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Abstract1 
 

Climate change is imposing a large burden on the most vulnerable populations, 
particularly in the developing world. Establishing consistent causal relationships, 
however, is difficult because a multiplicity of climatic, economic and socio-
demographic elements are combined to create the conditions for an outbreak of 
vector-borne disease. Based on a two-step procedure, this paper presents and tests 
an approach to estimating the effects of epidemic outbreaks on health 
vulnerability. The model proposed is empirically tested for five countries in Latin 
America where dengue is a national health priority. Using data from national 
censuses, satellite climate information and data from a newly developed disease 
outbreak surveillance online platform, the paper finds that climate has non-
negligible effects on health vulnerability. The evidence found and the 
vulnerability index constructed can be used to analyze the main determinants of 
vulnerability in order to address policy concerns.  
 
JEL classifications: D04, Q51, Q54, R58 
Keywords:  Vulnerability, Climate change, Socioeconomic conditions, Vector-
borne diseases, Factor analysis 
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1. Introduction 
 

Climate change is imposing a burden that is unevenly distributed across populations, and the 

most vulnerable tend to bear a relative larger share of this burden. In recent years, the frequency 

and intensity of extreme climatic episodes has increased, challenging communities’ ability to 

cope with the adverse effects of those events. Naturally, the most vulnerable populations are in 

worse positions to effectively face these challenges to the extent that they have a limited ability 

to withstand the impact of extreme weather events and adapt to changing conditions.  Therefore, 

regardless of how the causes of climate change are assessed, this new scenario calls for policy 

strategies aimed at increasing the resilience of local communities and thereby reducing the 

burden of the most vulnerable populations.  

Latin America’s adaptation is complicated by an unprecedented urbanization process that 

has made it the second most urbanized region in the world, only behind North America (IDB, 

2011).  Most intermediate Latin American and Caribbean cities have experienced impressive 

growth rates in their urban populations in recent years, a trend that is very likely continue in the 

years ahead.  This has placed additional pressure on already-deficient provision of basic services 

and increased the vulnerability of newcomers.  

A particular case of vulnerability in this context is the emergence of vector-borne 

diseases. Dengue, malaria, leishmaniasis, Chagas disease and tick-borne diseases are endemic in 

many countries in Latin America and the Caribbean, and episodic outbreaks are thus common in 

the region.  Figures from Health Map,2 a web-based platform for epidemic surveillance, indicate 

that in 2013 more than 5,236 vector-borne outbreak alerts (5,207 for dengue) took place in 17 

countries where these diseases are endemic.  Vulnerability to vector-borne diseases can clearly 

have a significant impact on Latin American citizens’ quality of life and their productivity. 

Given the large share of dengue outbreaks, this paper’s analysis is focused on that disease.  

There is an increasing interest in both public policy and academic audiences in estimating 

the impacts of extreme events on health outcomes. This being a relatively new area, much of the 

research has concentrated on the impacts of extreme temperatures on mortality, agriculture and 

industrial outcomes, and even social conflict (Deschênes, 2012, and Dell, Jones and Olken, 2013, 

offer a comprehensive literature review of the effects of extreme events on health outcomes).  

                                                           
2
 http://healthmap.org 

http://healthmap.org/
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Less research has been conducted on the effects of vector-borne diseases, given climate and 

social conditions, on health vulnerability. This paper seeks to bridge the gap in this regard.   

Vulnerability has received significant attention in the literature.  The epidemiological 

research has focused on the impacts of global climate change and population characteristics on 

both endemic and epidemic vector-borne diseases. Sutherst (2004) offers a summary of the 

complex interrelationship between global climate change, localized weather variability, 

biological adaptability, population socioeconomic characteristics, and the prevention and 

management of vector-borne diseases. Sutherst emphasizes the role of social and economic 

characteristics in the prevention and management of vector-borne diseases. Increasing standards 

of living in developing countries and proper allocation of resources are seen as vital tools in the 

prevention of vector-borne diseases. Haines and Patz (2004) also note the direct relationship 

between extreme weather patterns and the increased incidence of vector-borne diseases, while 

Haines et al. (2006) provide evidence that negative health effects of global climate change are 

more prevalent in low-income countries.    

Furthermore, policy-driven studies such as those of Ebi, Kovats and Menne (2006) 

provide a framework for analyzing vulnerability to vector-borne diseases. An essential 

component of the policy framework is the proper assessment of the potential impacts of climate 

change and variability on different socioeconomic sectors within a population. Policy to promote 

prevention or management of vector-borne diseases could then be tailored based on this 

assessment. The statistical modeling approach provided in this paper therefore combines climate, 

social, and health data to provide a quantitative measurement of vulnerability to vector-borne 

diseases and extreme climate conditions.   

A widely accepted notion of vulnerability defines it as the product of exposure, 

sensitivity and capacity to adaptation once the extreme event takes place (Few, 2007; Miller, 

Yoon and Yu, 2013; WHO, 2003).  Exposure usually refers to the probability of an adverse event 

taking place, as well as the intensity of such an event. In the particular case of vector-borne 

diseases, exposure will be the result of both climatic and socioeconomic conditions in a given 

region. Sensitivity is defined as the impact the adverse event can have on the unit of analysis (a 

city from here on). Adaptation refers to the measures the city can take to neutralize the negative 

impacts. To a large extent, sensitivity and adaptation are two sides of the same coin. Both will be 

the result of a multitude of factors, including publicly provided facilities, as well as assets and 
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strategies individual households and communities within a city have on hand to cope with the 

adverse effects.  In this paper we propose to use this notion, along with quasi-experimental 

impact evaluation techniques, to estimate the impacts of climatic extreme events and 

socioeconomic conditions on health outcomes. Throughout the paper, it is assumed that 

vulnerability has a first order negative impact on health outcomes (i.e., higher levels of 

vulnerability will translate into poorer health outcomes), an assumption empirically tested in 

several papers (Molina, 2009; Tarazona and Gallegos, 2011).  

Establishing a consistent causal relationship from these variables to health outcomes 

requires taking into account that a multiplicity of climatic, economic and socio-demographic 

elements are combined to create the conditions for the outbreak of diseases, and the subsequent 

effect on population wellbeing. In this paper two direct effects through which climatic and 

socioeconomic conditions can have an impact on vulnerability are estimated.   

Vector-borne diseases are a particularly good example of these complex relationships. 

Along with a city’s economic development and basic service coverage, social institutions and 

households’ capabilities, climatic and geographic conditions are to large extent determinants of 

vector populations and thus influence the likelihood of outbreaks. Temperature, precipitation, 

and humidity are critical to mosquito survival, reproduction, and development and thus influence 

mosquito presence and abundance (Githeko et al., 2000; Hii, 2013).  Extreme weather events can 

directly affect the likelihood of epidemic outbreaks by enhancing the environmental conditions 

that allow mosquito populations to thrive. Thus, ceteris paribus, increases (within a range) in 

either (or both) precipitation and temperature are expected to have a positive impact on the 

expected likelihood of an outbreak.  

Climate change may shift the pattern distribution of vulnerability across regions in Latin 

America. Dengue and malaria require specific climatic conditions for growth (Githeko et al., 

2000). Increased levels of rainfalls, and variations in the temperature regimes across regions 

derived from climate change may condition the appearance of susceptible mosquito populations.  

 For instance, in countries where transmission does routinely occur, short-term changes in 

weather (temperature, precipitation, and humidity) are often correlated with higher levels of 

incidence of dengue,3 the most prevalent vector-borne disease in the region. Climate change is 

likely to increase the frequency of such extreme short-term climatic events. Furthermore, climate 

                                                           
3 http://www.cdc.gov/dengue/entomologyEcology/climate.html#climate 

http://www.cdc.gov/dengue/entomologyEcology/climate.html#climate
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change may change the average levels of precipitation and temperature of certain regions, 

enabling the emergence of vector populations where few or no historical records of such diseases 

exist.   

A growing literature has robustly demonstrated the direct effects of extreme climate 

conditions on health outcomes (see Deschênes, 2012, and  Dell, Jones and Olken, 2013, for a 

review). Direct effects consist mainly of physical discomfort but can encompass serious illness 

and even death. These effects are generally exacerbated in children and the elderly, the 

populations most vulnerable to these diseases. Several papers have aimed to quantify these 

effects (Guerrero, 2013; Burgess et al., 2011; WHO, 2003; Githeko et al., 2000; Molina, 2009; 

Patz et al., 2005; Deschênes and Moretti, 2007).  

A second set of indirect effects also takes place. Indirectly, being infected with malaria or 

dengue will entail loss of working days, with subsequent impact on household income-

generating capabilities. This is the income mechanism explored in Burgess et al. (2011) and 

Guerrero (2013) for India and Mexico, respectively.  In this paper we will not address effects of 

that type.   

However, no epidemic outbreak takes place in a social vacuum.  Urbanization can either 

create the conditions for epidemic outbreaks to thrive or halt their appearance, conditional on the 

quality of basic services and other types of basic and public health infrastructure (Friel et al., 

2011; Kjellstrom et al., 2007; Vlahov et al., 2007). The availability of some public services 

(mainly sewage and water supply) varies considerably across cities, particularly in large and 

intermediate metropolitan areas, which already constitute a vast majority of urban settlements in 

Latin America (IDB, 2011; Carrera, 2013). Local imbalances in access to publicly provided 

services and in possession of assets increase the pressure on vulnerable populations, who are less 

capable of adapting to environmental threats stemming from climate change. This point can be 

particularly relevant in highly dense locations, where a relatively large portion of the local 

population is vulnerable.   

In this regard, socioeconomic conditions have two direct effects on the adopted measure 

of health vulnerability. The first, as in the case of extreme climate, is directly linked to the 

likelihood of epidemic outbreaks in a given region. The degree and quality of health and 

infrastructure services are expected to have a negative first order effect on the likelihood of an 

outbreak.   
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The evidence found in the literature is robust with regard to this causal link. Nonetheless, 

some services will tend to have a larger impact on the likelihood of an outbreak than others; 

sewage, access to piped water, and provision of health services, among others, are expected to be 

better predictors of outbreaks than other services (Kjellstrom et al., 2007; Vlahov et al., 2007). 

A second set of direct effects comes as a result of the definition of sensitivity used. As 

mentioned, sensitivity is the result of city-wide, community and household-level capabilities that 

enable individuals and households to cope with adverse events. Following the ideas presented in 

Cutter, Boruff and Shirley (2003) and IPCC (2007), this framework allows us to estimate an 

index composed of two different dimensions (a household-level factor and a community/city 

factor) that add up to represent the abstract concept of sensitivity. The index incorporates only 

socioeconomic information extracted from national census sources. 

Bringing all these elements together, a means of accounting for both set of impacts—i.e., 

the effects of climatic extremes and socio-economic conditions on vector-borne disease 

vulnerability—is presented in this paper. Central to our estimation strategy is the notion that 

climatic covariates are strictly exogenous. We estimate the model presented in Section 3 for five 

Latin American countries where dengue is prevalent and represents a national health priority. 

Our analysis can be regarded as exploratory, as we aim to estimate the effects of structural 

factors on health vulnerability. 

The research contributes to the existing literature in several regards.  First, the scope of 

our approach allows us to obtain implications that are to a large extent externally valid, at least 

for Latin America, as more than 1,700 municipalities in five countries are included in the sample.  

As a result, by differentiating climatic from socioeconomic effects on vulnerability in a regional-

scale study, it is possible to contribute to the discussion of appropriate policy measures to reduce 

vulnerability and increase community resilience to the effects of climate change.  

Second, the empirical strategy adopted addresses causality issues. The internal validity of 

the study is guaranteed by two considerations. First, climate is assumed to cause (or at least 

contribute) to epidemic outbreaks. Where internal validity cannot be guaranteed, as is the case 

for socioeconomic conditions, differences in differences estimates are used to eliminate 

unobserved and assumed time-invariant sources of endogeneity. However, constructing a new 

sensitivity index that appropriately incorporates the effects of suffering a vector borne disease 

becomes mandatory in order to improve the conclusions from the analysis here presented. 
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Finally, to our knowledge this is one of the handful efforts to assess the impacts of 

climate extremes on health vulnerability to vector-borne diseases in Latin America (Pereda, 

2014; Valencia, 2014).Very few studies are in a position to address the role of adaptation 

explicitly (Deschênes, 2012); here, adaptation is not explicitly considered, but rather an overall 

measure of sensitivity, which includes elements that can be regarded as adaptation enhancers. 

The paper is divided in six parts. Section 2 describes the literature linking climatic and 

socioeconomic conditions to vector-borne diseases prevalence in Latin America, paying 

particular attention to dengue fever and malaria.  In the third section the conceptual framework 

utilized to estimate the effects of climate change on vulnerability and health is introduced. 

Section 4 describes the data used. Section 5 presents some preliminary results. Finally, Section 6 

concludes.   

 
2. Vector-Borne Diseases and Extreme Climate  

 

2.1. Situation in Latin America and the Caribbean 
 

Dengue, malaria, leishmaniasis, Chagas disease and tick-borne diseases are endemic in several 

countries in Latin America and the Caribbean, with public health efforts most concentrated on 

dengue fever and malaria. Dengue fever is by far the most prevalent vector-borne disease in the 

region, and malaria the most menacing because of the large burden imposed on the infected 

population. The subsequent analysis and description will be entirely focused on dengue, 

however, because malaria in Latin America is less endemic than in other regions and manifests 

mainly in rural areas.  

 Table 1 presents a summary of data collected for fourteen countries in the region. The 

first striking fact is the large number of average cases of dengue in the region and the 

considerably higher incidence relative to malaria, reaching ratios larger than thousands in some 

countries. These large differences may be explained by malaria eradication efforts across the 

region and by dengue-transmitting mosquitoes’ behavior and favorable habitat in growing urban 

settings.   

 Based on Table 1, it is possible to classify countries in the region into three broad 

categories based on the incidence and number of reported cases. The subsequent analysis, which 

attempts to obtain evidence on the impact climatic and socioeconomic conditions can have on the 

emergence of vector-borne diseases, will consider this basic classification along with other 
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structural and institutional factors (such as GDP, quality of institutions, and geographic 

conditions. The three groups are the following:  

 

1. High number of cases and relative low incidence: Brazil, Mexico. 

2. Relative low number of cases but relative high incidence: Belize, Bolivia, 

Costa Rica, El Salvador, Nicaragua and Paraguay. 

3. None of the above: Colombia, Honduras, Peru, Dominican Republic and 

Venezuela. 

 

This rough classification provided the basis for selecting the five countries included in 

the empirical analysis. Brazil and Mexico represent more than 75 percent of reported cases 

between 1995 and 2010. Costa Rica and Nicaragua were included because of their relative high 

incidence. Finally, Colombia was selected from the third group.  

 
2.2 Climatic Limiting Factors 

 

Climate directly influences the likelihood of appearance of a vector-borne epidemic outbreak. 

Geographical and climatic conditions are, moreover, structural determinants of vector population 

evolution and survival rates. Table 2 describes the temperature limiting conditions for the 

survival of various vector-borne mosquito populations. The literature suggests that two major 

sets of variables influence the prevalence of dengue and malaria in a particular region. 

 

2.2.1 Weather and Climatic Variables 

Temperature, precipitation and humidity are the most relevant climatic variables, while weather 

involves the likelihood of short-term deviations from multiyear trends (Johansson, Dominici and 

Glass, 2009a and 2009b).  Precipitation has a direct effect, as mosquito population can only 

thrive if rainfall is present. There seems to be a lag between above-mean periods of precipitation 

and reported outbreaks of the disease. Roseghini et al. (2011) and Johansson, Dominici and 

Glass (2009a) perform statistical analysis to identify the lengths of such lags; however, their 

results cannot be generalized, as these numbers are highly dependent on other variables. Given 

that temporally aggregated measures are better understood than daily ones, it is reasonable to use 

weekly, decadal or monthly precipitation measurements rather than daily records to capture 

extreme weather effects that may lead to vector-borne outbreaks.   
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 Higher temperatures, for their part, reduce the time required for the pathogen (a virus in 

case of dengue, and a protozoan in the case of malaria) to replicate and disseminate in the 

mosquito (see Table 2). This process, referred to as the “extrinsic incubation period,” must occur 

before the virus can reach the mosquito’s salivary glands and be transmitted to humans. If the 

mosquito becomes infectious faster because temperatures are warmer, it has a greater chance of 

infecting a human before it dies (Dhiman, Pahwa and Aditya, 2008).  Therefore, temperature 

may modify the growth of disease-carrying vectors by altering their biting rates, as well as affect 

vector population dynamics and alter the rate at which they come into contact with humans. 

