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Cavity quantum electrodynamics (QED) generalizations of time-dependent (TD) density functional theory (DFT) and
equation-of-motion (EOM) coupled-cluster (CC) theory are used to model small molecules strongly coupled to optical
cavity modes. We consider two types of calculations. In the first approach (termed “relaxed”), we use a coherent-state-
transformed Hamiltonian within the ground- and excited-state portions of the calculations, and cavity-induced orbital
relaxation effects are included at the mean-field level. This procedure guarantees that the energy is origin invariant
in post-self-consistent-field calculations. In the second approach (termed “unrelaxed”), we ignore the coherent-state
transformation and the associated orbital relaxation effects. In this case, ground-state unrelaxed QED-CC calculations
pick up a modest origin dependence but otherwise reproduce relaxed QED-CC results within the coherent-state basis.
On the other hand, a severe origin dependence manifests in ground-state unrelaxed QED mean-field energies. For
excitation energies computed at experimentally realizable coupling strengths, relaxed and unrelaxed QED-EOM-CC
results are similar, while significant differences emerge for unrelaxed and relaxed QED-TDDFT. First, QED-EOM-CC
and relaxed QED-TDDFT both predict that electronic states that are not resonant with the cavity mode are nonetheless
perturbed by the cavity. Unrelaxed QED-TDDFT, on the other hand, fails to capture this effect. Second, in the limit
of large coupling strengths, relaxed QED-TDDFT tends to overestimate Rabi splittings, while unrelaxed QED-TDDFT
underestimates them, given splittings from relaxed QED-EOM-CC as a reference, and relaxed QED-TDDFT generally
does the better job of reproducing the QED-EOM-CC results.

I. INTRODUCTION

Chemical applications of strong light-matter interactions
facilitated by optical cavities have garnered a great deal of
attention in recent years.1–4 This interest has been driven by
experimental studies offering evidence that strong light-matter
coupling and polariton formation can be leveraged in chemi-
cal contexts,4–7 such as for catalyzing/inhibiting reactions8–12

or controlling reaction selectivity.13 Moreover, a large number
of computational studies have predicted a range of phenom-
ena that are relevant to chemistry.2,4,14–19 Predictive electron-
ic/polaritonic structure methods will be crucial for discovering
general design principles for cavity-mediated chemistry; as a
result, substantial effort has been dedicated to the generaliza-
tion of familiar tools in quantum chemistry for the polaritonic
problem.

Proposed cavity quantum electrodynamics (QED) models
incorporating an ab initio treatment of molecular degrees of
freedom have largely taken one of two complementary ap-
proaches. First, given the success that density functional the-
ory (DFT) has seen in standard quantum chemical applica-
tions, a large body of work has considered quantum electro-
dynamical generalizations of DFT20–23 and time-dependent
DFT (TDDFT).19,24–31 QED-DFT and QED-TDDFT provide
access to orbital-specific quantities that cannot be directly
probed with model Hamiltonians;32,33 because they inherit
the favorable computational scaling of conventional DFT
and TDDFT, these methods can be applied to large cavity-
embedded molecules or collections of molecules. At the
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same time, the well-known issues that plague DFT34 and the
small number of exchange–correlation functionals that have
been developed for the polaritonic problem35–37 have inspired
others to pursue correlated wave-function-based approaches
to polaritonic structure,18,38–50 within formalisms that resem-
ble familiar coupled-cluster (CC)51–55 or configuration inter-
action (CI) approaches. Like QED-DFT and QED-TDDFT,
QED generalizations of correlated wave-function methods can
provide insight into subtle cavity-induced changes to elec-
tronic structure, while also offering the advantage of system-
atic improvability.

Straightforward polaritonic generalizations of ground-state
CC and equation-of-motion (EOM) CC54,56–58 have been put
forth in Ref. 38. The QED-(EOM)-CC formalism devel-
oped therein has subsequently been applied in a number
of studies (illustrating, for example, how cavity interactions
can influence electron ionization/attachment40,41,43,44 reaction
rates,18,47 and non-bonded interactions42), and the family of
QED-CC-inspired approaches also continues to grow. QED-
(EOM)-CC has been generalized to make use of non-particle-
conserving operators,41 to employ unitary cluster operators,43

for the description of chiral cavity modes,46 and for wave-
function-in-DFT embedding protocols.45

As mentioned above, one of the attractive features of QED-
based many-body theories such as QED-CC (and QED-EOM-
CC) relative to QED-DFT (and QED-TDDFT) is the system-
atic improvability of the former approach. An equally im-
portant but underappreciated aspect of QED-CC is that it is
robust against changes to the reference orbitals. This prop-
erty is inherited from the conventional (non-QED) formula-
tion of CC theory and stems from the presence of the expo-
nentiated single excitation operator, eT̂1 , which closely resem-
bles an orbital rotation operator (except that it is not unitary).
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Indeed, it is well known that energies calculated at the CC
with single and double excitations (CCSD)59 level of theory
often closely reproduce energies computed using the Bruekner
coupled-cluster doubles (BCCD) approach,60–62 which varia-
tionally optimizes the orbitals for the coupled-cluster doubles
wave function. In the context of QED-CC, eT̂1 should be able
to account for orbital relaxation effects induced by the cavity
in the underlying QED-HF wave function should one choose
to seed a QED-CC calculation with a non-QED Hartree-Fock
reference configuration (see Fig. 1); QED-EOM-CC results
obtained in either case should then be similar. A related matter
derives from the fact that QED-CC calculations are typically
carried out using a coherent-state transformed Hamiltonian,38

which guarantees invariance of the QED-CC energy with re-
spect to the placement of the origin. The QED-CC cluster op-
erator contains an exponentiated boson creation operator term
that should be able to mimic the effects of this transforma-
tion, and thus we expect the origin dependence of QED-CC to
be modest when using a Hamiltonian that has not been trans-
formed to the coherent-state basis. On the other hand, as we
demonstrate below, QED-TDDFT results are quite sensitive
to whether or not the Kohn-Sham orbitals are allowed to re-
lax in the presence of the cavity and whether the Hamiltonian
that enters the QED-TDDFT equations is represented within
the coherent-state basis. This point is subtle, yet important,
given that a variety of QED-TDDFT prescriptions have been
put forth and not all of them account for the presence of the
cavity self-consistently.29,30

In this work, we examine how cavity-induced changes to
the orbitals and the coherent-state transformation affect the
energies of cavity-embedded molecules treated at the QED-
EOM-CC and QED-TDDFT levels of theory. Before doing
so, we present the theory underlying relaxed and unrelaxed
versions of these approaches, which differ in the treatment of
the cavity at the mean-field level. The details of our calcu-
lations are then provided in the Computational Details, and
numerical studies exploring the robustness of QED-TDDFT
and QED-EOM-CC to the description of cavity effects at the
mean-field level can be found in the Results and Discussion.
Lastly, we conclude with a summary of the outcomes from our
numerical studies.

