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Abstract

Background: Modelling the environmental niche and spatial distribution of pathogen-transmitting arthropods

involves various quality and methodological concerns related to using climate data to capture the environmental

niche. This study tested the potential of MODIS remotely sensed and interpolated gridded covariates to estimate

the climate niche of the medically important ticks Ixodes ricinus and Hyalomma marginatum. We also assessed

model inflation resulting from spatial autocorrelation (SA) and collinearity (CO) of covariates used as time series of

data (monthly values of variables), principal components analysis (PCA), and a discrete Fourier transformation.

Performance of the models was measured using area under the curve (AUC), autocorrelation by Moran’s I, and

collinearity by the variance inflation factor (VIF).

Results: The covariate spatial resolution slightly affected the final AUC. Consistently, models for H. marginatum

performed better than models for I. ricinus, likely because of a species-derived rather than covariate effect because

the former occupies a more limited niche. Monthly series of interpolated climate always better captured the climate

niche of the ticks, but the SA was around 2 times higher and the maximum VIF between covariates around 30

times higher in interpolated than in MODIS-derived covariates. Interpolated or remotely sensed monthly series of

covariates always had higher SA and CO than their transformations by PCA or Fourier. Regarding the effects of

background point selection on AUC, we found that selection based on a set of rules for the distance to the core

distribution and the heterogeneity of the landscape influenced model outcomes. The best selection relied on a

random selection of points as close as possible to the target organism area of distribution, but effects are variable

according to the species modelled.

Conclusion: Testing for effects of SA and CO is necessary before incorporating these covariates into algorithms

building a climate envelope. Results support a higher SA and CO in an interpolated climate dataset than in

remotely sensed covariates. Satellite-derived information has fewer drawbacks compared to interpolated climate for

modelling tick relationships with environmental niche. Removal of SA and CO by a harmonic regression seems

most promising because it retains both biological and statistical meaning.

Keywords: Ixodes ricinus, Hyalomma marginatum, Climate niche, MODIS, CliMond, WorldClim, Spatial

autocorrelation, Collinearity

Background
Ticks are important vectors of pathogens to humans

[1,2]. Most of the tick’s life cycle is spent in the environ-

ment, where ticks develop, moult, and quest actively for

a host [3]. Temperature has a central role in the regula-

tion of the tick life cycle, including the development of

the moulting stages (or oviposited eggs) and the periods

in which ticks quest for a host in the vegetation. During

the winter, low temperatures prevent rapid development,

so development progresses slowly until temperatures in-

crease in spring. At northern latitudes, temperature is

the main driving factor of the length of the tick life cycle

by regulating the duration of developmental processes.

The requirements of temperature for development are

species-specific and commonly prevent the spread of

ticks farther north, where total cumulative degrees in a

year are too low to allow complete development.
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Mortality depends on water losses, which are regulated

by the relative humidity and the air saturation deficit.

During questing, ticks lose water that they normally re-

gain by descending at intervals to the litter zone where

they can reabsorb water vapour from the atmosphere

[4,5]. When the ticks are hydrated, they ascend to the

vegetation. The seasonal activity of ticks is characterised

by several cycles of ascending and descending move-

ments in the vegetation, regulated by temperature and

water loss. Therefore, the energy reserves of the tick plus

its abilities to retain water, together with air water con-

tent and temperature, are the factors regulating the

questing and survival of ticks in the field.

Such tight dependence of ticks on climate traits makes

them susceptible to meteorological changes, which in

turn affects their periods of activity, development, and

mortality and expansion into new zones or retreat from

colonised areas [6,7]. Some of these shifts in distribution

have been reported from field studies [8,9]. In other

cases, associations between climate and prevalence rates

of tick-transmitted pathogens have been proposed based

on empirical grounds [10] or meta-analyses of published

data [11]. However, the effect of the projected climatic

trends over the rather complex life cycle of ticks and the

dynamics of tick-transmitted pathogens are still poorly

understood and subject to debate. Although a change in

climate might play an important role in certain geo-

graphic regions, for much of Europe, non-climatic fac-

tors, such as host population dynamics, are becoming

increasingly important in the recorded spread of the tick

Ixodes ricinus [7]. Similar explanations have been hy-

pothesized for the increase in prevalence rates of other

tick-transmitted pathogens, in particular those carried

by the tick Hyalomma marginatum [12].

Methods of species distribution modelling have been ap-

plied to arthropods of medical importance to understand

the factors limiting their distribution [13-15]. These quan-

titative tools combine observations of species occurrence

with environmental features [15] and are increasingly

applied to produce coherent estimates of distribution pat-

terns of mosquitoes [2], sandflies [16], and ticks [7,17].

The covariates of climate and vegetation with which these

arthropods are associated can be used to gain information

about the effects of future climate scenarios or even recent

trends [18]. Because this information can be produced on

a timely basis, with internally consistent data sources, it is

a useful tool for resource managers, policy makers, and

scientists interested in tracking recent changes across

large administrative or environmental scales. These mo-

dels are becoming increasingly popular in mapping the

expected environmental variables that limit the physio-

logical response of an arthropod vector [16].