Finally, a shift in temperature regime can alter the length of the transmission season (Patz et al., 

2005). 

 
2.2.2 Serotype 

Mosquito serotype populations tend to be regionally clustered for a variety of reasons, although  

geographic and climatic factors are by far the most important determinants. In general, certain 

populations tend to create resistance to endogenous serotypes, particularly for dengue virus 

serotypes. However increased human mobility is changing this feature; when new serotypes are 

introduced into a region, the population becomes more susceptible to the new variety of 

mosquitoes (Roseghini et al., 2011). While relevant, this parameter cannot be included in the 

empirical model (Section 5) because records reporting the main serotypes causing outbreaks are 

not available in the sources consulted. 

 Climate change may shift the pattern distribution of vulnerability across regions in Latin 

America, as dengue and malaria require specific climatic conditions for growth (Githeko et al., 

2000). Increased levels of rainfall and variations in temperature regimes across regions resulting 

from climate change may create conditions favorable to the appearance of susceptible mosquito 

populations. In fact, regions where those diseases have no historical presence may suffer 

disproportionately if appropriate policy measures are not implemented.  

 
2.3 Literature Review: What Does Evidence Say about the Role of Climate in Health 

Outcomes and Vector-Borne Diseases? 
 

The causal relationship between climatic extreme events and health outcomes has been analyzed 

mainly in epidemiological research and, more recently, in an emerging literature in economics. 

Some general conclusions can be drawn from this analysis.  
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Within the economics literature, there is a growing number of efforts to assess the effects 

of extreme events on health outcomes. Most of them relate extreme temperatures to some 

measure of mortality. Deschênes, Greenstone and Gurryan (2009) estimate the impacts of 

exposure to extreme hot temperatures during pregnancy, finding a strong negative relationship 

between birth weight and temperature. Deschênes and Moretti (2007) relate mortality measures 

to increases in spikes in temperature (and to extreme low temperatures). Among their results, 

they obtain a measure of locally based heterogeneity, finding that the effect of extreme events on 

mortality for counties in the bottom decile is 66 percent higher than those in the first decile); they 

also found sizeable differences among groups.  Deschênes and Greenstone (2011) show the 

temperature‐mortality response function estimated from daily temperature and annual county‐

level mortality data for the United States between 1968 and 2002. The evidence is generally 

suggestive of geographical differences in the effect of high temperatures on mortality, measured 

in different manners.   

Extending the work of Deschênes and Greenstone ( 2011), Burgess et al. (2011) carry out 

perhaps the most comprehensive study of the impacts of climate on health outcomes in the 

developing world. The authors offer two clear causal mechanisms. First, extreme weather events 

have a direct impact on health via disease burden and psychological stress. Second, indirect 

effects include an income-based channel and a consumption-based channel; the first set of effects 

stems from the fact that suffering a disease will entail loss of working days with subsequent 

impact on household income-generating capabilities, while the consumption-based channel is the 

consequence of shortages in food provision as shocks are propagated to the rest of the economy, 

which may reduce the possibility for smoothing. Both phenomena may contribute to excess 

mortality.  

Burgess et al. estimate district-by-age group models for both economic and health 

outcomes (mortality rates, wages, labor supply, etc.), estimating the effects under a dynamic 

optimization problem. They include bins and splines for both temperature and precipitation to 

allow nonlinear effects of climate on outcomes. The authors take advantage of extensive panel 

data at the district level (1957-2000) and include district area and year-by-year fixed effects, as 

well as region-specific time trends and daily data on temperature and precipitation.  Guerrero 

(2013) replicates the methods and analysis used by Burgess et al. for all municipalities in Mexico 

for the period 1980-2010.  
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The evidence with respect to precipitation and humidity is scarcer. Barreca (2009), 

however, has used panel data for the United States for 35 years from over 350 counties. The 

author also provides evidence on how low humidity levels are strong predictors of deaths 

associated with influenza.  The methods utilized in this paper are similar to those discussed by 

Deschênes and his coauthors.  

A smaller set of papers within the economics literature use different methodologies to 

assess climatic impacts. Bosello, Roson and Tol (2005) analyze the economy-wide effects of 

climate change using a multi-country CGE model calibrated for 2050.  Tol (2000a and 2000b) 

estimates the impacts of climate change under a cost-benefit framework. 

In the epidemiology literature, the most common empirical approach is to model the 

intensity of outbreaks as a Poisson process and variants of this type of models. Here the literature 

is clearly more extensive, and there are a relatively large number of studies for vector-borne 

diseases as well. For the case of dengue, Johansson, Dominici and Glass (2009b), using 20 years 

of data and a statistical approach to control for seasonality, show a positive and statistically 

significant association between monthly changes in temperature and precipitation and monthly 

changes in dengue transmission in Puerto Rico. Similarly, Johansson, Dominici and Glass 

(2009a) analyzed the relationship between ENSO, local weather, and dengue incidence in Puerto 

Rico, Mexico, and Thailand using wavelet analysis to identify time and frequency-specific 

association.  Their results indicate the importance of regional and local effects: even though 

dengue viruses have a universal transmission cycle, changes in temperature or rainfall may have 

diverse local effects. Roseghini et al. (2011) aim to analyze incidences of dengue fever in three 

different cities in Brazil. Monthly and seasonal timescales of dengue epidemics in relation to 

climate (temperature) were first analyzed by comparing time series of absolute values and 

anomalies between dengue and climate factors. Medina-Ramón and Schwartz (2007) focus 

exclusively on the direct health effects of changes in temperature, and particularly on the impact 

on mortality; they particularly note changes in the frequency of extreme weather events such as 

increasing extremely hot days and decreasing extremely cold days. 

All the papers reviewed within the economics literature share some common features. 

First, they assess direct effects of climate extremes on health outcomes (mostly mortality). 

Second, they take advantage of large panel datasets to analyze within-country differences, which 

allows them to test for regional/geographic differences as well as for heterogeneous effects 
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among subpopulations. Third, they generally analyze daily weather and account for nonlinear 

effects in their estimations.  Fourth, stemming from the fact that climate is almost by definition 

an exogenous process, their results are internally and externally valid, at least for the United 

States and countries with similar socioeconomic and climatic conditions.  The general conclusion 

seems to point to a non-negligible effect of extreme climate events on health and related 

outcomes; this seems to be well documented, at least for developed countries, with the notable 

exceptions of Burgess et al. (2011) and Guerrero (2013).  

 

2.4 Literature Review: What Does Evidence Say about Social Conditions, Health Outcomes 

and Vector-Borne Diseases in the Context of Climate Change? 
 

The literature linking urbanization, socioeconomic conditions and health outcomes is vast. The 

evidence found in the literature is robust with regard to this causal link. Nonetheless, some 

services will tend to have a larger impact on the likelihood of an outbreak than others; sewerage, 

access to piped water and provision of health services, for instance, are expected to be better 

predictors of outbreaks than other services (Kjellstrom et al., 2007; Vlahov et al., 2007).  

 Furthermore, differences within regional spaces definitely play a role in the impacts 

epidemic outbreaks can have on different population groups within a region (Galdo and Briceño, 

2005).  The availability of some public services varies considerably across cities, particularly in 

large and intermediate metropolitan areas, which constitute a vast majority of urban settlements 

in Latin America (IDB, 2011; Carrera, 2013).  In this context, the most vulnerable groups will 

often have little or no assets easily convertible into money, as well as limited access to publicly 

provided services (Ruprah, 2009; WHO, 2010; Northridge and Freeman, 2011). So far, 

experience in the developing world has demonstrated that urbanization is accompanied by 

inequality and exclusion.  

 Demographic, behavioral and social factors are often keys for effective communicable 

disease control and underpin successful public health programs. Population features that are 

determinants of vector-borne diseases outbreaks include the density of a particular region, a 

precondition as it facilitates disease transmissions (Medina-Ramón and Schwartz, 2007). The 

increase in human settlements in cities creates scenarios that enhance the spread of the disease 

vector.  For instance, Roseghini et al. (2011) observe that many cities do not provide adequate 

garbage collection, which results in construction debris and tires accumulating on properties. 
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However, these factors are not completely understood in the case of dengue (Guha-Sapir and 

Schimmer, 2005) and other vector-borne diseases (Hii, 2013).   

 Climate change will likely aggravate already existing urban social inequities and health 

risks, thereby exacerbating existing urban health inequities. Generally presumed impacts of 

climate on health in urban contexts are presented in IPCC (2007).  The general conclusion is that 

certain population groups are at risk; children, pregnant women, and the elderly are generally 

more susceptible, especially for heat and weather-related illness and death, vector-borne and 

zoonotic diseases, and waterborne and foodborne illnesses. Some of the studies cited in the 

context of climate analyzed data differentiating among socioeconomic groups in urban contexts 

(Deschênes and Greenstone, 2011; Barreca, 2009). These results are expected to be more 

nuanced in cities in low and middle-income countries (Friel et al., 2011; WHO, 2010). 

 Despite this reality, the literature consulted suggests that further evidence at the 

community level is necessary to isolate climatic from socio-demographic determinants (Guha- 

Sapir and Schimmer, 2005; Kovats et al., 2000). As Friel et al. (2011: 886) stated: “There is still 

much to learn about the extent to which climate change affects urban health equity and what can 

be done effectively in different socio-political and socio-economic contexts to improve the health 

of urban dwelling humans and the environment.”  

 Several factors that are relevant to health outcomes, regarded as the social urban 

environment (Galea and Vlahov, 2005), remain out of our analysis. These include but are not 

limited to factors such as spatial segregation and inequality. While they are relevant, they are 

also difficult to measure at the scale presented here, and therefore, it is natural to believe that 

they will be part of the unobserved portion in our model. Thus unobserved heterogeneity 

presents a problem of omitted (and likely relevant) variables, which calls for taking action in this 

regard.  

  

3. A Framework to Analyze the Impacts of Climate Change and 

Socioeconomic Factors on Vector-Borne Diseases 
  

The discussion presented above highlights the importance of differentiating the effects of climate 

from those of socioeconomic factors on vector-borne disease outbreaks in particular and on 

health vulnerability in general. An alternative based on quasi-experimental methods of impact 

evaluation is presented here. Central to our estimation strategy is the notion that climatic 
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variables are exogenous, as well as independent from socioeconomic covariates. In order to 

obtain measures of the effects our approach is divided into three steps.  

 The main question that this research aims to answer is what is the effect of suffering an 

outbreak (of a given intensity), conditional on climatic and socioeconomic conditions, has on 

health vulnerability? In order to achieve this goal, we take advantage of a commonly accepted 

notion of vulnerability and matching techniques frequently used to estimate impacts in 

observational studies. 

 
3.1. Vulnerability 
 

A commonly accepted definition of vulnerability is as the product of exposure and sensitivity 

which, along with adaptation capacity once a malaria or dengue outbreak takes place, affect the 

resilience of the community (Few, 2007; Miller, Yoon and Yu,  2013; WHO, 2003). Using this 

definition, a measure of vulnerability for the fourth administrative layer within a country is 

presented below.  

 Denote the four sets of political-administrative levels by J, Ω, Ψ and Ρ, denoting the 

fourth, third, second and national layers, respectively. These sets are related to each other by 

J ⊂ Ω ⊂  Ψ ⊂ Ρ.  If the analysis is performed within a single country, P = 1.  Let g be one out of 

J fourth-level administrative units within region  G ∈ Ω . Therefore, the local vulnerability 

measure for community g and period t can be defined by equation (1). As previously mentioned, 

this vulnerability measure will be dependent on socio economic and climatic factors; however, 

sensitivity will only depend on socioeconomic covariates, conditional on suffering and outbreak 

(of a given intensity). 

 𝑉𝑢𝑙𝑛𝑒𝑟𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝑔𝑡 = 𝛾(𝐼𝐺𝑡| ClimGt, 𝑆𝑜𝑐𝐺𝑡) · 𝑆𝑒𝑛𝑠_𝑖𝑛𝑑𝑔𝑡�𝑆𝑜𝑐𝑔𝑡�𝐼𝐺𝑡)  (1) 
 

 In equation (1), 𝛾𝐺(·) represents the reduced form probability of an episodic outbreak in 

the aggregated region, G. The appropriate definition of regions depends on the availability of 

climatic and epidemic information. In general, both pieces of data are available at the city level. 

IGt can be either a bivariate or a multivariate process, representing only the occurrence of an 

outbreak or its intensity, respectively. For simplicity, the time dimension will be excluded 

hereafter unless explicitly stated. 

 More disaggregated local measures of the probability of an outbreak could even be 

constructed at the community level, g; however, the information requirements for doing so 
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would substantially increase. The multitude of factor involved in the emergence of an outbreak 

condition. The alternative consists of developing a structural model for the process of diffusion 

of the disease within the population in g4  following Martcheva and Prosper (20011), Derouich, 

Boutayeb and Twizell (2003), or Hethcote (2000). Risk maps such as MARA LITE for malaria 

and CIMSiM and DENSiM for dengue can additionally support the analysis of local outbreak 

case studies.  

 The second term, Sens_indexg, is a multidimensional index of sensitivity, which includes 

adaptation measures such as those proposed by OECD (2008) and implemented by Hagenlocher 

et al. (2013).  It aims to capture in a single measure the multiple aspects that negatively influence 

the impact of an outbreak, and the strengths that help to halt the impact of epidemics within 

populations. 

 Vulnerability can be the result of a deficient provision of public goods and households’ 

lack of capabilities to cope with adverse events.  Therefore, the index should include variables 

that capture differences in personal and community assets. The former consist of households’ 

social and economic assets, while the latter consist of both privately and publicly provided 

services: hospitals and other health facilities available nearby, access to basic services and 

network coverage, and quality measures of these services. 

 In this multidimensional framework, it is necessary to introduce adaptation measures.  

Sensitivity can be regarded as the opposite of resilience and adaptability. Therefore, the 

covariates included have a clear direction. This conceptual framework may open the opportunity 

to build vulnerability indexes based on local data gathered from quality of life indicators. Among 

other data sources, the IDB’s Sustainable and Emerging Cities Initiative can enhance the efforts 

of local movements to create information that is comparable across cities.  

 Ideally, the index should be able to capture the effect of the intensity of an outbreak. A 

city or community may be resilient up to certain point but become completely vulnerable 

afterwards, depending on the intensity of the shock. This is particularly relevant for epidemic 

outbreaks, as local health facilities can collapse once certain thresholds are reached, and 

nonlinearities of this type should be included in the modeling and construction of the sensitivity 

index. However, the index presented here is not capable of capturing this relevant feature.  

                                                           
4 For instance, this would require us to model outbreaks with contagion models, based on an ergodic Markov 
process, such as the SIR (Susceptible-Infected-Retired) and SIS (Susceptible-Infected-Susceptible) models. 
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 Intuitively, expression (1) argues that populations within a region G will be exposed to 

the same risk of an outbreak, but that the local economic and social conditions will shape the 

magnitude of the impact in a particular community g within region G.  