II. THEORY

In this Section, we outline some key details of the QED-
EOM-CC and QED-TDDFT approaches. Both of these meth-
ods model the physics of a cavity-embedded molecular system
using the Pauli–Fierz Hamiltonian,63,64 which we represent in
the length gauge and within the dipole and Born-Oppenheimer
approximations. For a single-mode cavity, this Hamiltonian
takes the form

ĤPF = Ĥe +ωcavb̂†b̂−
√

ωcav

2
(λ · µ̂)

(
b̂† + b̂

)
+

1
2
(λ · µ̂)2

(1)

Here, Ĥe and ωcavb̂†b̂ are the Hamiltonians for the isolated
many-electron system and the cavity mode, respectively; ωcav

is the frequency of the cavity mode, and b̂† (b̂) is a bosonic
creation (annihilation) operator. The third term in Eq. 1 de-
scribes the coupling between the molecular degrees of free-
dom and the cavity mode, which is parametrized by the cou-
pling strength, λ; the symbol µ̂ represents the molecular
dipole operator. The fourth term is the dipole self-energy con-
tribution. In the single-molecule coupling limit, the coupling
strength is related to the effective mode volume, Veff, as

λ= λ ê=

√
4π

Veff
ê (2)

where ê is a unit vector pointing along the cavity mode polar-
ization axis.

A. Cavity QED Coupled-Cluster Theory for Ground and
Excited States

1. Cavity QED Hartree-Fock Theory

The cavity QED Hartree-Fock (HF) wave function is a
product of a Slater determinant of molecular spin orbitals,
|0e〉, and a zero-photon state, |0p〉. Following Ref. 38,
the zero-photon state can be exactly represented using the
coherent-state (CS) transformation

|0p〉= ÛCS|0〉= exp
(
zb̂†− z∗b̂

)
|0〉 (3)

Here, |0〉 is the photon vacuum, and

z =−λ · 〈µ〉√
2ω

(4)

The symbol 〈µ〉 represents the expectation value of the molec-
ular dipole operator with respect to |0e〉. One can use ÛCS to
transform the Hamiltonian to the coherent-state basis to give

ĤCS = Û†
CSĤÛCS

= Ĥe +ωcavb̂†b̂−
√

ωcav

2
(λ · [µ−〈µ〉])

(
b̂† + b̂

)
+

1
2
(λ · [µ−〈µ〉])2 (5)

In the coherent-state basis, the QED-HF wave function has the
simple form

|Φ0〉= |0e〉⊗ |0〉 (6)

and |0e〉 can be determined via a standard SCF procedure us-
ing ĤCS after integrating out the photon degrees of freedom,
i.e.,

〈0|ĤCS|0〉= Ĥe +
1
2
(λ · [µ−〈µ〉])2 (7)

We refer to a QED-HF wave function determined in this way
as “relaxed,” in the sense that the electronic spin orbitals ac-
count for the presence of the cavity (through the dipole self
energy term in Eq. 7); the relaxed mean-field energy is the ex-
pectation value of Eq. 5 with respect to Eq. 6. On the other
hand, an “unrelaxed” QED-HF wave function has the same
form (Eq. 6), but |0e〉 is instead determined from an SCF pro-
cedure that considers only Ĥe. The unrelaxed mean-field en-
ergy is the expectation value of Eq. 1 with respect to Eq. 6.
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2. Ground-state QED-CC theory

The QED-CC wave function is defined as

|ΨCC〉= eT̂ |Φ0〉 (8)

where T̂ is the cluster operator. At the QED-CCSD-1 level
of theory,38 T̂ includes up to products of double electronic
transitions and a single photon creation operator:

T̂ = ∑
ia

ta
i â†

aâi +
1
4 ∑

i jab
tab
i j â†

aâ†
bâ jâi

+ u0b̂† +∑
ia

ua
i â†

aâib̂† +
1
4 ∑

i jab
uab

i j â†
aâ†

bâ jâib̂† (9)

Here, â† and â represent fermionic creation and annihilation
operators, respectively; the labels i / j and a / b refer to spin-
orbitals that are occupied or unoccupied in the QED-HF ref-
erence wave function, respectively; and ta

i , tab
i j , u0, ua

i , and uab
i j

are the cluster amplitudes. As mentioned above, in the case of
unrelaxed QED-CC, the exponentiated single excitation op-
erator, eT̂1 , can mimic the effects of cavity-induced orbital
relaxation effects in relaxed QED-HF, and the term eu0b̂†

is
important for capturing the effects of the coherent-state trans-
formation operator ÛCS itself (see Fig. 1).

FIG. 1. The cluster operator and similarity-transformed Hamilto-
nian in relaxed and unrelaxed QED-CCSD-1 (QED-CC with up to
single and double electronic excitations plus single photon creation
operators).38 The single electron excitation and boson creation con-
tributions to the cluster operator can account for the effects of orbital
relaxation in QED-HF and the coherent-state transformation, respec-
tively.

The cluster amplitudes are determined using projective
techniques, i.e., by solving

〈µe|⊗ 〈n|e−T̂ ĤAeT̂ |0〉⊗ |0e〉= δµ0δn0ECC (10)

Here, 〈µe| and 〈n| represent a determinant of spin-orbitals and
a photon-number state with n photons, respectively; ECC is the
energy associated with |ΨCC〉; and the subscript A refers to the
type of Hamiltonian. For relaxed QED-CC, ĤA = ĤCS; for
unrelaxed QED-CC, ĤA = ĤPF. At the QED-CCSD-1 level
of theory, 〈µe| can represent the reference or any singly- or
doubly-substituted determinant of spin-orbitals, and n can be
zero or one.

3. Excited-state QED-EOM-CC theory

Given cluster amplitudes obtained by solving Eq. 10, ex-
cited states can be parametrized using the QED-EOM-CC
formalism.38 The left- and right-hand QED-EOM-CC wave
functions are defined by

〈Ψ̃I |= 〈Φ0|e−T̂ L̂I (11)

|ΨI〉= R̂IeT̂ |Φ0〉 (12)

where the label I denotes the state. At the QED-EOM-CCSD-
1 level,38 the operators L̂I and R̂I take the form

L̂I =
I l0 +∑

ai

I l
i
aâ†

i âa +
1
2 ∑

abi j

I l
i j
abâ†

i â†
j âbâa

+ Im0b̂+∑
ai

Im
i
aâ†

i âab̂+
1
2 ∑

abi j

Im
i j
abâ†

i â†
j âbâab̂ (13)

and

R̂I =
Ir0 +∑

ai

Ir
a
i â†

aâi +
1
2 ∑

abi j

Ir
ab
i j â†

aâ†
bâ jâi

+ Is0b̂† +∑
ai

Is
a
i â†

aâib̂† +
1
2 ∑

abi j

Is
ab
i j â†

aâ†
bâ jâib̂† (14)

The l/m and r/s amplitudes are determined by solving left- and
right-hand eigenvalue equations

〈Φ0|L̂IH̄ = 〈Φ0|L̂IEI (15)

and

H̄R̂I |Φ0〉= EIR̂I |Φ0〉 (16)

where H̄ = e−T̂ ĤAeT̂ is the similarity-transformed Hamilto-
nian, and EI represents the energy of the Ith state. As in QED-
CC, the choices ĤA = ĤCS and ĤA = ĤPF lead to relaxed and
unrelaxed forms of QED-EOM-CC, respectively.

