ± 3.47 0.128 
      wake+30 min -0.12 ± 1.85 -0.52 ± 3.4 0.939 

Testosterone    

      before bed -15.4 ± 70.0 -27.2 ± 145 0.440 
     upon wake 232 ± 721 40.3 ± 83.5 0.866 

     wake+30 min -40.9 ± 126 -3.32 ± 61.3 0.537 
Melatonin    

      before bed 47.5 ± 162 3.91 ± 9.29 1.00 
     upon wake -5.35 ± 15.3 0.93 ± 11.7 0.482 

     wake+30 min 2.11 ± 16.9 -4.86 ± 13.83 0.482 

Values presented as mean ± SD.  * indicates P ≤ 0.05. 439 

 440 

  441 
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Figure 1: Study Design 442 

 443 

  444 
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Figure 2: Activity Monitor and Salivary Sample Assessment Timeline 445 

 446 

  447 
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Figure 3: Consort Diagram 448 

449 
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Figure 4: Comparison of Activity Tracker Sleep Labeling Vs. Novel Sleep Labeling 450 

Method 451 
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Figure 4: Heart rate, mean motion intensity and max motion intensity derived from 453 

activity monitor collected over a typical span of four days for an individual police trainee 454 

during field-training. X-axis displays time (12h increments indicated).  Data points are 455 

shown at a frequency of every 15 minutes. Panel A shows heart rate (beats per minute) 456 

over the course of four days represented by black symbols.  Panel B shows mean 457 

motion intensity over the course of four days represented by black symbols.  Panel C 458 

shows max motion intensity over the course of four days represented by black symbols. 459 

The gray shaded area is the Garmin-detected sleep period.  The orange shaded area 460 

denotes sleep period detected by our novel sleep labeling method. 461 
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Figure 5 463 

 464 

Figure 5: Polar plot display of activity patterns assessed using Garmin vívosmart® HR 465 

(shown in blue) and sleep patterns derived from the novel sleep labelling method 466 

(shown in red).  Days are plotted on the radial axis for two consecutive observational 467 

periods (in-class training followed by field-training).  Each activity and sleep data pair 468 

represent one participant.  Panel A shows paired activity and sleep data from 4 469 

participants assessed during dayshift circadian alignment.  Panel B shows paired 470 

activity and sleep data from 4 participants during nightshift circadian misalignment.  471 

Black dashed circle indicates approximate timing of the transition from in-class training 472 

to field training.  Intensity of the activity data are represented by increased pixel color 473 

intensity as indicated in the figure legend on the top level of both panels.   474 
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Data Availability Statement 476 

Data available upon reasonable request from the authors. 477 
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