 
3.2. Establishing Causal Mechanisms 
 

The conceptual framework for vulnerability discussed above provides the analytical conditions 

for testing two different mechanisms that would indirectly impact on health outcomes by 

increasing the vulnerability of communities. Figure 1 describes the proposed mechanisms. In all 

cases, a first order negative relationship between exposure and sensitivity to health outcomes is 

assumed (i.e., higher levels or vulnerability will translate into poorer health outcomes). The 

mechanisms considered are the following:  

 

1. Direct mechanisms affecting the likelihood of an outbreak.  Both climatic and 

socioeconomic factor are combined to create the conditions for an epidemic 

outbreak. The economics literature reviewed in Section 2 makes the case for 

extreme events affecting health outcomes; in the case of vector-borne 

diseases, this means that an epidemic outbreak must occur in order to observe 

health outcomes (affected population, morbidity and mortality). Similarly, 

urban conditions can have a significant impact on the likelihood of an 

outbreak. Poor, densely populated communities that lack access to sanitation 

are expected to experience epidemic outbreaks more frequently than better- 

equipped communities. 

2. Direct mechanisms impacting community sensitivity. As mentioned, 

sensitivity is the result of city-wide, community and household-level 

capabilities that enables individuals and households to cope with adverse 

events. Following the ideas presented in Cutter, Boruff and Shirley (2003) and 

IPCC (2007), this framework allows us to estimate an index composed of two 

different dimensions (a household-level factor and a community/city factor) 

that add up to represent the abstract concept of sensitivity. 

3. Institutional and other confounding factors. Regrettably, not all relevant 

variables can be included in the model, mainly because they are not 

necessarily observable. While the quality of institutions within a city, region 



17 
 

and/or country has profound effects on the quality of available health and 

infrastructure services, institutional quality is seldom measured at the city 

level (third administrative layer). Similarly, mosquitoes’ serotypes, local 

microclimates and inhabitants’ habits and culture will almost certainly affect 

the likelihood of an outbreak but cannot be observed, at least at the scale 

proposed in this paper.   

 

 Under the hypothesis established by these mechanisms, the objective will be to isolate the 

effects of exposure using a set of propensity score measurements in order to directly associate 

vulnerability with sensitivity. Once treated and non-treated regions with similar probabilities of 

suffering an epidemic outbreak of dengue and/or malaria are identified, the differences in their 

capabilities to cope with the adverse event will determine their vulnerability and therefore their 

expected health outcomes. In this regard, the outcome variable will be the sensitivity index. A 

more detailed exposure of these ideas is presented below.  

 Acknowledging the complex nature of episodic outbreaks, the crucial assumption in the 

approach proposed here is that local environmental conditions are statistically independent from 

local institutional capabilities for coping with climatic risk, along with the assumption that 

climatic factors are strictly exogenous to vulnerability (and therefore health) outcomes. 

Socioeconomic conditions, however, are allowed to be endogenous. For relatively short periods 

of time, spanning from years to some decades, these assumptions hold for the empirical evidence 

obtained. 5  Defining the errors of the probability model for an epidemic outbreak as 𝜀𝐺 , the 

assumptions can be stated as: 

 𝐸�𝑆𝑜𝑐𝐺𝑡,𝐶𝑙𝑖𝑚𝑔𝑡� =  0  ,𝑓𝑜𝑟 𝑎𝑙𝑙 𝐺,𝑔 𝑎𝑛𝑑 𝑡               (𝐴. 1) 𝐸[𝜀𝐺𝑡| 𝐶𝑙𝑖𝑚𝐺𝑡] =  0  , 𝑓𝑜𝑟 𝑎𝑙𝑙 𝐺,𝑔 𝑎𝑛𝑑 𝑡               (𝐴. 2) 𝐸[𝜀𝐺𝑡| 𝑆𝑜𝑐𝐺𝑡] ≠  0  ,𝑓𝑜𝑟 𝑎𝑛𝑦  𝐺,𝑔 𝑎𝑛𝑑 𝑡               (𝐴. 2) 𝛾(𝐼𝐺| ClimG, 𝑆𝑜𝑐 𝐺)  = 𝛿 · 𝐶𝑙𝑖𝑚  𝐺 +  𝛽 · 𝑆𝑜𝑐 𝐺  + 𝜀𝐺  (2) 

 

 Let equation (2) be the reduced- form linear probability of an outbreak conditional on a 

set of climatic and socioeconomic covariates. The residual 𝜀𝐺𝑡  follows an i.i.d extreme value 

distribution. Therefore it is possible to obtain the vector of marginal effects of the set of 

                                                           
5 This might not be the case for long-term (centuries) analysis. Acemoglu, Johnson and Robinson (2002 and 2003). 
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variables. For a given number of climatic covariates C, the marginal effect of a particular 

regressor𝑐 ∈ 𝐶 on the probability of an outbreak in region G, IGt, can be denoted by 
𝛿𝛾(·)𝛿𝐶𝑙𝑖𝑚𝑐 . 

Similarly, the marginal effect of a socioeconomic covariate, 𝑠 ∈ 𝑆, is denoted by 
𝛿𝛾(·)𝛿𝑆𝑜𝑐𝑠.  This set 

of equations will be used to estimate the impact of certain climatic and socioeconomic covariates 

on the exposure component of vulnerability.  

 𝑑𝛾(𝐼𝐺| ClimG, 𝑆𝑜𝑐𝐺)𝑑𝐶𝑙𝑖𝑚  = ⎣⎢⎢
⎢⎡ 𝛿𝛾(·)𝛿𝐶𝑙𝑖𝑚𝑐=1⋮𝛿𝛾(·)𝛿𝐶𝑙𝑖𝑚𝑐=𝐶⎦⎥⎥

⎥⎤
 (2.𝑎) 

𝑑𝛾(𝐼𝐺| ClimG, 𝑆𝑜𝑐𝐺)𝑑𝑆𝑜𝑐  = ⎣⎢⎢
⎢⎡ 𝛿𝛾(·)𝛿𝑆𝑜𝑐𝑠=1⋮𝛿𝛾(·)𝛿𝑆𝑜𝑐𝑠=𝑆⎦⎥⎥

⎥⎤
 (2. 𝑏) 

 

 Likewise, under assumption (A.1), the conditional probabilities in either the climatic or 

the socioeconomic dimensions can be defined by expressions (2.c) and (2.d), where 𝑥� represents 

the mean value for variable x.  These will be called partial conditional probabilities and will 

provide a mechanism to isolate the effect of one set of covariates. 

 𝛾(𝐼𝐺| ClimG)  = �𝛾(𝐼𝐺| ClimG,𝑆𝑜𝑐𝐺)𝑑𝑆𝑜𝑐 =  𝛾(𝐼𝐺| ClimG,𝑆𝑜𝑐𝐺 = 𝑠𝑜𝑐� )   (2. 𝑐) 

𝛾(𝐼𝐺| SocG)  = �𝛾(𝐼𝐺| ClimG,𝑆𝑜𝑐𝐺)𝑑𝐶𝑙𝑖𝑚 =  𝛾(𝐼𝐺| ClimG = 𝑐𝑙𝚤𝑚� , 𝑆𝑜𝑐𝐺)    (2.𝑑) 

  

 Equations (2.c) and (2.d) will be utilized as the propensity scores (Heckman, Ichimura 

and Todd, 1998; Caliendo and Kopening, 2005; Heinrich, Maffioli and Vázquez, 2010; Hirano 

and Imbens, 2004) that will enable us to construct an artificial control and therefore estimate the 

treatment effects of both climatic and socioeconomic variables on the vulnerability measure 

defined by equation (1). Equations 2.c and 2.d will allow us to estimate the potential effects of 

marginal changes in climate conditions or improvements in socioeconomic indicators on the 

likelihood of an outbreak (see Figure 1).  
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3.2.1 Marginal Effects on Exposure (MEE) 
 

These estimators can support the analysis of changes of certain indicators within the vector of 

either social or climatic covariates. It is based upon estimating propensity scores in (2.a) and 

(2.b). They will be utilized to analyze impact of a single variable on the exposure component of 

our vulnerability measure—for instance, to assess the effect of a 1 percent increase in the rate of 

access to sewerage service on the likelihood of an outbreak (of a given intensity).  Odds ratios in 

the case of binary treatments and incidence rate ratios (IRRs) in the case of a continuous 

treatment will serve as the measures.  

 

3.2.2 Partial Treatment Effect on Vulnerabilities (PTE VUL) 
 

Performing the matching algorithms on equations (2.c) and (2.d), it is possible to isolate the 

effects that levels of climatic and socioeconomic covariates can have on the proposed measure of 

vulnerability. Remember that for every observation in the sample, partial propensity scores for 

climate, for instance, will be estimated at the mean values of the vector of socioeconomic 

covariates.  

 𝑃𝑇𝐸𝑉𝑢𝑙𝑐𝑙𝑖𝑚 = 𝑀[𝑆𝑒𝑛𝑠_𝑖𝑛𝑑𝑒𝑥𝐺] −𝑀[𝑆𝑒𝑛𝑠_𝚤𝑛𝑑𝑒𝑥� 𝐺`]   (3.a) 𝑃𝑇𝐸 𝑉𝑢𝑙𝑠𝑜𝑐 = 𝑀[𝑆𝑒𝑛𝑠_𝑖𝑛𝑑𝑒𝑥𝐺] −𝑀[𝑆𝑒𝑛𝑠_𝚤𝑛𝑑𝑒𝑥� 𝐺`] (3.b) 
 

 Before continuing, it is important to define the conditional probability when a region 

actually suffered and epidemic outbreak (the treatment) as 𝛾(𝐼𝐺𝑡|T = 1, ClimGt, 𝑆𝑜𝑐 𝐺𝑡);  and the 

probability of suffering an outbreak when it did not happen during the analysis period as 𝛾(𝐼𝐺`|T = 0, ClimG`, 𝑆𝑜𝑐 𝐺`), the control.  Similar expressions shall be defined for equations 2.c 

and 2.d.  A particular region G where T=1 will be compared to a single region G', or to some 

weighted average of regions with similar propensity scores (see Section 5), denoted by 𝛾�(𝐼𝐺`|T =

0, ClimG′, 𝑆𝑜𝑐 𝐺′).  

 For the treatment effects measures proposed below, both mean and dispersion statistics 

will be considered, in order to take advantage of community-level data and obtain a more 

comprehensive notion of the effects social and climatic covariates can have on vulnerability. The 

expected value of the sensitivity index for all communities in region G will become the 

sensitivity of region G; that is 𝐸�𝑆𝑒𝑛𝑠_𝑖𝑛𝑑𝑔� = 𝑆𝑒𝑛𝑠_𝑖𝑛𝑑𝐺 .  Likewise, the weighted average of 

all comparison regions is denoted by  𝑆𝑒𝑛𝑠_𝚤𝑛𝑑𝑒𝑥� 𝐺` .  In the case of variance, the scalars 

denoting the summary dispersion measure are 𝑉𝑎𝑟�𝑆𝑒𝑛𝑠_𝑖𝑛𝑑𝑔� = 𝑉(𝑆𝑒𝑛𝑠_𝑖𝑛𝑑𝐺);  the weighted 
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average of the control group is  𝑉(𝑆𝑒𝑛𝑠_𝚤𝑛𝑑𝐺).�  Mean, median, variance and percentile ratios 

considered will be referred as 𝑀[𝑆𝑒𝑛𝑠_𝚤𝑛𝑑𝐺] 𝑎𝑛𝑑 � 𝑀[𝑆𝑒𝑛𝑠_𝑖𝑛𝑑𝐺]  for control and treatment 

groups, respectively. The extension to estimating the average treatment effects on the treated is 

straightforward.  Given our interest in analyzing the effect of an outbreak on health vulnerability, 

this latter measure is better adapted to these objectives.  

 Two relevant cases for analysis will result. The most interesting for our application will 

enable us to estimate the extent to which socioeconomic conditions affect the vulnerability of a 

city (equation (3.a)). The partial propensity score calculated, evaluated at mean socioeconomic 

covariates and actual climate conditions, will actually control for climatic variables to the extent 

that it will match cities with similar climatic and geographic conditions. As a result, the 

remaining elements affecting the vulnerability of a city will only be socioeconomic. In the 

second case (equation (3.b)), communities that have the same partial social propensity score 

(evaluated at mean values of climate covariates) will differ in the underlying climatic factors 

considered.  

 In order to illustrate this idea, consider the following simplified example. A set of cities 

can only experience two types of socioeconomic conditions, s and s´, but they all share similar 

climatic environments (in terms of mean temperatures and the number of extreme events 

experienced, for instance). Under the partial propensity scores evaluated at mean socioeconomic 

conditions, these set of cities will have very similar probabilities of suffering an outbreak if and 

only if they experience similar climatic and geographic conditions. Therefore, matching upon 2.c 

will enable us to obtain valid comparison groups after controlling for climatic conditions, and as 

long as the balancing conditions are fulfilled after matching observations, differences in 

vulnerabilities between treated and comparison groups can be entirely attributed to 

socioeconomic conditions.  

 
3.2.3 Differences in Differences to Control for the Unobserved Heterogeneity 
  

The measures of the treatment effects above are valid only if the unconfoundedness or 

conditional independence assumption (Rosenbaum and Rubin, 1983) holds.  That is to say that, 

given the propensity score, both observable and unobservable characteristics are balanced among 

treatment and non-treatment groups, and therefore the potential issue of endogeneity is 

eliminated.  Unfortunately, this assumption cannot be tested. 
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 Furthermore, it is likely that unobservable (or immeasurable) institutional characteristics 

within regions are time invariant for the time span under consideration. This could lead to 

potentially biased estimators. For instance, it is more likely that within some regions experience 

more frequent episodes of epidemic outbreaks not just because of their climatic and/or 

socioeconomic conditions, but because of cultural practices favor the appearance of mosquito 

populations (e.g., structures or debris that hold standing water), or political institutions preclude 

appropriate investments in basic public infrastructure. 

 Given that counterfactual levels for treated and non-treated groups can be different 

because of these unobserved factors, at least the time variation should be similar between groups.   

Difference-in-differences argues for a counterfactual scenario by assuming that, in the absence of 

treatment, the change in treated outcome would have been like the change in the outcome of 

control group. Thus unobservable differences are regarded as time-invariant across/within cities 

or countries.  

 Galiani, Gertler and Schargrodsky (2005) use a combination of a PSM and differences-in-

differences estimators to measure the impact of privatization of water and sanitation services on 

child mortality in Argentina in the late 1990s. Galdo and Briceño (2005), based on Ecuador’s 

census for years 1990 and 2001, estimate the impacts on motherhood mortality of five different 

impact estimators based on propensity scores, along with differences-in-differences to control for 

unobserved heterogeneity across cities.  

 
3.2.4 Extending the Framework to Account for Continuous Treatments 
 

The conceptual framework presented above can be utilized to estimate the impacts not only of an 

outbreak’s occurrence but also of its intensity. It is well understood in the epidemiology 

literature that epidemic outbreaks can have large nonlinear impacts on the number of affected 

individuals. Furthermore, under the conceptual framework presented above, sensitivity can be 

seriously compromised when outbreaks of different intensities take place. Regional health 

facilities and individual assets may not suffice to restrain the negative impacts of a massive 

outbreak.  

 In order to incorporate this relevant feature, Generalized Propensity Scores (GPS) 

techniques developed by Imai and Van Dick (2004) and Hirano and Imbens (2004), along with 

generalized extreme value (GEV) distribution assumptions for the residuals of the score model, 
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will be utilized. The most common GEV distributions will be multinomial logit for ordinal- 

categorized data, and the commonly used family of Poisson distributions (negative binomial and 

zero inflated Poisson) to estimate the probability of given number of  reported cases that can take 

place during a vector-borne outbreak.  

 

3.2.5 The Sensitivity Index 

The framework presented above relies on the notion that sensitivity is a continuous measure, 

which captures the different capabilities of cities and their inhabitants to cope with climate 

adverse effects on vector-borne vulnerability. As mentioned, vulnerability to health risks is 

composed of both exposure to an outbreak and sensitivity to that exposure.  Once we control for 

exposure, differences in levels of sensitivity will translate directly into differences in 

vulnerabilities to vector-borne diseases.  Under a central assumption we made, this will in turn 

translate into health outcomes.  