B. Cavity QED Density Functional Theory

A large body of literature describes quantum electrodynam-
ical generalizations of DFT and TDDFT that differ in sev-
eral aspects. First, for electronic degrees of freedom, some
of these approaches represent the electronic density in real
space,27,31,36,65,66 whereas others use atom-centered Gaus-
sian basis functions.19,29,30,45 Second, photon degrees of free-
dom can be represented directly in real-space20,24,67 or in
Fock space19,29–31,45 (in a basis of photon-number states).
Third, as with standard TDDFT, both real-time24,31 and linear-
response19,27,29,30,66 formulations have been put forward. In
this work, we consider linear-response QED-TDDFT formu-
lated in terms of Gaussian basis functions and a Fock-space
representation of the photon degrees of freedom. In anal-
ogy to the relaxed and unrelaxed QED-EOM-CC methods
described above, we consider both relaxed and unrelaxed
linear-response QED-TDDFT approaches that are equivalent
to those described in Refs. 29 and 19.
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1. Cavity QED Kohn-Sham DFT

The QED-HF procedure outlined above can easily be
adapted to the case of QED Kohn-Sham DFT. First, one can
map the QED-DFT ground-state onto a non-interacting state
of the form of Eq. 6, where |0e〉 now refers to a determinant of
Kohn-Sham orbitals. Second, similar to the case of QED-HF,
a “relaxed” Kohn-Sham determinant can be determined from
an SCF procedure that makes use of the coherent-state Hamil-
tonian in Eq. 7, with the energy augmented by a standard
exchange-correlation functional. On the other hand, an “un-
relaxed” QED-DFT state can be obtained from an SCF proce-
dure that neglects the dipole self-energy contribution to Eq. 7.
Note that our formulations of relaxed and unrelaxed QED-
DFT both ignore electron-photon correlation effects, such as
those captured by the functionals described in Refs. 23,35–37.

2. Cavity QED Time-Dependent Density Functional Theory

Excited states in QED-TDDFT are parametrized as

|ΨI〉= Ô†
I |Φ0〉 (17)

with

Ô†
I = ∑

ia
(X I

iaâ†
aâi−Y i

iaâ†
i âa)+MI b̂†−NI b̂ (18)

In analogy to Rowe’s equation of motion method,68 this pa-
rameterization leads to a generalized eigenvalue problem of
the form


A+∆ B+∆′ g† g†

B+∆′ A+∆ g† g†

g g ωcav 0
g g 0 ωcav


X

Y
M
N

= Ω

1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 −1


X

Y
M
N

 (19)

Here, A and B are the same matrices that arise in the usual
random phase approximation (RPA) problem, e.g.,

〈Φ0|[â†
i âa, [ĤA, â

†
bâ j]]|Φ0〉= (A+∆)ai,b j (20)

etc., with exchange contributions of A and B replaced/aug-
mented by appropriate derivatives of the exchange-correlation
functional for TDDFT. The symbols ∆ and ∆′ represent
dipole self-energy contributions of the form

∆ai,b j = daid jb−dabdi j (21)
∆
′
ai,b j = daidb j−da jdib (22)

where dai is a dressed dipole integral

dai =− ∑
ξ∈{x,y,z}

λξ

∫
φ
∗
a rξ φidτ (23)

Here, φ is a Kohn-Sham orbital, λξ is a cartesian component
of λ, and rξ is a cartesian component of the position vector
[e.g., for r = (x,y,z), rx = x]. For relaxed QED-TDDFT, ĤA =
ĤCS, and for unrelaxed QED-TDDFT, ĤA = ĤPF. In order
to recover the same equations as those used in the unrelaxed
QED-TDDFT formalism of Ref. 29, one must also neglect the
exchange contributions to ∆ and ∆′ in Eqs. 21 and 22.

III. COMPUTATIONAL DETAILS

The QED-TDDFT and QED-EOM-CCSD-1 methods were
implemented in hilbert,69 which is a plugin to the PSI470

electronic structure package. Equations for the QED-CCSD-
1 and QED-EOM-CCSD-1 were generated using a locally-
modified version of p†q,71 which is a library for manipulating

strings of second-quantized operators such as those that arise
in coupled-cluster theory. All QED calculations used the 6-
311++G** basis set with Cholesky-decomposed two-electron
integrals and a tight decomposition threshold of 10−12 Eh. As
mentioned in the Theory section, QED-TDDFT calculations
used standard density functional approximations from elec-
tronic structure theory that neglect electron-photon correla-
tion effects. Geometries for all molecules were optimized at
the DFT level of theory, using the 6-311++G** basis set, ex-
act two-electron integrals, and the PBE072 density functional.
Excited-state calculations were carried out in the appropriate
basis of Sz = 0 determinants.

The excited state potential energy curves (PECs) in
all QED figures of this work were analyzed using
SuaveStateScanner,73 which assigns consistent labels to
multiple states along PECs by enforcing the continuity of the
excited-state energies and properties (e.g., transition dipole
moments, oscillator strengths, and norms of the excitation op-
erators). Having consistent state labels greatly simplifies com-
parisons between the various QED approaches we use, partic-
ularly since all of the calculations in this work are performed
without enforcing spatial symmetry.

IV. RESULTS AND DISCUSSION

In this Section, we analyze the ground- and excited-state
energies of a series of diatomic molecules (molecular hydro-
gen, hydrogen fluoride, and lithium fluoride), coupled to a
single-mode optical cavity. We use bond lengths of 0.746 Å,
0.918 Å, and 1.582 Å for H2, HF, and LiF, respectively, and
the symmetry labels used to describe excited states correspond
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to the molecular axis oriented in the z-direction.

A. Ground-state energies of relaxed and unrelaxed
QED-CCSD-1

We begin by considering the sensitivity of ground-state en-
ergies from QED-CCSD-1 to the treatment of cavity effects
at the mean-field level. That is, we wish to assess how well
exponentiated singles and boson creation operators in unre-
laxed QED-CCSD-1 can mimic the effects of orbital relax-
ation and the coherent-state transformation in relaxed QED-
HF and QED-CCSD-1. Table I provides ground-state ener-
gies from relaxed QED-CCSD-1 for several molecules cou-
pled to a single-mode cavity with a coupling strength of
λ = 0.05 atomic units (a comparable table for λ = 0.1 a.u. can
be found in the Supporting Information). The cavity mode is
chosen to be polarized along the molecular axis (resonant with
the following states: 11B1u for H2, 21A1 for HF, and 31A1 for
LiF) or perpendicular to the molecular axis (resonant with the
following states: 11B2u for H2 or 11B1 for HF and LiF). Also
provided in Table I are errors in unrelaxed QED-CCSD-1 en-
ergies with respect to the relaxed ones. For H2, we see that un-
relaxed and relaxed QED-CCSD-1 agree to at least 10−9 Eh,
but errors on the order of 10−4 Eh are observed for HF and
LiF; the largest discrepancy between unrelaxed and relaxed
QED-CCSD-1 energies is observed for LiF, with the cavity
mode polarized along the molecular axis and resonant with
the 11A1 → 31A1 transition (≈ 0.06× 10−3 Eh). Consider-
ing the substantial coupling strength used (λ = 0.05 atomic
units), the magnitudes of these differences suggest that expo-
nentiated singles and boson creation operators do a reasonable
job of capturing the effects of both orbital relaxation and the
coherent-state transformation in relaxed QED-CCSD-1.

We have also evaluated errors in relaxed and unrelaxed
QED-CCSD-1 energies when ignoring the exponentiated bo-
son creation operator term, eu0b̂†

, in the QED-CCSD-1 clus-
ter operator (labeled “error w/o u0” in Table I). For relaxed
QED-CCSD-1, we see negligible energy deviations from full
relaxed QED-CCSD-1; the largest deviations are on the order
of 10−6 Eh. On the other hand, this term is quite important
for unrelaxed QED-CCSD-1, where energy errors as large as
0.008 Eh are observed. The relative importance of the ex-
ponentiated boson creation operator in relaxed and unrelaxed
QED-CCSD-1 is reflected in the value of u0, which is also tab-
ulated in Table I. We find that, when u0 is non-zero, it can be
more than an order of magnitude larger in the unrelaxed case.
We also note that, with the exception of one case (H2 with the
cavity mode resonant with the 11B1u state), u0 is only non-
zero when the cavity mode is polarized along the molecular
axis.

Part of the motivation for the use of the coherent-state
transformed Hamiltonian in relaxed QED-CCSD-1 is that it
lends the origin invariance of QED-HF to the correlated prob-
lem. On the other hand, an unrelaxed QED-CCSD-1 proto-
col should not be strictly origin invariant, although we expect
the exponentiated boson creation operator to mitigate these
effects. Figure 2 depicts how the energy from ground-state

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

16.0

0.0 2.0 4.0 6.0 8.0 10.0

∆
E

 (
10

−
9  E

h)

offset (Å)

unrelaxed
relaxed
unrelaxed w/o u0

FIG. 2. Origin dependence of the ground-state QED-CCSD-1 en-
ergy (10−9Eh) for hydrogen fluoride coupled to a cavity mode with
a coupling strength of λ = 0.05.

QED-CCSD-1 changes as calculations are carried out at vari-
ous distances from the origin. We consider hydrogen fluoride
with a fixed bond length of 0.918 Å coupled to a cavity mode
polarized along the molecular axis, resonant with the 21A1
state, and with a coupling strength of λ = 0.05 a.u. The dis-
tance along the z-axis in Fig. 2 corresponds to the distance
from the center of the bond to the origin, and the translation
from the origin is carried out in the direction of the polar-
ization of the cavity mode. The change in the energy, ∆E,
corresponds to the difference between energies evaluated at
the origin and away from it. These data show that the re-
laxed QED-CCSD-1 energy is origin invariant, as expected.
Two sets of unrelaxed QED-CCSD-1 data are provided: one
in which we include the exponentiated boson creation oper-
ator (labeled “unrelaxed”) and one where we have neglected
this term (labeled “unrelaxed w/o u0). We find that the eu0b̂†

term is necessary for preserving the origin invariance of un-
relaxed QED-CCSD-1; ignoring this term introduces a small
origin dependence in the energy (on the order of 10−9–10−8

Eh). We note that Eqs. 3 and 4 show that the coherent-state
transformation operator depends on the expectation value of
the total QED-HF dipole moment, which should be origin in-
variant for neutral species. By analogy, if eu0b̂†

mimics the
behavior of this term for unrelaxed QED-CCSD-1, u0 itself
should also be origin invariant; we have confirmed numeri-
cally that this is the case.

Figure 3 depicts a similar study for a charged species (HF+,
with an H–F distance of 0.918 Å). In this case, the QED-
HF dipole moment should depend on the placement of the
molecule relative to the origin, and thus, we expect u0 to
also acquire an origin dependence in unrelaxed QED-CCSD-
1. The energy from relaxed QED-CCSD-1 is strictly origin
invariant and is not shown. For unrelaxed QED-CCSD-1, if
we include the exponentiated boson operator, the energy does
pick up a slight origin dependence; at 10 Å from the origin
with λ = 0.05 a.u., the energy differs from that at the origin
by roughly 5 × 10−4 Eh [see panel (a)]. On the other hand,
without contributions from u0, this energy difference grows to
almost 0.5 Eh [see panel (c)]. As for u0 itself, this quantity
is origin invariant in the case of relaxed QED-CCSD-1 (not
depicted), but it acquires a strong origin dependence in unre-
laxed QED-CCSD-1 [see panel (b)]. The value of u0 changes
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FIG. 3. Origin dependence of unrelaxed QED-HF and QED-CCSD-
1 at various coupling strengths (λ ) and distances from the origin (10
Å) for charged species (HF+) with ωcav = 0.675019 Eh. Panel (a)
depicts the how the unrelaxed QED-CCSD-1 energy differs at a given
offset from that at the origin. Panel (b) shows how u0 in unrelaxed
QED-CCSD-1 changes as the molecule is translated away from the
origin. Panel (c) depicts similar information as panel (a), except that
u0 has been excluded from the cluster operator in unrelaxed QED-
CCSD-1. Panel (d) provides the difference between the unrelaxed
QED-HF energy at a given offset and that at the origin.

by roughly 0.8 when the molecule is translated by 10 Å from
the origin at λ = 0.05 a.u. As already mentioned, the origin
dependence of u0 is expected, as it mimics the coherent-state
transformation; this transformation is defined by the mean-
field dipole moment, which is strongly origin dependent for
charged species.

Before moving on to discuss excited-states from unrelaxed
and relaxed QED methods, we highlight the severe origin de-
pendence of the energy for unrelaxed QED mean-field for
cavity-coupled HF+. Panel (d) of Fig. 3 depicts differences
between the unrelaxed QED-HF energy evaluated at various
distances from the origin relative to that computed at the ori-
gin. Clearly, the mean-field energy depends strongly on the
choice of origin, and this dependence is of comparable mag-
nitude to that which we observed for unrelaxed QED-CCSD-1
when ignoring u0 [panel (c)]. This dependence is entirely due
to the dipole self-energy contribution, and, since the dipole
self energy term is treated in the same way in unrelaxed QED-
DFT, that method also suffers from the same severe origin de-
pendence.

B. Excitation energies of relaxed and unrelaxed
QED-TDDFT and QED-EOM-CCSD-1

We now consider the effects that orbital relaxation and the
coherent-state transformation have on excitation energies de-
rived from QED-TDDFT and QED-EOM-CCSD-1. We have
performed relaxed and unrelaxed QED-TDDFT and QED-
EOM-CCSD-1 calculations on cavity-coupled molecules with
the cavity mode resonant with the following states: 11B1u and
11B2u for H2, 21A1 and 11B1 for HF, and 31A1 and 11B1 for
LiF. We compare the computed excitation energies of the re-
laxed and unrelaxed formulations of QED-TDDFT to QED-
EOM-CCSD-1. Specifically, Figs. 4, 5, and 6 depict changes
in excitation energies for H2, HF, and LiF, respectively, as the
cavity coupling strength is increased. Each figure assumes the
following format:

• Panels on the left and right correspond to calculations
for which the polarization of the cavity mode was par-
allel to the molecular axis or perpendicular to it, respec-
tively, with the cavity frequency resonant with the ap-
propriate cavity-free transition (see above for the spe-
cific states we target).

• The top panels depict the vertical excitation energies
(VEE) for several states, shifted by the cavity frequency
(ωcav), as a function of the cavity coupling strength (λ ).

• Relaxed and unrelaxed QED-TDDFT curves are pur-
ple and orange, respectively, while the green and black
curves correspond to relaxed and unrelaxed QED-
EOM-CC.