 To account for sensitivity, a measure of a region’s capabilities and assets available to 

cope with adverse epidemic events needs to be created. Vulnerability to health risks is composed 

of both exposure to environmental changes and sensitivity to that exposure.  The former can be 

measured directly using environmental data. However, sensitivity can only be measured 

indirectly with auxiliary socioeconomic indicator variables such as income, education and 

household characteristics; for this purpose a socioeconomic index is created.  The main idea is to 

reduce all the socioeconomic information into a single variable ranking which captures all non-

redundant information and where dimensions can be important.  There are two important reasons 

for this: i) the created index variable can be used as a single weighting factor in further analysis; 

and ii) the index should explain the maximum amount of variability in the dataset with the least 

amount of linear redundancy (multicollinearity).   

 Following the conceptual framework developed in Cutter, Boruff and Shirley (2003),  

OECD (2008) and implemented by Hagenlocher et al. (2013), we estimate  a sensitivity index 

composed of two different dimensions (a household-level factor and a community/city factor) 

that add up to represent the abstract concept of sensitivity. The index builds upon a set of 

underlying socioeconomic and demographic indicators.  

 Determining which indicators to include is a central problem when building the 

sensitivity index. A priori it is natural to assume that certain socioeconomic factors will affect 

sensitivity to potential health risks. What these factors are, however, is difficult to assess.  
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Socioeconomic indicators simply measure certain components of these hypothetical factors.  

Furthermore, many of these indicators are mutually correlated and may even be measurements of 

the same factor.     

 In order to determine which indicators to include, several techniques and approaches exist 

for analyzing multivariate data groupings and correlations are available. The ultimate 

determinants in choice of method are structure of data and end-goal. Exploratory factory analysis 

techniques including graphical methods such as Cluster Analysis are used mostly with a 

descriptive end-goal.  For the purpose of creating an index, quantitative multivariate techniques 

are required (Abdi, Williams and Valentin, 2013). The procedures considered in this paper 

include Principal Component Analysis, Correspondence Analysis, Generalized Principal 

Component Analysis, and Multiple Factorial Analysis. A possible alternative strategy not 

considered is the use of regression techniques not discussed in this paper. 

 The method of Principal Component Analysis generates a set of mutually orthogonal 

vectors (uncorrelated vectors) which can be interpreted as the underlying socioeconomic factors.  

These orthogonal vectors can be interpreted as the underlying socioeconomic factors.  

Furthermore, a measure of variability is attached to these components which can be used to 

determine which components need to be considered for the analysis and which can be excluded.  

The sensitivity index is then created using the set of normalized indicator variables multiplied by 

the factor loadings associated with each indicator and the highest-ranked principal components.  

These components can be chosen with cutoff criteria for the eigenvalues or with the aid of 

graphical tools (Cuadras, 2012), such as a screen plot to see the contribution to explained 

variability.   

 Formally, let X be an n-by-k matrix with k (normalized) indicator variables. Then X can 

be decomposed into: X=VEU, where V is an N-by-N matrix of normalized vectors, E is an N-by-k 

diagonal matrix with eigenvalues (variances associated with each component), and U is a k-by-k 

matrix composed of the principal components which can be used as the weighting factors for 

each indicator variable. The index can then be expressed as the sum:  

 𝑆𝑒𝑛𝐼𝑛𝑑𝑒𝑥 =  �𝑍 · 𝑈𝑖𝑖 , 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑖 = 1,2, …𝑝 ≤ 𝑘  (4) 

 

 In equation (4) Z is the normalized data matrix with k indicator variables, and Up is the 

last principal component determined to be used.  Multiplying by the reduced eigenvalue matrix 
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to add weighting information for each component can also be considered. Both alternatives are 

compared in this paper. Another major challenge with PCA is the choice of indicator variables to 

use as well as the final number of components to keep for the index; a discussion on the 

methodology adopted to address these issues can be found in Section 5. 

 Other methods such as Factorial Analysis, alternative measures of variance, and non-

linear multivariate methods can be a viable option in certain cases. A close relative to PCA is 

Multiple Correspondence Analysis (MCA), used to find underlying factors when dealing with 

multiple categorical variables.  The technique is similar, since MCA finds components which 

maximize “inertia,” which is analogous to optimizing explained variability.  Indeed, MCA and 

PCA results are highly correlated (Abdi, Williams and Valentin, 2013).  Nonetheless, MCA 

should be used when dealing with categorical data.  Unfortunately, MCA cannot deal with 

categorical and quantitative data simultaneously, which is the case with the census data used in 

this paper.  However, there are related methods that deal with this problem. The most flexible 

and general form of PCA is that of Generalized Principal Component Analysis (GPCA).  GPCA 

does not make any assumptions about the general structure of the data or, more importantly, the 

covariance (correlation) matrix used to determine principal components (Rao et al., 2007). The 

basic idea behind GPCA is to estimate correlations for the data such that the variance-covariance 

matrix yields more reliable estimates for the principal components. Thus it is more appropriate to 

use GPCA with mixed data types, especially when dealing with binary variables which may be 

highly unbalanced (highly skewed), which is the case with many of the indicator variables used 

to create the index in this paper.  GPCA is a fairly recent technique and statistical routines found 

to deal with GPCA are user-written routines submitted to statistical packages.  In this paper we 

constrain our analysis to the mixed PCA discussed; however, further research is warranted for 

comparison in construction of the sensitivity index.  

 As discussed earlier, one of the advantages of PCA is that the underlying factors need not 

be known a priori. However, once the principal components are established, there is the 

temptation to attach a certain meaning to each component once it has been estimated.  

Nonetheless, it is important to remember that components are only a result of the given sample 

and may change drastically in other samples.  A certain degree of caution should be used in the 

interpretation of the components as they relate to the theoretical factors.  Specifically, while the 
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principal components may be used as weighting tools, one should attribute a specific 

interpretation to the components with caution (OECD, 2008). 

 Hagenlocher et al. (2013) consider two main factors as measures of sensitivity: 

“susceptibility” (SUS) and “lack of resilience” (LoR).  Since these cannot be measured directly, 

a set of 12 indicator variables is used as a measure of susceptibility, and 11 indicators are used as 

a measure of resilience. These include racial information variables, age categories, education 

levels, household characteristics, and proximity to hospitals, among others. By performing a 

PCA, the authors are able to create an index based on the PCA factor loadings using the first two 

principal components as representative of SUS and LoR, respectively. Using census data for 

Cali, Colombia in 2005, Hagenlocher et al. (2013) find resulting weighting factors similar to 

those drawn from an “expert-based” approach used in their final analysis.   

 This approach, however, has three problems in relation to our current research. First, one 

must decide a priori which variables correspond to which factor—SUS or LoR. While this may 

seem intuitive, there is no reason to assume that certain variables belong to a single component, 

both components, or neither component. This is problematic because it both limits the usability 

of existing data and poses a greater challenge in obtaining data of limited availability. Instead, 

Principal Component Analysis can be used directly to determine how variables contribute to 

each underlying factor. Second, simple PCA requires that all data be quantitative (continuous) in 

nature. When dealing with categorical data such as that found in raw census data, alternative 

(albeit similar) methods must be employed to deal with underlying structure of the data.  Finally, 

we do not have access to expert weighting factors. Instead, we must rely on a comparison of 

different statistical methods. 

 Vincent and Sutherland (2013) consider a similar approach but follow a different 

methodology for data reduction.  In their initial step, they consider using an entire set of 79 

variables to estimate the principal components for a socioeconomic status index for British 

Columbia, Canada. After finding implausible results, however, they follow a data reduction 

process by discarding highly correlated variables and count variables.  They subsequently reduce 

the number of variables to 43 and use this set to perform a simple PCA.  Unlike Hagenlocher et 

al. (2013), Vincent and Sutherland (2013) choose to create two different sets of rankings: one 

based on the two largest (in explained variability) eigenvalues (two sets of factor loadings) and 

one based only on the first principal component. Their reasoning is that, in using two principal 
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components, they may be canceling out the effects of certain variables that appear twice with 

different signs or introduce a double counted weight with variables that appear twice with 

relatively large factor scores with the same signs.  These are legitimate concerns and pose a 

challenge to creating such an index using the PCA approach.  We consider similar approaches in 

this paper as well as principal component rotation techniques such as “varimax” rotation. 

 At the end, what is obtained from this process is a ranking, where distance among units of 

analysis is relevant but needs to be carefully analyzed. Which factors determine the position of a 

particular city in the ranking are therefore relevant for policy analysis. However, the quality of 

policy implication will heavily depend on the robustness of the results obtained for the sensitivity 

index under several calculation methods.  

 
4. Data  

 

In order to implement the framework introduced in Section 3, five countries were analyzed based 

on the availability of national census information disaggregated at the fourth administrative 

layer, and the number of cases and prevalence of cases reported by the PAHO for dengue fever 

(see Table 1).   

 Only dengue fever and malaria were selected for this analysis. As mentioned, dengue 

fever is the most prevalent vector-borne disease in the region, while malaria is a public health 

priority because of the large burden imposed on the infected population. However, the empirical 

analysis was only performed considering dengue information because of the scarcity of malaria 

data and dengue-carrying mosquitoes’ largely urban habitat. 

 At some point socioeconomic information at the desired geographical disaggregation 

became the binding restriction on performing the analysis for all the countries considered in 

Table 1. Therefore three countries were prioritized based on the availability of socioeconomic 

information and their disease statistics reported. Brazil was included because of the large number 

of cases reported, and Costa Rica and Nicaragua due to their relatively high incidence of dengue 

fever incidence among its population. Mexico and Colombia, which display neither of these 

characteristics, were selected as the control group. Three different sources of information were 

consulted to extract the data for these countries.  Table 3 summarizes the nature of the variables 

obtained and the sources from where these were retrieved. 
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4.1. Health Data 
 

Health data were retrieved from the web portal Health Maps,6 a web portal developed by a team 

of researchers, epidemiologists and software developers at Boston Children’s Hospital, aimed at 

utilizing online non-official sources for disease outbreak monitoring and real-time surveillance 

of emerging public health threats.  

 Data for Mexico, Costa Rica, Brazil, Dominican Republic, Colombia, El Salvador and 

Nicaragua were manually retrieved for years spanning from 2006 to 2013. Tables 4 and 5 

summarize the data obtained, which call for several comments. First, there is the reasonable 

presumption that Health Maps has an increasing reach and that more cases are being reported as 

time goes on. More than 70 percent of the reported outbreaks in the three countries considered, 

for example, took place in 2012 and 2013. This feature has important implications for the 

estimation strategy; it precludes analysis with panel data, as the basic conditions for balancing 

the distribution of observations cannot be fulfilled. In this case, the model described in Section 3 

will only consider the probability of at least one epidemic outbreak. Health Maps presents a 

second important caveat which may endanger the validity of the results: given that only reported 

cases in news and/or official data are present in their databases, regions with inadequate media 

coverage or government records will be underreported in the dataset. 

 A second relevant characteristic of health data is the seasonal distribution of outbreaks 

(see Table 6). As was described in Section 2, dengue fever and malaria mosquito populations are 

heavily reliant on precipitation, temperature and humidity for their development and infectious 

behavior.  The most favorable conditions for mosquitoes arise during the rainy summer season in 

the Northern Hemisphere. For Brazil, with a non-negligible share of its geographic extension in 

the Southern Hemisphere, the number of reported outbreaks is more evenly distributed. 

 Although serotype was reported as a relevant determinant of epidemic outbreaks, this 

parameter cannot be included in the empirical model since records reporting the main serotype 

causing outbreaks are not available in the sources consulted. 

 
4.2. Climatic Geo-Referenced Data 
 

The literature reviewed in Section 2 established the importance of geographic and climatic 

variables. Structural geographic variables such as the altitude, latitude and longitude, as well as 

                                                           
6 http://healthmap.org 

http://healthmap.org/
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climatic distributions for precipitation, temperature and humidity, determine to a large extent the 

favorability of conditions for mosquito populations.   

 Two sources were used for monthly data for climatic variables from January 1998 to July 

2013. Precipitation data were retrieved from NASA’s Tropical Rainfall Measuring Mission 

(TRIMM) Satellite Databases, and mean monthly temperatures were obtained from the IRI 

climate data repository of Columbia University.    

 Several other papers have dealt with daily climatic data instead of monthly data (Burgess 

et al., 2011; Guerrero, 2013; Deschênes and Greenstone, 2011).  Empirically, there are potential 

benefits and costs of using more aggregated data. On the downside, extreme events taking place 

over the course of a couple of days can be concealed by average monthly figures. On the positive 

side, the analysis with monthly data avoids tuning the model in order to capture the appropriate 

lags between climatic events and epidemic outbreaks, which can be very difficult to determine in 

a cross-country study given the complex local relationships that intervene (Roseghini et al., 

2011); in this regard, monthly figures might capture more of the structural climatic conditions 

that determine epidemic outbreaks. In any case, the results obtained can be regarded as lower-

bound effects, and extending the analysis to include daily data might constitute an important 

source of consistency and robustness.  

 Geo-referenced databases containing polygons down to the third political-administrative 

layer for every country in Table 1 were sought. GIS software was later used to assign each pixel 

of satellite data to those polygons. Three noteworthy cases resulted from this exercise, which are 

represented in Figure 2. In case 1, no information can be attributed to the polygon, and therefore 

no climatic information is available unless more complex interpolation techniques such as 

kriging are utilized; these observations were excluded from the analysis. Case 2 is the opposite, 

where several climate satellite point measurements fit within a political-administrative 

geographic region. In this case some sort of averaging technique should be used, and at this stage 

of the project the simple average was selected. Finally, the one-to-one case is the most useful, as 

a single satellite measurement can be assigned to each administrative level.  

 It is worth mentioning that of currently available climatic information for the original 12 

countries considered in Table 1 exceeds 19 thousand points, as detailed by country in Table 7. 

However the final number of available climatic information is smaller because only a fraction of 

these pixels lie within case 3 in Figure 2. Aside from locations where no climatic information is 
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available, where more than one point of climatic measurement lay within a location’s geographic 

boundaries, simple averages were taken. The latter approach is not the optimal since it does not 

account for topographic and geographic aspects, which may become relevant in some 

circumstances where areas are sufficiently large to include different microclimates. The result of 

the procedure adopted is that, for instance, only 56 of initially available observations were finally 

available. Increasing the accuracy of the extrapolations by introducing kriging or other 

algorithms can be an important extension for future research.  

 
4.3. Socioeconomic Data 
 

Socioeconomic data were obtained from the national statistical bureaus of the five countries 

included in the sample, ECLAC’s RADETAM platform and the Integrated Public Use Microdata 

Series (IPUMS). Information at the third and fourth layers of political-administrative division 

was collected for every country. Table 8 describes the sources, and Table 9 provides the list of 

outcomes included in the sample. 

 The selection of socioeconomic variables was in part determined by the availability of 

comparable information across countries. Although countries tend to ask the same questions in 

their national censuses, not all of the variables discussed in Section 2.2 could be found at the 

third administrative level in all countries. In this regard, proxy variables were included to capture 

similar effects.  Where possible, correlation analyses were performed in order to validate the 

inclusion of those proxies. Summary statistics for the variables included in the sample, by 

treatment category, can be found in Table 9.  

 Income-generating capacity. Unemployment and illiteracy rate at the municipal level 

were included in order to capture the effect of poverty, given the lack of income or expenditure 

data that would have enabled us to construct a poverty index measure.  

 Access to and quality of sanitation and water services. Sewage access coverage (either to 

the public system or to a septic tank) and water supply (either within the dwelling or close to it) 

were included. Electricity coverage was included as well, despite the fact that this is the service 

with the highest coverage rates in the region (Mejía, 2013) and may have little impact on the 

appearance of vector-borne disease. 