• Solid lines correspond to the polariton states, while
dashed lines correspond to non-resonant states that are
nearby in energy. For clarity, QED-EOM-CC states
with significant double electronic transition character
are not shown.
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TABLE I. Ground-state energies (Eh) from relaxed QED-CCSD-1 and absolute energy errors (10−3 Eh) from unrelaxed QED-CCSD-1,
as well as from relaxed and unrelaxed QED-CCSD-1 calculations that ignore u0. Also provided are u0 values from relaxed and unrelaxed
QED-CCSD-1 calculations. All calculations consider λ = 0.05 atomic units.

error error w/o u0 u0
system ωcav resonance relaxed unrelaxed relaxed unrelaxed relaxed unrelaxed

H2 0.466751 11B1u −1.167161 0.000000 0.000000 0.000000 0.000000 0.000000
H2 1.522218 11B2u −1.167070 0.000000 0.000000 0.000000 0.000000 0.000000
HF 0.531916 21A1 −100.296930 0.017471 0.002001 0.757147 −0.001815 0.037626
HF 0.375022 11B1 −100.296806 0.015717 0.000054 0.015663 0.000000 0.000000
LiF 0.308401 31A1 −107.233438 0.062602 0.005998 8.095084 0.003957 0.162599
LiF 0.232119 11B1 −107.220994 0.039174 0.000182 0.038991 0.000000 0.000000

• The middle panels show how Rabi splittings from re-
laxed QED-TDDFT, unrelaxed QED-TDDFT, and un-
relaxed QED-EOM-CC deviate from those from re-
laxed QED-EOM-CC (∆ΩR).

• The bottom panels present the deviation from relaxed
QED-EOM-CC Rabi splittings as a percentage.

1. Molecular hydrogen

Figure 4 illustrates how the excited-state landscape of
cavity-coupled H2 changes with the coupling strength, for
cavity modes that are resonant with the (a) 11B1u and (b)
11B2u states of cavity-free H2. First, excitation energies from
relaxed and unrelaxed QED-EOM-CC are indistinguishable
on the scale of this figure, but they are not numerically iden-
tical. In this case, QED-EOM-CCSD-1 is equivalent to the
full CI in the electronic space, so we expect the approach to
be invariant to cavity-induced orbital relaxation effects. It is
also equivalent to the full CI in the photon space, if the photon
space is truncated at two photon number states (0 and 1). This
qualifying statement is important, for the following reason.
The coherent-state transformation of the Hamiltonian should
preserve the spectrum of the Hamiltonian, but the spectrum is
only preserved in the limit that the photon space is complete.
Indeed, we do not see exact numerical agreement between re-
laxed and unrelaxed QED-EOM-CCSD-1 for this reason (dif-
ferences on the order of 10−6 Eh are observed for λ = 0.1
a.u.; see Supporting Information). Nonetheless, relaxed and
unrelaxed QED-EOM-CC results are nearly indistinguishable
in this case.

Curves corresponding to polariton formation involving
the 11B1u state reveal significant differences between QED-
EOM-CC and both relaxed and unrelaxed QED-TDDFT. In
the case of relaxed QED-TDDFT, both the Rabi splitting (the
difference in energy between the upper and lower polariton
states, ΩR) and the energies of the states that are not reso-
nant with the cavity mode are more sensitive to cavity ef-
fects in the strong coupling limit than the same quantities
derived from QED-EOM-CC calculations; this is a general
trend we observe for all systems considered in this work.
For a cavity mode resonant with the 11B1u state, we can see
that the λ -dependence of the lower polariton state energy de-

rived from QED-EOM-CC is in better agreement with un-
relaxed QED-TDDFT than with relaxed QED-TDDFT. On
the other hand, these three methods predict noticeably differ-
ent trends in the λ -dependence of the upper polariton state.
The shift in the upper polariton energy from unrelaxed QED-
TDDFT is too small, and that from relaxed QED-TDDFT is
too large; QED-EOM-CC splits the difference. In the large-
λ limit, Figs. 4(c) and (e) indicate that relaxed QED-TDDFT
provides better Rabi splittings than unrelaxed QED-TDDFT,
given QED-EOM-CC results as a reference. The maximum
deviation between relaxed QED-TDDFT and QED-EOM-CC
Rabi splittings is 0.41 eV (13.8%) at λ = 0.1, while unre-
laxed QED-TDDFT and QED-EOM-CC splittings differ by
−0.85 eV (−28.6%) at the same coupling strength. The λ -
dependence of the non-resonant states [indicated by dashed
lines in Fig. 4(a)] is also interesting. Here, we see the excita-
tion energy of the non-resonant state is mostly unaffected by
the cavity mode in the case of unrelaxed QED-TDDFT. On
the other hand, both relaxed QED-TDDFT and QED-EOM-
CC predict an increase in the excitation energy, and QED-
TDDFT exaggerates this effect. We conclude that, because
this state does not directly interact to the cavity mode, these
changes with increasing coupling strength must stem from
cavity-induced changes to the ground state.

The curves for polariton formation with the 11B2u state of
H2 are depicted in the right-hand panels of Fig. 4. As was
seen in panels (a), (c), and (e), relaxed and unrelaxed QED-
EOM-CC display nearly identical λ dependence, which is
not surprising, given that QED-EOM-CCSD-1 is equivalent
to the full CI (within the truncated photon space). Unlike
in panels (c) and (e), Rabi splittings from unrelaxed and re-
laxed QED-TDDFT both agree well with those from QED-
EOM-CC [panels (d) and (f)], with maximum deviations on
the order of only 10−3 eV. Unrelaxed QED-TDDFT displays
slightly better agreement with QED-EOM-CC than relaxed
QED-TDDFT, but the deviations from QED-EOM-CC over-
all are small for both QED-TDDFT variants.

2. Hydrogen fluoride

Figure 5 provides similar data as Fig. 4, but for cavity-
coupled hydrogen fluoride. The left panels correspond to cal-
culations with the cavity mode polarized along the molecular
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FIG. 4. Excitation energies for H2 when coupling a cavity mode to the (a) 11B1u and (b) 11B2u (b) states, using relaxed QED-TDDFT
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axis and the cavity mode frequency resonant with the 21A1
state of cavity-free HF. The right panels consider a cavity
mode polarized perpendicular to the molecular axis and res-
onant with the 11B1 state of isolated HF. The left panels show
similar behavior as depicted in the left panels of Figure 4
for H2. First, relaxed and unrelaxed QED-EOM-CC results
are indistinguishable. Second, the λ -dependence of the lower
polariton from unrelaxed QED-TDDFT agrees well with that
from QED-EOM-CC, while relaxed QED-TDDFT appears to
underestimate this dependence. Third, unrelaxed and relaxed
QED-TDDFT predict a λ -dependence for the upper polariton
state that is too small or too large, as compared to that from
QED-EOM-CC, respectively. In terms of the Rabi splitting
[panels (c) and (e)], relaxed QED-TDDFT again provides a
better description than unrelaxed QED-TDDFT, given relaxed
QED-EOM-CC as the reference. Here, relaxed and unrelaxed
QED-TDDFT Rabi splittings deviate from those of relaxed
QED-EOM-CC by at most 0.20 eV (9.5%) and −0.31 eV
(−14.8%), respectively. The magnitudes of these deviations
are smaller than in the case of H2 in the left panels of Fig. 4
above, which could simply reflect the smaller magnitude of
the Rabi splitting itself for the 21A1 state of HF, relative to the
splitting for the 11B1u state in H2 (see Supporting Informa-
tion). Indeed, the oscillator strength for the 21A1 state of HF
(0.1869) is much smaller than that for the 11B1u state of H2
(0.3069), which is consistent with the relative Rabi splittings.
Lastly, as was observed in Fig. 4(a), the excitation energies for
the non-polariton states in Fig. 5(a) pick up a λ -dependence in
the case of both relaxed and unrelaxed QED-EOM-CC and for
relaxed QED-TDDFT, with a more pronounced dependence
for QED-TDDFT. On the other hand, unrelaxed QED-TDDFT
predicts that these excitation energies are unaffected by the
presence of the cavity.

The curves in the right panel of Fig. 5 depict the λ -
dependence of excitation energies and Rabi splittings when
the cavity mode is resonant with the 11B1 state of isolated HF.
The same qualitative observations for the left panels Fig. 5
apply here, with the exception that the λ -dependence of the
lower polariton is not well-reproduced by unrelaxed QED-
TDDFT. Note also that the behavior here differs somewhat
from the case of the cavity mode polarized perpendicular to
the 11B2u of isolated H2. In that case, all QED approaches
provided comparable results, whereas, here, relaxed QED-
TDDFT does a better job of reproducing the λ -dependence
of the Rabi splittings predicted by QED-EOM-CC [panels
(d) and (f)]; relaxed and unrelaxed QED-TDDFT Rabi split-
tings deviate from relaxed QED-EOM-CC splittings by at
most 0.046 eV (5.3%) and −0.067 eV (−7.7%), respectively.
The data in panel (b) also demonstrate that relaxed QED-
TDDFT captures the same qualitative λ -dependence of the
non-resonant state predicted by relaxed and unrelaxed QED-
EOM-CC (albeit somewhat exaggerated by QED-TDDFT),
whereas unrelaxed QED-TDDFT does not.

3. Lithium fluoride

Finally, we come to the case of lithium fluoride. Figure 6 il-
lustrates the λ -dependence of the excitation energies and Rabi
splittings from QED-TDDFT and QED-EOM-CC, for a cavity
mode polarized along the molecular axis and resonant with the
31A1 of cavity-free LiF (left panels) and for a cavity mode po-
larized perpendicular to the molecular axis and resonant with
the 11B1 of the isolated molecule (right panels). We note that
31A1 is the second bright 1A1 state of LiF, whereas, in the pre-
vious examples, we had tuned the cavity to the lowest-energy
bright state of the given symmetry. We note that we have not
depicted non-resonant excited states in Fig. 6(a) aside from
the 21A1 state for the sake of clarity (these other states have
incompatible spatial or spin symmetry to couple directly to
the cavity mode). That said, for such states, we observe the
same trends as have been discussed in the context of the other
systems; QED-EOM-CC and relaxed QED-TDDFT predict
a λ -dependence in these states that is exaggerated by QED-
TDDFT, and unrelaxed QED-TDDFT fails to capture this ef-
fect.

In Fig. 6(a), we find that we can induce some interesting
behavior by tuning to the second A1 symmetry bright state
of LiF (31A1), which leads to strong interactions between
the lower polariton state and the first bright state (21A1) at
larger coupling strengths. Specifically, Fig. 6(a) demonstrates
a coupling-strength-induced avoided crossing between these
states that appears at coupling strengths of roughly λ = 0.070,
λ = 0.115, and λ = 0.135 a.u. when modeling the system
with relaxed QED-TDDFT, relaxed QED-EOM-CC, and un-
relaxed QED-EOM-CC, respectively. The avoided crossing
appears at smaller λ values for relaxed QED-TDDFT than
for relaxed QED-EOM-CC because, as in the previous cases,
relaxed QED-TDDFT exaggerates the λ -dependence of the
states that are not resonant with the cavity mode. Notably,
to a coupling strength of λ = 0.15 a.u., we do not observe
this avoided crossing feature in unrelaxed QED-TDDFT be-
cause it fails to capture the λ -dependence of the 21A1 state.
Also noteworthy is that this example is the first instance where
we observe appreciable differences between relaxed and unre-
laxed QED-EOM-CC. Results from these methods are similar
for coupling strengths up to λ = 0.05 a.u. but differ for larger
coupling strengths. These differences may not be terribly im-
portant in practical applications, though, given that these large
coupling strengths correspond to effective cavity mode vol-
umes that are significantly smaller than 1 nm3. For example,
λ = 0.1 a.u. corresponds to an effective mode volume of less
than 0.2 nm3, which is smaller than any reported experimen-
tally obtained value of which we are aware.

One interesting aspect of the avoided crossing is that the
character of the lower polariton state is transferred to the
lower-energy state beyond the avoided crossing, which points
to potential ambiguities in designating one and only one state
as an upper or lower polariton state in systems with dense en-
ergy manifolds. In order to compare Rabi splittings from each
method before and after the avoided crossing, we simply take
the point at which the energy gap between the states is the
smallest as the point at which the crossing occurs; the kinks
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FIG. 6. Excitation energies for LiF when coupling a cavity mode to the (a) 31A1 and (b) 11B1 states, using relaxed QED-TDDFT (purple),
unrelaxed QED-TDDFT (orange), unrelaxed QED-EOM-CCSD-1 (green), and relaxed QED-EOM-CCSD-1 (black). In panel (a), the curves
at λ = 0.00 a.u. correspond to the 21A1 and 31A1 states of LiF. The dashed lines in panel (b) correspond to a non-resonant excited state [11B2],
while the solid lines are the polariton states formed from coupling the cavity mode to the 11B1 state. Panels (c) and (d) show the difference
between the Rabi splittings from relaxed QED-EOM-CCSD-1 to relaxed/unrelaxed QED-TDDFT and unrelaxed QED-EOM-CCSD-1, and
panels (e) and (f) depict these differences as a percentage.

observed in the curves depicted in panels (c) and (e) of Fig. 6
correspond to these points. These details aside, we find that
neither unrelaxed QED-TDDFT nor relaxed QED-TDDFT do
a particularly good job of reproducing the λ -dependence or
Rabi splittings from relaxed QED-EOM-CC; in particular,
QED-TDDFT Rabi splittings differ from relaxed QED-EOM-
CC ones by roughly 2 eV at λ = 0.15 a.u. These deviations are
much larger than those observed for other molecules, which
reflects the complexity of the excited-state energy landscape
of LiF and calls into question the reliability of either form of
QED-TDDFT in this case. We also note that there are smaller
λ values for which unrelaxed QED-TDDFT Rabi splittings
appear to be the better ones, relative to QED-EOM-CC. That
said, the trends in panel (a) suggest that QED-TDDFT does
a better job of reproducing qualitative properties of relaxed
QED-EOM-CC when the procedure accounts for the effects of
orbital relaxation and the coherent-state transformation. Aside
from the poor behavior of QED-TDDFT, perhaps the most no-
table difference here as compared to the earlier examples is the
discrepancy between relaxed and unrelaxed QED-EOM-CC.
The Rabi splittings from these methods differs by as much as
72.2 meV (3.32%) at λ = 0.15, which is larger by an order
of magnitude than other systems in this study (see Supporting
Information). The λ -dependence for the 21A1 state is also un-
derestimated by unrelaxed EOM-QED-CC, which shifts the
avoided crossing from λ = 0.115 a.u. to λ = 0.135 a.u.