 Vulnerable population and density. Direct measures for these variables are part of the 

sample. One is the share of population below 14 years old, as both dengue and malaria tend to 



30 
 

have the largest impacts on this group (Patz et al., 2005; Ebi, Kovats and Menne, 2006). Density, 

measured in inhabitants per square kilometer, aims to capture the overcrowding effect that 

enhances virus transmission. There is, however, a caveat with this measure, as it was estimated 

using the political-administrative surface area, which is different than urban-populated area; this 

can bias the estimate, particularly in Mexico and Brazil, where huge municipalities are present 

along with relatively small ones. 

 Geographic controls. In order to control for the location of a region, both of a 

municipality’s centroid coordinates (latitude and longitude) are included.  

 In addition to the socioeconomic covariates obtained from national censuses, country-

level information from the World Health Organization, was incorporated in order to control for 

country effects, which are presumably relevant. The set of variables can be found in Table 10.  

 Using the health, climate and social datasets collected, simple and generalized propensity 

score matching were performed, and later differences in vulnerabilities were assessed based on a 

sensitivity index. The list of variables included was guided by the literature review presented in 

Section 2. 

 
5. Results 
 

5.1. Simple and Generalized Propensity Scores Matching 
 

As described in Section 3, the estimation of causal effects from climate and social conditions to 

health vulnerability, and therefore on health outcomes, relies on first isolating the effect of the 

likelihood of an outbreak for a given city. This is achieved with two propensity scores proposed. 

One is the traditional simple propensity score (SPS), as proposed by Heckman, Ichimura and 

Todd (1998), where treatment can only take binary values.  The second is a Generalized 

Propensity Score (GPS), based on the work of Imai and Van Dick and Imai (2004) and Hirano 

and Imbens (2004). The latter allows us to match locations with similar probabilities of 

experiencing an outbreak of a given intensity.  

 The unconfoundedness assumption (Rosenbaum and Rubin, 1983) is the cornerstone on 

which the propensity score technique is built. That is to say that, given the propensity score, both 

observable and unobservable characteristics are balanced among treatment and non-treatment 

groups, and therefore the potential issue of endogeneity is eliminated. Although this assumption 

cannot be directly tested, the so-called balancing conditions on observables between treated and 
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non-treated regions help to validate the assumption. Several methods are proposed in the 

literature. Imbens and Rubin (2007) suggest testing for the normalized differences by the 

following expression: 
(𝑥𝑔1 −  𝑥𝑔0)

(𝑠𝑔1 +  𝑠𝑔0)0.5� , where xgT are the sample means and sgT 

represent the sample standard deviations for T= 0,1. The authors suggest the values for the 

standardized differences larger than 0.25 raise concerns that the treatment and control groups are 

not similar.  Table 9 presents the results by country for the entire sample (pre-matching) by 

country. Using the Imbens and Rubin criterion, the results suggest that for the sample considered 

the pre-treatment differences in socio-demographic variables are considerable, suggesting that 

unobservable heterogeneity, presumably as the result of omitted variables, is present in the 

sample. This fact calls for taking care for unobserved heterogeneity using a differences-in-

differences estimator (see Section 3).  For climatic and geographic variables, the problem seems 

to be less pronounced.  

 We estimate a structural model for the probability of an epidemic (dengue) outbreak.  

Malaria was excluded from the estimation as the inherent process through which mosquitoes 

populations thrive are markedly different and outbreaks tend to be commonplace in rural areas.  

With this in mind, and considering the restrictions that health and climate data impose, which  

preclude a panel data analysis, all the measures for extreme climatic events described below 

were obtained for the entire sample of monthly weather data and later summarized for each and 

every location. The result is a dataset that allows us to estimate the probability that a particular 

municipality suffered at least one epidemic outbreak (SPS), or an epidemic outbreak of a given 

intensity (GPS) in the period 2006 through July 2013. In this regard, the models aim to capture 

some of the structural conditions necessary for epidemic outbreaks to take place.  

 Several extreme event measures were tested.  Previous literature suggests that climate 

extremes tend to have nonlinear effects over health outcomes (Curreiro et al., 2002; Deschênes 

and Moretti, 2007; Burgess et al., 2011; Guerrero 2013); all the alternatives presented below aim 

to account for this relevant feature. For each of the alternatives, a different propensity score 

model was estimated.   Only months from April to October were considered for Mexico, Costa 

Rica, Nicaragua and Colombia; for Brazil the distribution of climate variables for nine months in 

the year was included. This is consistent with the distribution of cases reported in these countries 

(Table 6).  
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 Model 1.  First, following much of the work in the topic (Medina-Ramón and Schwartz, 

2007), a dummy variable is used in case the monthly temperature average was greater than the 

90th and 95th percentiles for each measurement location. An additional 75th percentile was 

included in order to capture the effect of “not so extreme” events. The final covariates under this 

model are the sum of these dummy variables for each location, or the number of months that 

experienced temperatures above the mentioned distribution thresholds.  

 Model 2. A second set of observations was included following the work of Burgess et al 

(2011) and Guerrero (2013).  Ten bins for every 2 degrees from 10º Celsius onward were 

included. Similarly, 19 10-millimeter wide bins were included to account the effect of monthly 

accumulated rainfall, starting from 10 millimeters. As a result, the total numbers of months that 

lie within each bin are the covariates included under Model 2.  

 Model 3. A third characterization of extreme events was created using a cutoff for 

average monthly temperatures below 20 degrees Celsius, letting the values continue upward 

without restrictions (Medina-Ramón and Schwartz, 2007). In this case, both dummies for 

thresholds and continuous measures of climate (and their powers) above the thresholds were also 

included.  Again, covariates considered under this model are the total number of months that 

fulfill the condition along with raw data for temperature and precipitation. 

 
5.1.1. Simple Propensity Score 
 

Results from the simple propensity score models are presented in Table 11a. The final models 

were selected based on the traditional Akaike (AIC) and Bayesian (BIC) information criteria; the 

BIC was prioritized given its large sample consistency properties, which are desirable when 

working with propensity score models.  It is noteworthy that, since we are using logit and 

negative binomial models to estimate the probability of occurrence, nonlinearities are already 

present in the formulation. Additionally, standard errors were adjusted for intra-state correlations 

by using cluster-robust estimations at the second administrative level (the state or department 

level). A summary of the balancing conditions for the original propensity score is presented in 

Table 12; detailed results can be found in Appendix 1 (available from the corresponding author 

on request).  

 Several relevant conclusions can be extracted from Table 11, where results in bullets 

represent variable coefficients that are statistically significant at least at the 10 percent level. 
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First, there is a consistent impact of climate variables across model specifications. Physical and 

distribution thresholds considered for both temperature and precipitation are significant, 

consistent with results of Medina-Ramón and Schwartz (2007). The cumulative numbers of 

months above the 90th and 95th percentiles all have significant positive effects on the probability 

of an outbreak.  Similarly, the cumulative numbers of months with average temperatures above 

20 and 25 degrees Celsius, as well as cumulative number of months with average rainfall above 

100 and 150 millimeters, all have significant impact on the likelihood of experiencing an 

outbreak. However, the effects turn out to be negative when average monthly temperature 

exceeds 150 millimeters of rainfall.   

When it comes to temperature and precipitation bins, the results are not as 

straightforward as expected. Temperature bins are hardly significant, even though average yearly 

and summer temperatures are both statistically significant; their effects are similar in magnitude 

though opposite in direction, reflecting to some extent the physical-biological thresholds 

discussed above.  In the case of precipitation, results are significant across the precipitation 

distribution (10 to 30 millimeters, 90 millimeters and 160 millimeters).  Other structural climatic 

and geographic characteristics such as yearly and summer mean precipitation are also significant 

across models, suggesting what is long known, these are necessary conditions for outbreaks to 

take place.  

 Nonlinearities are also captured by the models, also consistent with some of the literature 

discussed above. However, the interpretation of such nonlinear effects in the context of an 

already nonlinear probability model is not straightforward. In model 1, the continuous terms after 

the cutoff points were all significant; these include terms in levels and their powers. In model 2, 

the significance of bins across the distribution adds up to account for these nonlinear effects on 

probability. The marginal effects exposed below can help to better explain such nonlinear 

effects.  

 For the case of socioeconomic covariates, the results are also consistent across model 

specifications. Total population, water supply and health expenditure per capita were all 

significant across specifications. The signs are theoretically consistent. It is noteworthy that 

density is only significant when total population is excluded as a regressor. In all of the 

specifications tested, the inclusion of these variables in logs outperformed their counterparts in 

levels. 
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 The overall quality of the models considered is fairly good. The accuracy of the 

predictions (measured by the number of true positives and negatives) exceeds 90 percent under 

all models. Similarly, pseudo R-squared ranges from 0.28 to 0.37.  

 
5.1.2. Generalized Propensity Score 
 

In order to construct the Generalized Propensity Score, a negative binomial (Cameron and 

Trivedi, 1998; Hilbe, 2011) was used for the case of injured cases reported in Health Maps. The 

decision to use this parameterization was based on the analysis of the underlying processes of the 

variables to be explained. The Poisson distribution imposes an equidispersion condition that was 

not fulfilled in the data; the negative binomial regression estimates and additional overdispersion 

parameter allows relaxing the equidispersion assumption under a Gamma distribution 

representation.  

 The three different specifications that incorporate climatic effects were included. Results 

can be found in Table 14. The first notable aspect of the new results is that they are more 

sensitive to extreme events, reflected in the values of the parameters associated with the 

dummies for the 90th and 95th percentiles. Most of the patterns observed for bins are similar to 

those observed in the bivariate case, with the exception of temperature, where most of the bins 

across the temperature distribution are significant. However, the overall prediction power of any 

of the three models is relatively poor, at least compared to models under SPS, signaling perhaps 

that modeling more complex processes requires more detailed analysis and data.  

 
5.2. Marginal Effects on Exposure  
 

In the context of climate change, obtaining the marginal effects of climatic variables that capture 

the effect of extreme events, expected to increase their occurrence in the coming years, becomes 

relevant for policy analysis. Given the nonlinear nature of the model considered, several 

marginal effects were considered in order to obtain a more comprehensive notion of these effects 

on the likelihood of an outbreak of a given intensity.  Table 13 presents the odds ratios (ORs) 

and average marginal effects (AMEs) for selected variables.  As mentioned above, climatic 

variables were introduced in levels and socio-demographic data were introduced in logs in all the 

models for both SPS and GPS. In this regard, we are interested in analyzing marginal effects and 

semielasticities of the covariates described below: 
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• Climatic (marginal effects and semielasticities): i) number of months above 

climatic-physical thresholds under Model 1, ii) mean values for temperature 

and precipitation above physical thresholds of Model 2, and iii) number of 

months above distribution thresholds under Model 3;  

• Socioeconomic (semielasticities): iv) total population, v) density, vi) health 

expenditure, vii) share of population below 14 years, and viii) water supply.  

 

 Our analysis concentrates on the average marginal effects, as they provide more 

information than marginal effects evaluated at any point (Wooldridge, 2010).  Furthermore, as 

Wooldridge suggests, AMEs have a useful interpretation for policy analysis, as it is possible to 

retrieve the probabilities under both factual and counterfactual scenarios.  

 Climatic extreme conditions have a large impact on the likelihood of an epidemic 

outbreak. A 1 percent increase in the number of months registering temperatures and 

precipitations above the 90th and 95th percentiles has a significant impact on the probability of an 

outbreak of as much as 69 and 37 percent, respectively. If the average temperatures noted above 

were to increase by 1° C in the years ahead, cities in Latin America would see increases of as 

much as 2-3 percent in the likelihood of dengue epidemic outbreaks, assuming no future climate 

adaptation. However, and perhaps due to biological conditions, experiencing average 

temperatures above 25° C has a negative and large effect on the likelihood of an outbreak.  

 With regard to socioeconomic conditions, total population is by far the variable with the 

largest impact on probability, along with density. A 10 percent increase in total population and in 

population density is associated with a 66 percent increase in the likelihood of an outbreak. 

Similarly, any additional 1 percent of population lacking water supply services increases the 

likelihood of an outbreak by about 10 percent.  

 
5.3. The Sensitivity Index 
 

To account for sensitivity, a measure of a region’s capabilities and assets available to cope with 

adverse epidemic events needs to be created. Following the conceptual framework developed in 

Cutter, Boruff and Shirley (2003), OECD (2008), and and implemented by Hagenlocher et al. 

(2013), we estimate  a sensitivity index composed of two different dimensions (a household-level 

factor and a community/city factor) that add up to represent the abstract concept of sensitivity. 

The index builds on a set of underlying socioeconomic and demographic indicators. 
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 Our sensitivity index was created by performing a mixed PCA on eight separate data 

tables made up of five Latin American countries at different census time periods.  In our final 

analysis, we choose to keep the largest two components to create the index.  The choice was 

based on the following criteria: i) consistency with previous literature, ii) consistent and sensitive 

results with the index, and iii) a high percentage of explained variances using the first two 

components. We compare simple sign-changing rotations for the principal components as well as 

varimax rotations, which coincide to a large degree.  

 Indicators for all countries include employment rate, average years of schooling, access to 

a sewage system, population under 14 years of age, and total population.  Each country has 

additional indicators which we include in one index for comparison with an index created using 

only variables that countries have in common for all years  

 The results are fairly consistent across different time periods and countries, which is 

reassuring as a justification for using PCA to create the index.  Figure 3 presents the results for 

Mexico. As can be observed, the most sensitive municipalities tend to be grouped in states where 

socioeconomic conditions are known to be the poorest within Mexico; the same happens with 

more resilient localities.  

 Table 15 presents the factor loadings for Brazil in the year 2000, which serves as an 

example of the final weights used to create the index for Brazil in that year (similar tables for the 

rest of the countries can be found in Appendix 2, available from the corresponding author on 

request). Summing the two components yields sensitive weights. The final value of the index is 

estimated using the loading factors weighted by the eigenvalues obtained by the PCA.  

Employment, education, type of worker, and ownership of household assets, such as televisions 

and refrigerators, make the greatest contribution to a higher ranking.  Gender (female), number 

of children, disabilities, and lack of access to trash disposal services make the greatest 

contribution to a lower ranking.  These results are similar to those found in previous literature, 

such as Vincent and Sutherland (2013) and Hagenlocher et al. (2013). 

 An issue for potential debate is how to define cutoff points and the relevant factors to be 

included in the final construction of the composite index. For instance, why unpaid workers earn 

a higher ranking than wage/salary workers can be questioned, and this is a legitimate concern. 

There are several approaches for resolving this issue.  Variables that receive counterintuitive 

factor loadings could be removed, and a second PCA could be performed with the remaining 
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variables.  Another alternative is to apply different weights to each component using the 

respective eigenvalues for each component.  That would give a higher contribution to ranking to 

higher number of years of school as opposed to unpaid workers, but it would still leave unpaid 

workers with a higher ranking than wage and salary workers, since both display the greatest 

value in the second component. Multicollinearity might also be influencing the results, but as the 

correlation matrix in Appendix 2 shows there is little need for concern since the highest 

correlation amongst variables is below 0.75, and the majority of correlation coefficients are 

below 0.30 in absolute value.  For these reasons, and in an effort to account for the highest 

amount of variability, we decided to include all variables in the final analysis.  

 A better understanding is gained by observing the biplot for the factor loadings for Brazil 

2000 and Mexico 2000 included in Figure 4.  The plot is a visual representation of the factor 

loadings. The axes are the first and second principal components (SUS and LoR). The plot 

clearly shows how variables are projected onto the principal components.  The first principal 

component is positively projected onto by number of bathrooms in the household, average years 

of schooling, ownership of a refrigerator and ownership of a telephone.  No trash service, being 

self-employed, number of children and disabilities project negatively onto the first component.  

The first principal component explained roughly 16 percent (eigenvalue of 5.01) of the total 

variation in the dataset.  We interpret this component as the measure “infrastructure” or, to be 

consistent with previous literature, as a measure of “susceptibility.”    

 The second principal component is composed of employment status, worker type, and 

child survival rate in the positive direction, and number of children and female gender in the 

negative direction. We interpret this second component as a measure of “condition” or 

“resilience,” to be consistent with the literature. Electricity is an interesting feature in the 

interpretation of the factor loadings.  Despite being the fourth highest in  contribution to the 

second principal component in the negative direction, the plot clearly shows that it is actually 

projects more onto the first principal component, as we would expect, since electricity is more a 

measure of infrastructure than condition (although it could be correlated with both). This 

visualization makes the variable projections easily classifiable into the two principal 

components.  The table following the biplot summarizes this as well by sorting the factor 

loadings for each component. 
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5.4. Treatment Effects on Vulnerability 
 

Based on the parameters estimated with the three SPS models discussed, propensity scores were 

as defined by equations (2), (2c) and (2d). The main statistics for each of these scores are 

presented in Tables 11 and 14. It should be mentioned that those scores will be assumed to be 

known before treatment, although in the case of socioeconomic conditions they can only be 

observed after the treatment actually took place. 

 As mentioned before, the unconfoundedness assumption is central to propensity score 

matching: by means of the propensity scores all observed differences between treated and control 

groups are eliminated, and so unobserved differences should be removed as well. Thus the 

starting point in order to assess the validity of the evidence found is to analyze whether balancing 

conditions are fulfilled.  Two alternative matching algorithms were used for each of the three 

different propensity scores constructed. Balancing tests were then applied. A detailed description 

of the balancing tests for every variable and model considered can be found in Appendix 1 

(available on request from the corresponding author).  The original propensity scores under 

accomplish balancing conditions for both types of covariates, except for some socioeconomic 

variables in Model 3. In this regard, the average treatments on the treated effects reported in 

Table 16 are valid measures of the effects an epidemic outbreak can have on sensitivity. In the 

case of partial climate propensity, the balancing conditions are naturally accomplished for the 

case of climatic covariates. It is important to remember that the partial propensity scores are built 

in order to isolate the effects of either social or climatic conditions. In the case of the climatic 

partial propensity score, the predicted probability for each location is estimated using the mean 

values of socioeconomic covariates and letting the climatic variables vary across locations; in 

this regard matched observations will have comparable climatic factors in order to have similar 

scores.  However, balancing conditions fail for some relevant socioeconomic variables under 

partial climate propensities.  The situation is markedly different for the case of the partial social 

propensity. In this case, neither of the matching algorithms could ameliorate before-treatment 

differences—not even for socioeconomic variables. The latter two cases call for an additional 

step in order to obtain consistent estimates of the differences in health vulnerability across 

locations; estimation of average treatment effects via differences-in-differences is used to 

overcome this issue.  
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           We are interested in those effects reflected by the average treatment on the treated as a 

measure. Once the effect on health vulnerability has been isolated via the propensity scores, the 

remaining differences in vulnerability can be attributed to differences in the sensitivity measure, 

as explained above.  Thus results represent the impact of an outbreak on a city’s health 

vulnerability. Treatment effects are reported for the case of a 10-neighbor, 10 percent 

caliper, matching algorithm as in Leuven and Sianesi (2003); a summary of those results can be 

found in Table 16. The application of kernel matching algorithms yield similar results, but they 

are not reported for the sake of brevity.  

            The results presented in Table 16 consistently signal that there are no significant 

differences in sensitivity between units that experienced an outbreak and those that did not 

during the sample years, when a valid score is used to match observations. Combining the 

exposure measures along with the constructed sensitivity index discussed above, it is possible to 

obtain a municipality-based measure of vulnerability to vector-borne diseases. A very 

preliminary analysis of the main features associated with vulnerability is performed by dividing 

the sample into the 30 most vulnerable municipalities, the 30 most resilient, and the rest 

intermediate. Results reported also in Table 18 suggest that the most significant differences 

between stem from differences in the propensity scores, reinforcing the importance of the 

marginal effects discussed above.  

 As mentioned in Section 3 and verified by the balancing conditions above, the conditional 

independence assumption does not hold when considering socioeconomic covariates. In order to 

deal with this sort of unobserved heterogeneity, which may induce endogeneity, a difference-in-

differences estimator is proposed. The differences-in-differences coefficient was estimated using 

the sensitivity indexes presented above for census years 2000 and 2010 for Brazil, Mexico and 

Costa Rica, the only countries for which two census waves are available. The conventional 

common trends assumption for treated and control groups is tested in Table 17a and 17b; the 

results satisfy the notion that the evolution in covariates was similar both groups during the intra-

census period.  

 The results suggest that, in terms of the health vulnerability to dengue measure proposed 

in this paper, there are no remarkable differences between treated and non-treated locations. The 

outcomes, presented in Tables 16, 17a and 17b, were tested for both the mean and deviation of 

the sensitivity index, using the three different scores discussed above as matching devices; the 
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generalized propensity score was excluded from the analysis.  Once the effect of exposure to an 

outbreak is removed, then there are no statistically significant differences between communities 

that suffered an outbreak and those that did not. Considering that the sensitivity index is built 

only from socioeconomic data, it is reasonable to obtain such a result. This fact raises the 

importance of building a sensitivity measure that reflects the magnitude of the impact. A 

function linking the observed magnitude to the local strengths of a community is necessary in 

order to improve the results. This is not to say, however, that the results are not valid for 

analyzing the underlying factors determining cities’ capabilities for coping with adverse effects.  

 
6. Conclusions and Policy Implications 
 

The paper demonstrated that both climatic and socioeconomic conditions can have non-

negligible effects on health vulnerability to vector-borne diseases. We achieved this by taking 

advantage of a commonly accepted notion of vulnerability, made up of two channels: a 

probability that accounts for exposure to an epidemic outbreak, and a sensitivity term intended  

to capture a city’s capabilities for dealing with adverse events. As a result, the paper provides 

evidence that structural climate and socioeconomic conditions play a significant role in the 

appearance of epidemic outbreaks. The paper additionally identifies the most relevant 

socioeconomic conditions, all amenable to public policy, which make up the sensitivity measure 

used in this paper. Several policy conclusions can be drawn from this evidence, and possible 

avenues for further research are discussed below.  

 Climate extreme events do have a non-negligible effect on the likelihood of an epidemic 

outbreak of dengue. The results are consistent across three types of models introducing different 

climatic conditions. All these measures represent the effects of extreme weather events on the 

likelihood of a dengue epidemic. In the context of climate change, these numbers can help 

policymakers in their quest to quantify effects on human health in light of the extensive literature 

assessing the impacts of epidemics on health outcomes (Molina, 2009; Tarazona and Gallegos, 

2011) and therefore guide policy initiatives.   

 In the case of socioeconomic conditions, the effects are also significant. As expected, 

water supply—one of the basic services that presents the greatest challenges for urbanization—is 

a relevant determinant of epidemic outbreaks. Expanding access to water supply services by 1 

percent can reduce the probability of a dengue outbreak by 10 percent. Other socioeconomic 



41 
 

variables, such as population (and density) and average per capita expenditure on health services 

are also relevant.   

 A sensitivity index, composed of two dimensions, was constructed upon socioeconomic 

variables at the household and community level, obtained from national censuses for five 

different countries. Our results are consistent with previous literature on the topic, and the 

ordering of cities based on the index is consistent with the observed distribution of 

socioeconomic indicators in selected countries, which validates our results. Nonetheless, further 

analysis is necessary, under different assumptions and models, in order to check for the 

robustness of the results obtained. 

 The validity of the evidence found is additionally noteworthy. Given the large number of 

cities and communities considered (more than 1,800) across five countries where dengue is a 

national health priority, the results enjoy a remarkable degree of external validity, at least for 

Latin America and the Caribbean. Similarly, the internal validity of the results is guaranteed by 

the empirical strategy followed; the propensity scores utilized achieve balancing conditions and, 

where these are not accomplished, differences-in-differences contribute to validating the results. 

 The framework presented can be expanded in several directions. In order to obtain a more 

local measure of exposure, structural modeling of the disease process could be obtained. In this 

paper, climatic data from satellite sources was processed using simple averages by city. In order 

to gain precision on the effects of climate variables, more geographically sophisticated models of 

climatic data interpolation are necessary, which should also be able to capture extreme events, 

though.  Furthermore, regional climate models can be incorporated to analyze the long-term 

effects of climate change. Other types of vector-borne diseases and respiratory outbreaks can 

likewise be analyzed, providing a more comprehensive assessment of the impacts of climate 

change on health. 

 Finally, knowledge and data on both components of the vulnerability measure utilized has 

been acquired, which has enhanced our understanding of the problem. We are now in a position 

to analyze more carefully the distribution of vulnerability in order to integrate the analysis into 

obtaining policy relevant conclusions. For instance, it would valuable to isolate the effects of 

every component of the sensitivity index in order to better guide policy actions toward increasing 

community resilience. Similarly, by using geo-referenced information on health and basic 
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services facilities it is possible to build a more comprehensive measure of sensitivity, which may 

approximate the supply of health and basic services at the regional level.  
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Table 1. Dengue and Malaria: Average Number of Cases 

and Incidence by Country, 1995-2010 
 

Country Criteria 
Malaria Dengue 

Mean Std. Dev. Mean Std. Dev. 

Belize 

Number of registered cases 
of  [Cases] 

2,247 2,637 315 660 

Annual Parasitic Incidence 
(per 100 thousand pop surv) 

0.012 0.012 0.068 0.110 

Bolivia 

Number of registered cases 
of  [Cases] 

29,294 20,753 8,102 20,641 

Annual Parasitic Incidence 
(per 100 thousand pop surv) 

0.013 0.006 0.230 0.245 

Brazil 

Number of registered cases 
of  [Cases] 

444,814 104,200 404,555 254,967 

Annual Parasitic Incidence 
(per 100 thousand pop surv) 

0.032 0.028 0.258 0.142 

Colombia 

Number of registered cases 
of  [Cases] 

139,672 43,514 49,388 33,816 

Annual Parasitic Incidence 
(per 100 thousand pop surv) 

0.021 0.015 0.228 0.157 

Costa Rica 

Number of registered cases 
of  [Cases] 

2,338 1,781 13,092 10,570 

Annual Parasitic Incidence 
(per 100 thousand pop surv) 

0.004 0.003 0.560 0.332 

Dominican 

Rep. 

Number of registered cases 
of  [Cases] 

1,961 1,023 4,232 3,470 

Annual Parasitic Incidence 
(per 100 thousand pop surv) 

0.003 0.002 0.064 0.035 

El Salvador 

Number of registered cases 
of  [Cases] 

1,006 1,748 9,371 7,825 

Annual Parasitic Incidence 
(per 100 thousand pop surv) 

0.0005 0.0004 0.188 0.107 

Honduras 

Number of registered cases 
of  [Cases] 

28,295 22,303 21,128 14,580 

Annual Parasitic Incidence 
(per 100 thousand pop surv) 

0.009 0.004 0.338 0.247 

Mexico 

Number of registered cases 
of  [Cases] 

4,712 3,323 45,246 61,944 

Annual Parasitic Incidence 
(per 100 thousand pop surv) 

0.0008 0.0011 0.034 0.042 

Nicaragua 

Number of registered cases 
of  [Cases] 

19,498 24,070 5,859 6,056 

Annual Parasitic Incidence 
(per 100 thousand pop surv) 

0.009 0.005 0.072 0.075 

Paraguay 

Number of registered cases 
of  [Cases] 

2,108 2,789 6,347 10,054 

Annual Parasitic Incidence 
(per 100 thousand pop surv) 

0.0013 0.0014 131.430 182.517 

Peru 

Number of registered cases 
of  [Cases] 

115,820 72,452 7,683 6,300 

Annual Parasitic Incidence 
(per 100 thousand pop surv) 

0.016 0.008 0.034 0.022 

Venezuela 

Number of registered cases 
of  [Cases] 

30,965 11,591 46,368 28,880 

Annual Parasitic Incidence 
(per 100 thousand pop surv) 

0.024 0.019 0.200 0.099 

          Source: PAHO. 
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Table 2.  Climatic Limiting Conditions, by Vector-Borne Disease 

Disease Pathogen Vector 
Minimum 

Temperature 

Maximum 

Temeprature 

Minimum 

temperature 

for vector 

   
ºC ºC ºC 

Malaria 
Plasmodium 
falciparum Anopheles 8 – 10 33 - 39 

8 - 1 
(biological 
activity) Plasmodium vivax 

Dengue Dengue virus Aedes 14- 15 33 - 39 
8  - 10 

(biological 
activity) 

Chagas Trupanosomacruzi 
Triatomina 

(kissing 
bugs) 

18 38 

2 -6 
(survival), 20 

(biological 
activity) 

Lyme 
Disease 

Borreliaburdoferi Ixodes ticks 
Not 

determined 
Not 

determined 
5 – 8 

Source: Dhiman, Pahwa and Aditya (2010). 
 

 

Table 3. Variable Description and Sources 

Variable Type Description Sources 
Administrative / 

Geographical 

Dengue and malaria 
outbreaks 

Occurrence of epidemic outbreak, by 
administrative layer 

Health Maps 3rd Administrative 
Intensity of an outbreak, by 

administrative layer 

Socioeconomic Variables: 
Costa Rica 

Selected indicators reflecting local 
assets, by administrative level 

INEC, RADETAM-
CELADE 

3rd, 4th Administrative 

Socioeconomic Variables: 
Mexico 

Selected indicators reflecting local 
assets, by administrative level 

INEGI 3rd, 4th Administrative 

Socioeconomic Variables: 
Brazil 

Selected indicators reflecting local 
assets, by administrative level 

IPUMS 
3rd Administrative and  

Household level 
information 

Socioeconomic Variables: 
Nicaragua 

Selected indicators reflecting local 
assets, by administrative level 

IPUMS 
3rd Administrative and  

Household level 
information 

Socioeconomic Variables: 
Colombia 

Selected indicators reflecting local 
assets, by administrative level 

IPUMS 3rd, 4th Administrative 

Rainfall 

Monthly, seasonal or annual  rainfall, by 
geographical region 

NASA’s Tropical 
Rainfall Measuring 
Mission (TRIMM)  
Satellite Databases, 

GEOPORTAL 

0.25ºx0.25º Pixel 
Resolution Statistical moments for rainfall, by 

geographical region 

Temperature 
Monthly temperature average , by 

geographical region 

NOOA’s  Satellite 
Databases. Retrieved 
from IRI – University 
of Columbia climate 

repository 

0.5ºx0.5º Pixel Resolution 

GEOPORTAL 

  Source: Authors’ compilation. 
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Table 4. Number of Reported Cases by Year and Country 
 

  Costa 

Rica 
Mexico 

Dominican 

Republic 
Brazil Colombia Nicaragua 

2005 0 0 2 0 0 0 

2006 1 1 1 1 0 0 

2007 0 1 1 35 0 0 

2008 0 13 1 24 0 0 

2009 0 30 1 43 1 3 

2010 0 9 0 37 10 1 

2011 0 3 0 14 1 2 

2012 2 29 6 24 19 5 

2013 2 58 5 26 22 8 

Total 5 144 17 204 53 19 

Number of 3rd 
admin. layer  

locations with 
more than one 

reported 
outbreak 

2 20 3 108 29 8 

Total number of 
3rd admin. 

layer  locations 
with reported 

outbreaks 

3 140 15 204 65 19 

       Source: Health Maps. 
 

 

Table 5. Intensity Statistics of Epidemic Outbreaks, by Country 
 

  Injured - Dengue Injured - Malaria 

  Mean Std. Dev Mean Std. Dev 

Costa Rica 418 342 77.5 91.21 

Mexico 149 347 5.67 3.05 

Brazil 2790 12300 17.67 13.31 

Colombia 411 868 46 57 

Nicaragua 214 305 0 0 

Dominican 
Republic 104 259 20.51 0.7 

        Source: Health Maps.  
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Table 6. Monthly Distribution of Reported Cases, by Country 

Dengue Malaria 

  Mexico 
Costa 
Rica 

Dom. 
Republic 

Colombia Nicaragua Brazil Mexico 
Costa 
Rica 

Dom. 
Republic 

Colombia Nicaragua Brazil 

January 11 
 

1 2 
 

8 
   

2 
  

February 15 
 

1 1 
 

36 
  

1 1 
  

March 3 1 4 4 1 24 
 

1 
 

1 
 

1 

April 4 
 

1 8 
 

21 
  

1 
   

May 12 
 

1 12 1 12 
  

1 2 
  

June 3 
 

1 2 1 9 
      

July 39 
 

2 5 5 25 
   

3 
  

August 15 2 1 2 1 5 
     

1 

September 25 
 

1 3 4 22 
      

October 4 
 

1 9 3 14 
   

1 
  

November 5 
 

1 1 
 

11 3 1 
 

2 
  

December 4     4 3 15           1 

Source: Health Maps. 
 