Lastly, we consider LiF coupled to a cavity mode polar-
ized perpendicular to the molecular axis and resonant with the

11B1 state of the isolated molecule (right panels of Fig. 6).
In this case, the general trends are similar to what was ob-
served when coupling a cavity mode to the 11B1 state of HF
(right panels of Fig. 5). Again, ignoring orbital relaxation and
the coherent-state transformation in QED-TDDFT decreases
the ability of QED-TDDFT to reproduce relaxed QED-EOM-
CC Rabi splittings; at λ = 0.15 a.u., the Rabi splitting from
relaxed QED-TDDFT differs from the relaxed QED-EOM-
CC value by 0.19 eV (14.6%); this deviation increases to
−0.22 eV (−17.4%) for unrelaxed QED-TDDFT. Also, as
observed previously, unrelaxed QED-TDDFT fails to capture
the λ -dependence of states other than the upper and lower po-
lariton states; this dependence is captured by relaxed QED-
TDDFT, but the sensitivity of these non-resonant states to the
cavity is overestimated, relative to QED-EOM-CC. We also
note that, as was observed for polariton formation with the
31A1 state, small differences between relaxed and unrelaxed
QED-EOM-CC methods emerge at coupling strengths larger
than λ = 0.05 a.u.

V. CONCLUSIONS

Recent intriguing experiments demonstrating the ability to
manipulate chemical transformations via vacuum field fluc-
tuations and polariton formation have inspired the develop-
ment of several generalizations of standard electronic struc-
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ture methods (e.g., coupled cluster theory, density functional
theory, configuration interaction, etc.) for the polariton prob-
lem. In this work, we have explored the numerical conse-
quences of some formal aspects of QED-DFT, QED-TDDFT,
QED-CCSD-1, and QED-EOM-CCSD-1. Specifically, we be-
gan by investigating the sensitivity of ground-state energies
from QED-CCSD-1 to the treatment of cavity effects at the
mean-field level. We have found that the inclusion of expo-
nentiated single electron transitions and boson creation op-
erators in QED-CCSD-1 makes the approach robust with re-
spect to the inclusion or exclusion of cavity effects in the un-
derlying QED-HF calculation; numerically, these terms do a
good job of mimicking the effects of orbital relaxation and
the coherent-state transformation, respectively. Exponentiated
boson creation operators are particularly important for main-
taining (or nearly maintaining, in the case of charged species)
origin invariance in unrelaxed QED-CCSD-1. On the other
hand, unrelaxed mean-field approaches display severe origin
dependence for charged species, which arises from the dipole
self-energy contribution to the energy.

Beyond the ground state, we have also assessed the role
that cavity effects at the mean-field level can have on ex-
cited states computed using QED-TDDFT and QED-EOM-
CCSD-1. Several key details bear repeating. First, for the
most part, excitation energies computed from unrelaxed and
relaxed QED-EOM-CC are similar; Rabi splittings differ by
less than 9.3 meV (or less than 0.45%) in all cases consid-
ered in this work, except near the avoided-crossing for the
31A1 state of LiF which reaches an error of 72.2 meV (3.32%)
at the extreme case of λ = 0.15 a.u. (see Supporting Infor-
mation). Second, QED-EOM-CC and relaxed QED-TDDFT
predict that the energies of electronic states that are not reso-
nant with the cavity mode can be significantly perturbed in the
strong coupling limit, and relaxed QED-TDDFT exaggerates
this effect. On the other hand, unrelaxed QED-TDDFT fails to
predict any λ dependence in non-resonant states. Third, Rabi
splittings from QED-EOM-CC are more closely reproduced
by relaxed QED-TDDFT than by unrelaxed QED-TDDFT. In
the large coupling limit, relaxed QED-TDDFT tends to over-
estimate the Rabi splitting, while unrelaxed QED-TDDFT un-
derestimates this quantity. Lastly, the proximity of multiple
bright states having the appropriate symmetry to interact with
the cavity mode can lead to complex spectral features; specif-
ically, we have located a coupling-strength-induced avoided
crossing in LiF between the lower polariton (formed from the
admixture of the cavity mode and the 31A1 state) and the 21A1
state. Of the methods studied, unrelaxed QED-TDDFT is the
least capable of describing this phenomenon, because it fails
to capture the λ -dependence of the non-resonant 21A1 state.
Given these observations, we caution against the use of unre-
laxed QED-TDDFT.

Supporting Information Relaxed and unrelaxed QED-
CCSD-1 energies for ground states of molecular hydrogen,
hydrogen fluoride, and lithium fluoride; Rabi splittings from
relaxed QED-EOM-CCSD-1 for these same molecules; devia-
tions in Rabi splittings computed using relaxed and unrelaxed
QED-EOM-CCSD-1.
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52J. Čížek and J. Paldus, “Correlation problems in atomic and molecular sys-
tems iii. rederivation of the coupled-pair many-electron theory using the
traditional quantum chemical methods,” Int. J. Quantum Chem. 5, 359–379
(1971).

53I. Shavitt and R. Bartlett, Many-Body Methods in Chemistry and Physics:
MBPT and Coupled-Cluster Theory, Cambridge Molecular Science (Cam-
bridge University Press, 2009).

54R. J. Bartlett and M. Musial, “Coupled-cluster theory in quantum chem-
istry,” Rev. Mod. Phys. 79, 291–352 (2007).

55R. J. Bartlett and M. Musial, “Coupled-cluster theory in quantum chem-
istry,” Rev. Mod. Phys. 79, 291–352 (2007).

56J. F. Stanton and R. J. Bartlett, “The equation of motion coupled-cluster
method. a systematic biorthogonal approach to molecular excitation ener-
gies, transition probabilities, and excited state properties,” J. Chem. Phys.
98, 7029–7039 (1993).

57R. J. Bartlett, “Coupled-cluster theory and its equation-of-motion ex-
tensions,” WIREs Computational Molecular Science 2, 126–138 (2012),
https://onlinelibrary.wiley.com/doi/pdf/10.1002/wcms.76.

58A. I. Krylov, “Equation-of-motion coupled-cluster methods for open-shell
and electronically excited species: The hitchhiker’s guide to fock space,”
Annual Review of Physical Chemistry 59, 433–462 (2008).

59G. D. Purvis and R. J. Bartlett, “A full coupled-cluster singles and doubles
model: The inclusion of disconnected triples,” J. Chem. Phys. 76, 1910–
1918 (1982).

60G. E. Scuseria and H. F. Schaefer, “The optimization of molecular orbitals
for coupled cluster wavefunctions,” Chemical Physics Letters 142, 354–358
(1987).

61N. C. Handy, J. A. Pople, M. Head-Gordon, K. Raghavachari, and G. W.
Trucks, “Size-consistent brueckner theory limited to double substitutions,”
Chemical Physics Letters 164, 185–192 (1989).

62C. Hampel, K. A. Peterson, and H.-J. Werner, “A comparison of the effi-
ciency and accuracy of the quadratic configuration interaction (qcisd), cou-
pled cluster (ccsd), and brueckner coupled cluster (bccd) methods,” Chem-
ical Physics Letters 190, 1–12 (1992).

63H. Spohn, Dynamics of charged particles and their radiation field (Cam-
bridge Univ. Press, Cambridge, 2004).

64M. Ruggenthaler, N. Tancogne-Dejean, J. Flick, H. Appel, and A. Rubio,
“From a quantum-electrodynamical light–matter description to novel spec-
troscopies,” Nature Reviews Chemistry 2, 0118 (2018).

65J. Flick, M. Ruggenthaler, H. Appel, and A. Rubio, “Kohn–sham ap-
proach to quantum electrodynamical density-functional theory: Exact time-
dependent effective potentials in real space,” Proceedings of the National
Academy of Sciences 112, 15285–15290 (2015).

66J. Flick, D. M. Welakuh, M. Ruggenthaler, H. Appel, and A. Rubio,
“Light–matter response in nonrelativistic quantum electrodynamics,” ACS
Photonics 6, 2757–2778 (2019).

67N. Tancogne-Dejean, M. J. T. Oliveira, X. Andrade, H. Appel, C. H. Borca,

https://doi.org/10.1073/pnas.1615509114
https://doi.org/10.1073/pnas.1615509114
https://arxiv.org/abs/https://www.pnas.org/content/114/12/3026.full.pdf
https://doi.org/10.1088/1367-2630/aa8f09
https://doi.org/10.1073/pnas.2110464118
https://doi.org/10.1073/pnas.2110464118
https://doi.org/10.1103/PhysRevLett.110.233001
https://doi.org/10.1103/PhysRevLett.110.233001
https://doi.org/10.1103/PhysRevB.98.235123
https://doi.org/https://doi.org/10.1021/acs.jpclett.0c03436
https://doi.org/10.1063/5.0021033
https://doi.org/10.1063/5.0021033
https://doi.org/https://doi.org/10.1063/5.0036283
https://doi.org/https://doi.org/10.1063/5.0036283
https://doi.org/10.1063/5.0057542
https://doi.org/https://doi.org/10.1063/5.0082386
https://doi.org/https://doi.org/10.1063/5.0082386
https://doi.org/10.1063/5.0123909
https://doi.org/10.1063/5.0123909
https://doi.org/10.1126/science.1158722
https://doi.org/10.1103/PhysRevLett.115.093001
https://doi.org/10.1021/acsphotonics.7b01279
https://doi.org/10.1021/acsphotonics.7b01279
https://doi.org/10.1103/PhysRevLett.129.143201
https://doi.org/10.1103/PhysRevX.10.041043
https://doi.org/10.1103/PhysRevResearch.2.023262
https://doi.org/10.1103/PhysRevResearch.2.023262
https://doi.org/10.1063/5.0038748
https://doi.org/10.1063/5.0038748
https://doi.org/10.1063/5.0039256
https://doi.org/10.1063/5.0039256
https://doi.org/10.1021/acs.jpclett.1c02659
https://doi.org/10.1063/5.0095552
https://doi.org/10.48550/ARXIV.2209.01987
https://doi.org/10.1038/s41467-023-38474-w
https://doi.org/10.1063/5.0089412
https://doi.org/10.1063/5.0089412
https://doi.org/10.1103/PhysRevLett.127.273601
https://doi.org/10.1063/5.0091953
https://doi.org/10.1063/5.0091953
https://doi.org/10.1063/1.1727484
https://books.google.com/books?id=SWw6ac1NHZYC
https://books.google.com/books?id=SWw6ac1NHZYC
https://doi.org/10.1103/RevModPhys.79.291
https://doi.org/10.1103/RevModPhys.79.291
https://doi.org/10.1063/1.464746
https://doi.org/10.1063/1.464746
https://doi.org/10.1002/wcms.76
https://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/wcms.76
https://doi.org/10.1146/annurev.physchem.59.032607.093602
https://doi.org/https://doi.org/10.1016/0009-2614(87)85122-9
https://doi.org/https://doi.org/10.1016/0009-2614(87)85122-9
https://doi.org/https://doi.org/10.1016/0009-2614(89)85013-4
https://doi.org/https://doi.org/10.1016/0009-2614(92)86093-W
https://doi.org/https://doi.org/10.1016/0009-2614(92)86093-W
https://cds.cern.ch/record/803777
https://doi.org/10.1038/s41570-018-0118
https://doi.org/10.1073/pnas.1518224112
https://doi.org/10.1073/pnas.1518224112
https://doi.org/10.1021/acsphotonics.9b00768
https://doi.org/10.1021/acsphotonics.9b00768


13

G. Le Breton, F. Buchholz, A. Castro, S. Corni, A. A. Correa, U. De Gio-
vannini, A. Delgado, F. G. Eich, J. Flick, G. Gil, A. Gomez, N. Helbig,
H. Hübener, R. Jestädt, J. Jornet-Somoza, A. H. Larsen, I. V. Lebedeva,
M. Lüders, M. A. L. Marques, S. T. Ohlmann, S. Pipolo, M. Rampp, C. A.
Rozzi, D. A. Strubbe, S. A. Sato, C. Schäfer, I. Theophilou, A. Welden, and
A. Rubio, “Octopus, a computational framework for exploring light-driven
phenomena and quantum dynamics in extended and finite systems,” The
Journal of Chemical Physics 152, 124119 (2020).

68D. J. ROWE, “Equations-of-motion method and the extended shell model,”
Rev. Mod. Phys. 40, 153–166 (1968).

69A. E. DePrince III, “Hilbert: a space for quantum chemistry plugins to
Psi4,” (2020), https://github.com/edeprince3/hilbert (last accessed October,
2020).

70D. G. A. Smith, L. A. Burns, A. C. Simmonett, R. M. Parrish, M. C.
Schieber, R. Galvelis, P. Kraus, H. Kruse, R. Di Remigio, A. Alenaizan,

A. M. James, S. Lehtola, J. P. Misiewicz, M. Scheurer, R. A. Shaw, J. B.
Schriber, Y. Xie, Z. L. Glick, D. A. Sirianni, J. S. O’Brien, J. M. Wal-
drop, A. Kumar, E. G. Hohenstein, B. P. Pritchard, B. R. Brooks, H. F.
Schaefer, A. Y. Sokolov, K. Patkowski, A. E. DePrince, U. Bozkaya, R. A.
King, F. A. Evangelista, J. M. Turney, T. D. Crawford, and C. D. Sherrill,
“Psi4 1.4: Open-source software for high-throughput quantum chemistry,”
J. Chem. Phys. 152, 184108 (2020).

71N. C. Rubin and A. E. D. III, “p†q: a tool for prototyping many-body meth-
ods for quantum chemistry,” Molecular Physics 0, e1954709 (2021).

72C. Adamo and V. Barone, “Toward Reliable Density Functional Methods
Without Adjustable Parameters: The PBE0 Model,” J. Chem. Phys. 110,
6158–6170 (1999).

73M. D. Liebenthal, “SuaveStateScanner: A tool for electronic state label-
ing and continuity,” (2022), https://github.com/Marclie/SuaveStateScanner
(last accessed September, 2022).

https://doi.org/10.1063/1.5142502
https://doi.org/10.1063/1.5142502
https://doi.org/10.1103/RevModPhys.40.153
https://doi.org/10.1063/5.0006002
https://doi.org/10.1080/00268976.2021.1954709
https://github.com/Marclie/SuaveStateScanner
https://github.com/Marclie/SuaveStateScanner

	Assessing the Effects of Orbital Relaxation and the Coherent-State Transformation in Quantum Electrodynamics Density Functional and Coupled-Cluster Theories
	Abstract
	I Introduction
	II Theory
	A Cavity QED Coupled-Cluster Theory for Ground and Excited States
	1 Cavity QED Hartree-Fock Theory
	2 Ground-state QED-CC theory
	3 Excited-state QED-EOM-CC theory

	B Cavity QED Density Functional Theory
	1 Cavity QED Kohn-Sham DFT
	2 Cavity QED Time-Dependent Density Functional Theory


	III Computational Details
	IV Results and Discussion
	A Ground-state energies of relaxed and unrelaxed QED-CCSD-1
	B Excitation energies of relaxed and unrelaxed QED-TDDFT and QED-EOM-CCSD-1
	1 Molecular hydrogen
	2 Hydrogen fluoride
	3 Lithium fluoride


	V Conclusions