 

Table 7. Number of Available Climatic Information Pixels, by Country 

Country Number of pixels 
Number of pixels 

actually available 

Mexico 2,764 1,071 

Nicaragua 1,73 
 

El Salvador 28 
 

Honduras 150 
 

Haiti 35 
 

Dominican 
Republic 

63 48 

Costa Rica 69 39 

Bolivia 1,468 
 

Brazil 10,711 2,754 

Paraguay 562 
 

Peru 1,706 
 

Colombia 1,480 
 

Total 19,209 3,912 

   

   Source: Authors’ compilation. 
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Table 8. Sources of Socioeconomic Information, by Country 

Country 
Type of 

Survey 
Name Year 

Admin. Level 

Reached 
Source 

Primary 

Source 

Mexico Census 
Censo de 

Población y 
Vivienda 

2010 
3rd and 4th 

Administrative Level 
INEGI INEGI 

Mexico Census 

Censo 
Nacional de 
Población y 

Vivienda 

2000 
3rd Administrative 

Level 
INEGI INEGI 

Costa Rica Census 

Censo 
Nacional de 
Población y 

Vivienda 

2011 
3rd and 4th 

Administrative Level 
RADETAM INEC 

Costa Rica Census 

Censo 
Nacional de 
Población y 

Vivienda 

2000 
3rd and 4th 

Administrative Level 
RADETAM INEC 

Dominican 
Republic 

Census Censo 2010 
3rd and 4th 

Administrative Level 
RADETAM ONE 

Colombia Census Censo  2007 
3rd and 4th 

Administrative Level 
IPUMS DANE 

Nicaragua Census Censo  2005 
3rd and 4th 

Administrative Level 
IPUMS INED 

Brazil 
Census 
Sample  

2010 
3rd Administrative and 

Household Level 
IPUMS IBGE 

Brazil 
Census 
Sample 

Censo 2000 
3rd Administrative and 

Household Level 
IPUMS IBGE 

  Source: INEGI, INEC, ONE, RADETAM, World Bank Microdata Catalogue and IPUMS. 
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Table 9. Pre-Treatment Differences, by Country 
 

  Treatment Control 

Normalized 

Differences 

 
Treatment Control 

Normalized 

Differences 

Variable N Mean 
Std. 

Deviation 
N Mean 

Std. 

Deviation  
N Mean 

Std. 

Deviation 
N Mean 

Std. 

Deviation 

  Brazil   
 

Colombia   

sewage 82 0.744 0.251 1414 0.509 0.31 0.59 
 

34 0.850 0.120 206 0.682 0.215 0.682 

unemployment 82 0.051 0.02 1414 0.069 0.034 -0.474 
 

34 0.073 0.023 206 0.047 0.032 0.663 

electricity 82 0.987 0.011 1414 0.969 0.052 0.338 
 

34 0.935 0.083 206 0.859 0.135 0.483 

literacy 82 0.089 0.074 1414 0.14 0.087 -0.448 
 

34 0.145 0.074 206 0.206 0.069 -0.593 

share_pop<14years 82 0.226 0.031 1414 0.258 0.049 -0.549 
 

34 0.302 0.054 206 0.337 0.047 -0.483 

total_population 82 15414.04 30723.21 1414 6560.05 21399.8 0.236 
 

34 32263.2 26519.07 206 7605.7 10665.36 0.863 

latitude 203 -48.366 6.077 2659 -48.61 5.795 0.029 
 

34 -74.721 1.486 206 -74.972 1.452 0.121 

longitude 203 -18.262 7.158 2659 -16.43 8.238 -0.168 
 

34 7.574 2.697 206 6.215 2.452 0.373 

surface 203 352520.2 770314.8 2659 282331 847450.6 0.061 
 

34 1392.7 1537.5 206 1258.4 2027.9 0.053 

temperature 203 297.089 3.254 2659 295.743 66.593 0.02 
 

34 298.309 3.580 206 297.038 4.660 0.216 

precipitation 203 108.544 104.256 2659 113.891 110.373 -0.035 
 

34 180.378 43.798 206 217.076 79.201 -0.405 

density 82 0.168 0.275 389 0.059 0.151 0.348 
 

34 51.296 52.771 206 16.737 28.241 0.577 

  



57 
 

           Table 9., continued 
  

  Treatment Control 

Normalized 

Differences 

 
Treatment Control 

Normalized 

Differences 

Variable N Mean 
Std. 

Deviation 
N Mean 

Std. 

Deviation  
N Mean 

Std. 

Deviation 
N Mean 

Std. 

Deviation 

      

  Mexico   
 

Nicaragua   

sewage 141 0.886 0.148 2368 0.739 0.246 0.512 
 

19 0.742 0.172 37 0.092 0.098 3.291 

unemployment 141 0.041 0.015 2368 0.041 0.033 -0.021 
 

19 0.037 0.009 37 0.019 0.013 1.089 

electricity 141 0.972 0.024 2368 0.949 0.064 0.332 
 

19 0.836 0.150 37 0.483 0.272 1.137 

literacy 141 0.066 0.042 2368 0.123 0.074 -0.668 
 

19 0.169 0.062 37 0.308 0.095 -1.221 

share_pop<14years 141 0.041 0.015 2368 0.041 0.033 -0.021 
 

19 0.345 0.034 37 0.415 0.055 -1.084 

total_population 141 291640.8 353121.5 2368 39911.9 120520.1 0.675 
 

19 26720.1 35947.92 37 4530 2350.875 0.616 

latitude 99 -97.294 7.038 1015 -100.346 5.236 0.348 
 

19 -85.783 0.796 37 -85.368 1.073 -0.310 

longitude 99 21.552 3.139 1015 21.592 4.128 -0.008 
 

19 12.664 0.529 37 12.841 0.760 -0.191 

surface 99 3520000 4760000 1015 1570000 2940000 0.349 
 

19 1011.5 988.3 37 2024.9 2079.4 -0.440 

temperature 99 276.565 205.988 1015 287.251 152.173 -0.042 
 

19 299.895 1.096 37 159.517 846.241 0.166 

precipitation 99 54.126 86.612 1015 51.871 86.883 0.018 
 

19 163.783 22.787 37 163.686 36.890 0.002 

density 99 0.001 0.002 1015 0 0.001 0.267 
 

19 36.490 50.563 37 5.706 8.713 0.600 
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           Table 9., continued 

 

  Treatment Control 

Normalized 

Differences 

 
Treatment Control 

Normalized 

Differences 

Variable N Mean 
Std. 

Deviation 
N Mean 

Std. 

Deviation  
N Mean 

Std. 

Deviation 
N Mean 

Std. 

Deviation 

  Costa Rica   
 

Dominican Republic   

sewage 4 0.931 0.037 78 0.948 0.056 -0.251 
 

18 0.428 0.128 148 0.626 0.174 -0.92 

unemployment 4 0.043 0.009 78 0.032 0.008 0.994 
 

18 0.065 0.018 148 0.088 0.03 -0.665 

electricity 4 0.973 0.023 78 0.985 0.026 -0.323 
 

18 0.07 0.059 148 0.125 0.14 -0.366 

literacy 4 0.144 0.094 78 0.061 0.079 0.672 
 

18 0.206 0.025 148 0.246 0.07 -0.534 

share_pop<14years 4 0.273 0.043 78 0.251 0.036 0.384 
 

18 0.285 0.017 148 0.313 0.035 -0.699 

total_population 4 123249.8 115904 78 50040.1 45311.81 0.588 
 

18 60359 40524.15 148 22659 55392.35 0.549 

latitude 3 -83.548 0.676 37 -84.328 0.82 0.734 
 

7 -69.655 1.274 44 -70.75 0.663 0.763 

longitude 3 9.703 0.12 37 9.979 0.637 -0.425 
 

7 18.978 0.507 44 18.923 0.498 0.077 

surface 3 1.01E+09 7.58E+08 37 1.4E+09 8.69E+08 -0.321 
 

7 542.5 162.7 44 274.1 208 1.016 

temperature 3 297.488 1.105 37 298.502 2.759 -0.341 
 

7 299.1 1.665 44 298.29 2.385 0.278 

precipitation 3 142.362 174.088 37 130.631 168.334 0.048 
 

7 67.683 75.548 44 65.18 82.383 0.022 

density 3 0 0 37 0 0 -0.062 
 

7 92.021 55.972 44 103.5 142.198 -0.075 

   Source: Authors’ calculations.
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Table 10. National Level Covariates Included 

 
GDP per 

capita 2012 

Health 

Expenditure 

per capital 

2012 

Share of 

Health  

Expenditure 

in GDP 

Average of 

Private Share 

in Health 

Expenditure 

Private Out 

of Pocket 

Share on 

Health 

Expenditure 

 
USD in PPP USD in PPP % % % 

Brazil 11339.52 1042.73 8.90 56.23 58.17 

Costa Rica 9396.45 1329.81 10.87 31.59 89.28 

Dominican 
Republic 

5736.44 529.07 5.36 51.33 78.83 

Mexico 9747.46 940.10 6.16 52.63 92.71 

           Source: WHO. 
  

 

Table 12. Summary Statistics and Correlations Matrices 

Simple Propensity Score (Logit) 

 

Variable Obs Mean Std. Dev. Min Max 

Gross_knots 1,914 0.1031 0.1833 0.0000 0.9917 

Gross_bins 1,914 0.1042 0.1910 0.0000 0.9963 

Gross-thresholds 1,914 0.1035 0.1643 0.0000 0.9670 

PTE_SOC_Knots 1,914 0.0869 0.1667 0.0000 0.9759 

PTE_CLIM_Knots 1,914 0.1126 0.1984 0.0000 0.8868 

PTE_SOC_Bins 1,914 0.0760 0.1586 0.0000 0.9489 

PTE_CLIM_Bins 1,914 0.1160 0.2062 0.0000 0.9150 

PTE_SOC_Thresholds 1,914 0.1562 0.2297 0.0000 0.9943 

PTE_CLIM_Thresholds 1,914 0.2058 0.2989 0.0006 0.9641 

 Source: Authors’ calculations. 
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Table 11. Propensity Score Model for Epidemic Dengue and Malaria Outbreaks 

Model 

PHYSICAL THRESHOLDS 

AND LEVELS 
CLIMATIC BINS DISTRIBUTION THRESHOLDS 

MODEL 1 MODEL 2 MODEL 3 

N 1831 1831 1831 

AIC 744.218 749.236 794.240 

BIC 898.571 991.791 887.954 

Pseudo 

Likelihood 
-344.109 -330.618 -380.120 

Chi2 0.000 0.000 0.000 

LROC 0.894 0.904 0.855 

Pseudo - R2 0.349 0.375 0.281 

threshold > 20º C 5.782 b_2_precipitation 0.079 dummy threshold perc. 95 temperature 1.903 

threshold > 100 mm 0.466 b_3_precipitation 0.029 dummy threshold perc. 95 precipitation 0.278 

threshold > 25º C -1015.985 b_6_precipitation 0.163 dummy threshold perc. 90 temperature 0.001 

threshold > 150 mm -80.774 b_11_precipitation 0.085 dummy threshold perc. 90 precipitation 0.537 

temperature continous > 20ºC -3.488 b_17_precipitation -0.059 dummy threshold perc. 75 temperature 0.201 

temperature continous > 25ºC 0.000 b_18_precipitation 0.032 dummy threshold perc. 75 precipitation -1.096 

precipitation continous >100 mm -0.520 
    

precipitation continous >150 mm -0.001 
    

temperature continous > 20ºC 
squared 

3.442 
    

temperature continous > 25ºC 
squared 

0.000 
    

pp continous >100 mm squared 0.521 
    

pp continous >150 mm squared 0.001 
    

year mean temperature 0.021 year mean temperature 0.033 
  

year mean precipitation 0.011 year mean precipitation 0.008 
  

summer mean precipitation 0.005 summer mean precipitation -0.002 
  

summer mean temperature -0.022 summer mean temperature -0.347 
  

population logs 1.115 population logs 1.187 population logs 1.116 

density logs 0.207 density logs 0.278 density logs -0.371 

share_pop<14years logs 0.261 share_pop<14years logs 0.099 share_pop<14years logs 1.177 

illiteracy logs -0.529 illiteracy logs -0.734 illiteracy logs -0.604 

electricity logs 0.804 electricity logs 0.633 electricity logs 1.100 

unemployment logs 0.487 unemployment logs 0.581 unemployment logs 1.152 

water supply logs 1.955 water supply logs 1.722 water supply logs 1.666 

GDP per capita logs 3.195 GDP per capita logs 3.853 GDP per capita logs 8.428 

health expenditure per capita logs -6.345 health expenditure per capita logs -7.429 health expenditure per capita logs -12.018 

latitude 0.033 latitude -0.016 latitude -0.006 

longitude 0.111 longitude 0.073 longitude 0.106 

constant 4.815 constant 12.373 constant 1.246 

Source: Authors’ calculations.
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Table 12. Summary of the Balancing Conditions, by Propensity Score Model 
 

 

MODEL 1. PHYSICAL THRESHOLDS AND LEVELS 

 

MODEL 2. CLIMATIC BINS   MODEL 3. DISTRIBUTION THRESHOLDS 

Climatic Regressors Socioeconomic Regressors 

 

Climatic Regressors Socioeconomic Regressors 

 

Climatic Regressors Socioeconomic Regressors 

Balanced Unbalanced Balanced Unbalanced 

 

Balanced Unbalanced Balanced Unbalanced 

 

Balanced Unbalanced Balanced Unbalanced 

threshold > 20º C 
 

population logs 

 

  

b_2_precipitation 

 

population logs 

 

  

dummy 
threshold perc. 
95 temperature 

latitude population logs 

 

threshold > 100 mm 
 

share_pop<14years 
logs 

density logs b_3_precipitation 

 

density logs 

 

dummy 
threshold perc. 
95 precipitation 

longitude density logs 

 
threshold > 25º C 

 
illiteracy logs 

 

b_6_precipitation 

 

share_pop<14years 
logs 

 

dummy 
threshold perc. 
90 temperature 

 

share_pop<14years 
logs 

 

threshold > 150 mm 
 

electricity logs 

 

b_11_precipitation 

 

electricity logs illiteracy logs 
dummy 

threshold perc. 
90 precipitation 

 

illiteracy logs 

 temperature 
continuous > 20ºC  

unemployment logs 

 

b_17_precipitation 

 

unemployment 
logs 

 

dummy 
threshold perc. 
75 temperature 

 

electricity logs 

 
precipitation 

continuous >100 mm 

temperature 
continuous > 

25ºC 
water supply logs 

 

b_18_precipitation 

 

water supply logs 

 

dummy 
threshold perc. 
75 precipitation 

 

unemployment 
logs 

 precipitation 
continuous >150 mm  

GDP per capita logs 

 

year mean 
temperature 

 

GDP per capita 
logs 

 
 

 

water supply logs 

 temperature 
continuous > 20ºC 

squared 
 

health expenditure 
per capita logs 

 

year mean 
precipitation 

 

health expenditure 
per capita logs 

 

 

 

GDP per capita 
logs 

 temperature 
continuous > 25ºC 

squared 
 

  

summer mean 
precipitation 

   

  
    

health 
expenditure per 

capita logs 

pp continuous >100 
mm squared  

  

summer mean 
temperature 

   
 

   pp continuous >150 
mm squared  

  

latitude 

   
 

   
year mean temperature 

 

  

longitude 

   
 

   year mean 
precipitation  

  

constant 
       

   summer mean 
precipitation  

      
 

   summer mean 
temperature  

      
 

   latitude 
 

      
 

   longitude       
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Table 13. Marginal Effects of Selected Variables 
 

 
SIMPLE PROPENSITY SCORE (LOGIT) 

 

PHYSICAL THRESHOLDS 

AND LEVELS 
CLIMATIC BINS 

DISTRIBUTION 

THRESHOLDS 

 

MODEL 1 MODEL 2 MODEL 3 

 
Odds 
ratios 

Average Marginal 
Effects Odds 

ratios 

Average Marginal 
Effects Odds 

ratios 

Average Marginal 
Effects 

 

Marginal 
Effects 

Semi-
elasticities 

Marginal 
Effects 

Semi-
elasticities 

Marginal 
Effects 

Semi-
elasticities 

ln_density 0.793 

 
0.012 0.776 

 
0.009 0.690 

 
0.022 

ln_por_pop<14 0.929 

 

0.008 0.823 
 

0.006 0.314 
 

-0.069 

ln_water_supply 6.523 

 

0.105 5.205 
 

0.063 5.723 
 

0.098 

ln_health_exp 0.058 

 

-0.344 -0.041 
 

-0.418 2.845 
 

-0.706 

ln_pop_total 3.278 

 

0.060 3.436 
 

0.059 
  

0.066 

threshold > 20º C 40.494 0.313 40.247 

   
   

threshold > 100 mm 1.547 0.025 2.025 

   
   

threshold > 25º C 0.000 -55.059 -24.642 

   
   

threshold > 150 mm 0.000 -4.377 -1.391 

   
   

temperature continuous > 20ºC -0.027 -0.189 -40.324 

   
   

temperature continuous > 25ºC 1.000 0.000 -0.170 

   
   

precipitation continuous >100 mm -0.621 -0.028 -2.716 

   
   

precipitation continuous >150 mm 0.999 0.000 -0.473 

   
   

temperature continuous > 20ºC squared -36.650 0.187 25.079 

   
   

temperature continuous > 25ºC squared 1.000 0.000 0.045 

   
   

pp continuous >100 mm squared 1.604 0.000 2.277 

   
   

pp continuous >150 mm squared 1.001 0.000 0.324 

   
   

dummy threshold perc. 95 temperature 
      

6.224 0.112 0.687 

dummy threshold perc. 95 precipitation 
      

1.308 0.016 0.099 

dummy threshold perc. 90 temperature 
      

1.079 0.006 0.065 

dummy threshold perc. 90 precipitation 
      

1.745 0.032 0.367 

dummy threshold perc. 75 temperature 
      

1.249 0.012 0.340 

dummy threshold perc. 75 precipitation             0.524 0.064 -1.849 

 Source: Authors’ calculations. 
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Table 14. Generalized Propensity Score (Negative Binomial) Detailed Results 
 

Model 

PHYSICAL THRESHOLDS AND 

LEVELS 
CLIMATIC BINS DISTRIBUTION THRESHOLDS 

MODEL 1 MODEL 2 MODEL 3 

N 1,826 1,826 1,831 

AIC 2443.406 2424.965 794.240 

BIC 2597.683 2667.399 887.954 

Pseudo 

Likelihood 
-1193.703 -330.618 -380.120 

Clusters 104 104 104 

Chi2 0.000 0.000 0.000 

Pseudo - R2 0.069 0.088 0.040 

threshold > 20º C 4.972 b_3_temperature 0.499 dummy threshold perc. 95 temperature 0.693 

threshold > 100 mm 1.043 b_4_temperature 0.489 dummy threshold perc. 95 precipitation 0.643 

threshold > 25º C -813.280 b_5_temperature 0.505 dummy threshold perc. 90 temperature -1.671 

threshold > 150 mm -191.548 b_6_temperature 0.507 dummy threshold perc. 90 precipitation 1.987 

temperature continuous > 20ºC -2.966 b_7_temperature 0.491 dummy threshold perc. 75 temperature -0.127 

temperature continuous > 25ºC 0.000 b_8_temperature 0.522 dummy threshold perc. 75 precipitation 2.319 

precipitation continuous >100 mm -1.521 b_9_temperature 0.485 
  

precipitation continuous >150 mm 0.001 b_10_temperature 0.547 
  

temperature continuous > 20ºC squared 2.749 b_2_precipitation 0.183 
  

temperature continuous > 25ºC squared 0.000 b_6_precipitation 0.193 
  

pp continuous >100 mm squared 1.482 b_7_precipitation 0.450 
  

pp continuous >150 mm squared -0.001 b_11_precipitation 0.322 
  

   
b_14_precipitation -0.328 

  
   

b_16_precipitation 0.581 
  year mean temperature 0.048 year mean temperature 0.120 
  year mean precipitation 0.027 year mean precipitation 0.008 
  summer mean precipitation 0.036 summer mean precipitation -0.002 
  summer mean temperature -0.049 summer mean temperature -0.133 
  density logs 0.248 density logs 0.278 density logs 0.209 

share_pop<14years logs -0.845 share_pop<14years logs -1.674 share_pop<14years logs 0.378 

illiteracy logs -3.372 illiteracy logs -2.741 illiteracy logs -2.799 

electricity logs 4.112 electricity logs 0.633 
  

unemployment logs 2.024 unemployment logs 2.522 unemployment logs 2.177 

water supply logs 1.640 water supply logs 4.219 water supply logs 4.228 

GDP per capita logs 4.989 GDP per capita logs 3.853 GDP per capita logs -54.047 

health expenditure per capita logs -12.493 
health expenditure per capita 

logs 
-11.049 health expenditure per capita logs -35.662 

latitude 0.141 latitude 0.055 latitude 0.035 

longitude 0.215 longitude -0.045 longitude 0.218 

constant 32.295 constant 12.373 constant 206.918 

alpha 47.294 alpha 38.835 alpha 67.4597 

ln_alpha 3.856 ln_alpha 3.659 ln_alpha 4.212 

población_total exposure población_total exposure población_total exposure 
 

Source: Authors’ calculations. 
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Table 15. Sensitivity Index: Components, Brazil 2000 
 

 

 
Indicator 

PC1 – 

SUS       Indicator PC2 – LoR     

 
Bathrooms 0.333   

Less 
Susceptible 

  Employed 0.533   

More Resilient  

 
Average Years of School 0.328 

  
Unpaid Worker 0.370 

 

 
Refrigerator 0.294 

  
Wage/Salary Worker 0.244 

 

 
Phone 0.292 

  
Child Survival Rate 0.106 

 

 
Automobile 0.261 

  
High School Attainment 0.092 

 

 
High School Attainment 0.260 

  
HH-Married With children 0.079 

 

 
Water Supply 0.259 

  
Average Years of School 0.071 

 

 
TV 0.258 

  
No Trash Service 0.056 

 

 
Rooms In House 0.249 

  
HH-One Person 0.028 

 

 
Electricity  0.236 

  
HH-Married No Children 0.024 

 

 
Literacy 0.211 

  
Literacy 0.008 

 

 
Radio 0.152 

      

 
Unpaid Worker 0.130 

  
Age -0.010 

 

Less Resilient 

 
Sewage System 0.115 

  
Sewage System -0.019 

 

 
Employed 0.109 

  
HH-Ext. Fam., Relatives Only -0.025 

 

 
Bedrooms 0.097 

  
Automobile -0.028 

 

 
HH-Married With children 0.013 

  
Radio -0.043 

 

 
HH-Married No Children 0.003 

  
Phone -0.071 

 

      
Bedrooms -0.084 

 

 
Wage/Salary Worker -0.001 

 

More 
Susceptible 

 
Disability -0.085 

 

 
Female -0.005 

  
HH-Family and Non-rel -0.094 

 

 
HH-Ext. Fam., Relatives Only -0.006 

  
Rooms In House -0.099 

 

 
Age -0.010 

  
Water Supply -0.101 

 

 
HH-Family and Non-rel -0.022 

  
Refrigerator -0.105 

 

 
HH-One Person -0.030 

  
TV -0.105 

 

 
Child Survival Rate -0.053 

  
Bathrooms -0.106 

 

 
Disabilities -0.060 

  
Electricity  -0.111 

 

 
Number of Children -0.094 

  
Number of Children -0.166 

 

 
Self-employed -0.109 

  
Female -0.270 

 

 
No Trash Service -0.148     Self-employed -0.533   

Source: Authors’ calculations. 
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Table 16. Average Treatment on the Treated, by Propensity Score 
 

 
    ORIGINAL PROPENSITY 

N = 1,720 Variable Sample Treated Controls S.E. T-stat 

MODEL 1. 

CLIMATIC 

BINS  

avg_si Unmatched -2.349 -1.059 1.000 
 

 
ATT -2.349 -3.202 1.148 0.740 

sd_si Unmatched 11.272 10.785 0.390 
 

 
ATT 11.272 10.502 0.653 1.180 

p50_si Unmatched -2.135 -0.970 1.079 
 

 
ATT -2.135 -3.056 1.211 0.760 

si_ratio75_25 Unmatched 0.154 -0.670 1.322 
 

 
ATT 0.154 -0.625 3.147 0.250 

si_ratio90_10 Unmatched -0.493 10.719 35.817 
 

  ATT -0.493 11.333 86.206 -0.140 

N = 1,720 Variable Sample Treated Controls S.E. T-stat 

MODELS 2. 

CLIMATIC 

KNOTS 

avg_si Unmatched -2.349 -1.059 1.000 
 

 
ATT -2.349 -2.473 1.172 0.110 

sd_si Unmatched 11.272 10.785 0.390 
 

 
ATT 11.272 10.656 0.641 0.960 

p50_si Unmatched -2.135 -0.970 1.079 
 

 
ATT -2.135 -2.289 1.215 0.130 

si_ratio75_25 Unmatched 0.154 -0.670 1.322 
 

 
ATT 0.154 -0.638 0.792 0.41 

si_ratio90_10 Unmatched -0.493 10.719 35.817 
 

  ATT -0.493 11.888 -12.382 -0.16 

N = 1,720 Variable Sample Treated Controls S.E. T-stat 

MODEL 3. 

CLIMATIC 

THRESHOLDS 

avg_si Unmatched -2.349 -1.059 1.000 
 

 
ATT -2.337 -3.238 1.142 0.790 

sd_si Unmatched 11.272 0.487 0.390 
 

 
ATT 11.286 10.968 0.610 0.520 

p50_si Unmatched -2.135 -1.165 1.079 
 

 
ATT 2.123 -3.143 1.019 0.850 

si_ratio75_25 Unmatched 0.154 -0.670 1.322 
 

 
ATT 0.154 -0.826 1.788 0.550 

si_ratio90_10 Unmatched -0.493 10.719 35.817 
 

  ATT -0.493 81.188 65.659 -1.240 

    Source: Authors’ calculations.  
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Table 17a. Test for Common Trends Hypothesis 
 

   Obs. Mean SD 

Treatment 129 1.024 0.659 

Control 1,340 2.473 0.361 

combined 1,469 2.346 0.334 

diff 
 

-1.449 1.182 

Ho: Treatment and Control Differences are Equal 

t 0.2204 
  

Degrees of 
freedom 

1467 
  

    
    

 

 

Table 17b. ATTT of Differences-in-Differences 
 

Sensitivity Index 

Moments 
Treated  Control Differences t-statistic 

Model 1. Knots 

Standard 
Deviation 

8.35928849 8.82236041 
-0.463071927 

-1.19 

Mean 1.62066972 -1.40183085 -0.218838868 -0.27 

Model 2. Climatic Bins 

Standard 
Deviation 

8.35928849 8.79665757 -0.437369084 -0.95 

Mean -1.62066972 -1.54943389 -0.071235837 -0.07 

Model 3. Distribution Thresholds 

Standard 
Deviation 

8.35928849 8.82788355 -0.468595062 -1.39 

Mean -1.62066972 -1.18809799 -0.432571733 -0.58 

  Source: Authors’ calculations. 
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          Table 18. Most and Least Vulnerable Cities with More than 50 Thousand Inhabitants 
    

BOTTOM 30 MOST VULNERABLE CITIES 

 

TOP  30 MOST RESILLIENT CITIES 

COUNTRY STATE MUNICPALITY 
 

COUNTRY STATE MUNICPALITY 

Brazil SÃO PAULO São Paulo 
 

Costa Rica Heredia Sarapiquí 
Brazil Rio de Janeiro Rio de Janeiro 

 
Costa Rica Limon Limon 

Brazil Distrito Federal Brasilia 
 

Costa Rica Limón Pococí 
Mexico Tamaulipas Reynosa 

 
Costa Rica Cartago Turrialba 

Mexico Quintana Roo Benito Juarez 
 

Costa Rica Limón Siquirres 
Mexico Tabasco Centro-VillaHermosa 

 
Costa Rica Guanacaste Nicoya 

Mexico Sonora Guaymas 
 

Costa Rica Puntarenas Puntarenas 
Mexico Michoacan Morelia 

 
Costa Rica Alajuela San Carlos 

Costa Rica Alajuela San Ramón 
 

Costa Rica San José Pérez Zeledón 
Mexico Quintana Roo Chetumal 

 
Costa Rica Guanacaste Liberia 

Mexico Tamaulipas Río Bravo 
 

Costa Rica Guanacaste Santa Cruz 
Mexico Sonora Hermosillo 

 
Mexico Jalisco Guadalajara 

Mexico Michoacán de Ocampo Lázaro Cárdenas 
 

Mexico Nuevo León Linares 
Mexico Sinaloa Ahome 

 
Mexico Nayarit Tepic 

Mexico Tabasco Comalcalco 
 

Mexico Oaxaca San Juan Bautista Tuxtepec 
Mexico Michoacán de Ocampo Uruapan 

 
Mexico Oaxaca Tehuantepec 

Mexico Quintana Roo Solidaridad 
 

Mexico Puebla Puebla 
Mexico Sonora Cajeme 

 
Mexico Nuevo León Montemorelos 

Mexico Veracruz de Ignacio de la Llave Boca del Río 
 

Mexico Nayarit Santiago Ixcuintla 
Mexico Veracruz Coatzacoalcos 

 
Mexico Nuevo Leon Garza Garcia 

Mexico Quintana Roo Felipe Carrillo Puerto 
 

Mexico Querétaro Querétaro 
Mexico Sinaloa Culiacán 

 
Mexico Nuevo León Gral. Zuazua 

Mexico Tamaulipas Ciudad Victoria 
 

Mexico Nuevo León Juárez 
Mexico Tamaulipas Nuevo Laredo 

 
Mexico Oaxaca  Juchitán de Zaragoza 

Mexico Sinaloa Mazatlán 
 

Mexico Nuevo León Cadereyta Jiménez 
Mexico Morelos Jiutepec 

 
Mexico Nuevo León Santa Catarina 

Mexico Jalisco Zapopan 
 

Mexico Nayarit Bahía de Banderas 
Mexico Sinaloa Guasave 

 
Mexico Nuevo León García 

Mexico Tabasco Cardenas 
 

Mexico Puebla Xicotepec 

Mexico Guerrero Acapulco de Juarez 
 

Mexico Yucatan Uman 

 Source: Authors’ calculations. 
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Figure 1. Causal Pathways from Climate and Socioeconomic Conditions to Vulnerability and Health Outcomes 

 

 
            Source: Authors’ compilation. 
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Figure 2. Cases Matching Geo-Referenced and Climate Data

 
              Source: Authors’ compilation. 

 

Figure 3. Sensitivity Index: Top and Bottom 50 Municipalities in Mexico (2000 Census). 

 

   Source: Authors’ calculations. 
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Figure 4. Biplots: Principal Component Analysis, Brazil and Mexico 2000 

 

  
 

                                                                  Source: Authors’ calculations. 

 