Although some studies have emphasised the suitability

of yearly averaged covariates involving temperature and

rainfall, in the interpretation of the climate niche of the

target arthropod [7,14], others have used sets of vari-

ables at monthly intervals or the orthogonal trans-

formation of a time series of covariates, via principal

component analysis (PCA) or Fourier transformation

[19,20]. It has been explicitly indicated [21] that the set

of covariates chosen to explain the abiotic habitat ought

to have a clear biological meaning, describing adequately

the biological and ecological constraints of the species in

the spatial range to be modelled. Without this biological

background, numerous variables can produce models

with highly reliable matching distributions that are only

statistically relevant. Although there is a tendency to

consider that these potential distributions represent the

probable geographical range, they must be regarded only

as the characterization of the range of abiotic conditions

(corresponding to non-living factors in the environment)

under which the organism may survive [16]. These so-

called “suitability maps” or “potential distribution species

models” are interpretations of a similarity measure of

the abiotic conditions at each pixel of the map with the

conditions at the known range of the species. These

maps are actually a projection into the spatial range of

the inferences made on such a niche of the organism.

Without a model aimed at describing every process of

the life cycle of the target organism, it is necessary to

carefully select the minimum set of covariates that ad-

equately describe, without inflation, the variables driving

the observed distribution.

A common problem in modelling the abiotic niche of

arthropod vectors is the lack of assessment of the sta-

tistical issues derived from spatial autocorrelation (SA)

and collinearity (CO) of the covariates. SA is the spatial

co-variation of properties between records used for cali-

bration of models [22] violating standard statistical tech-

niques that assume independence among observations.

SA thus arises from multiple points of “presence” for the

organism to be modelled, not randomly distributed over

the space [23]. Patterns of species distributions may be

spatially autocorrelated because of population dynamics

and historical factors, including closely clustered surveys

that lead to the observed pattern of occurrence [24]. SA is

thus a spatially related problem that leads to an overesti-

mation of the sample size, inflating the statistical signifi-

cance of the measured spatial relationships and increasing

the likelihood of false positives (type I errors, [25]).

The problem of SA in the determination of the tick

abiotic niche can be stated as follows. Consider a region of

several square kilometres (i.e., representing a small frac-

tion of its complete spatial range) where tick-transmitted

pathogens are a concern and where active surveys for ticks

are commonly carried out. The tick will be collected in

such a range where the spatial variability of the climate

covariates is low because it is a relatively small territory.
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These collections represent, however, a significant frac-

tion of the complete distribution range of the tick, as

reported, and contribute to populate the dataset of pre-

sences with closely located records having very similar

abiotic “preferences”. This method biases the perceived

niche of the tick because the tick has not been randomly

collected in the context of the complete dataset. An

additional problem is expected to arise when covariates

are gridded interpolations of climate from recording

stations. Consider the same territory for which only a

few climate-recording stations exist. Even the best per-

forming methods will interpolate a few points as a sur-

face of data where large areas have almost the same

values for the covariate. These surfaces are later used to

know the niche at which ticks have been collected,

which will result in a significant number of records in

the tick presence dataset having similar values for the

climate covariates and biasing our capture of its climate

niche.

CO is a statistical phenomenon in which two or more

covariates in a multiple regression model are highly cor-

related and presents a problem related to the internal

structure of the covariates used to explain the distri-

bution of the records. In our application, the typical

situation involves the use of time series of covariates

that are strongly correlated (e.g., the temperature in one

month is expected to be very similar to the values of the

following month). CO is thus a spatio-temporal problem

originated in the structure of the covariates and not in

the records used for calibration. A special situation

exists when covariates are grid interpolations of climate

point records. In this case, the problems are magnified

because the interpolation algorithms use a set of

discrete, irregularly spaced sites (the meteorological

stations), and the temporal series of covariates will ex-

hibit a high CO compared with the regularity and the

continuity of remotely sensed measurements.

To take full advantage of the available resources, re-

searchers need to know the extent to which different

variables selected to drive the models may affect the

final outcome. This study is aimed at identifying the op-

timal set of abiotic variables describing the environmen-

tal niche of the two prominent ticks Ixodes ricinus and

Hyalomma marginatum. It was not a goal to evaluate

the accuracy of different algorithms in producing dif-

ferent results or to produce ready-to-use maps. The

overall aim rather was to gain a general knowledge of

the main variables driving the distribution of these ticks

and to identify some procedural gaps in the selection of

the covariates because they are commonly targeted to

sketch predictive maps applied to the improvement of

human health. We explicitly sought to demonstrate that

(i) no single method exists to produce the best map for

ticks, (ii) covariates producing the best performing

model have high colinearity and spatial autocorrelation,

therefore rendering conclusions unreliable, and (iii) that

the transformation of time series of covariates produce

satisfactory results and remove most of the internal

problems of covariates.

Results
Effects of data source

Models for either I. ricinus or H. marginatum produced

high AUC values, ranging from 0.7 to 0.9 (Figure 1).

Worst results (lowest AUC) were consistently produced

for I. ricinus using the set of remotely sensed covariates,

Figure 1 AUC values of the models for either Ixodes ricinus or Hyalomma marginatum. Models were built against a set of 10,000 random

pseudo-absence records and trained with several sets of interpolated climate, using both temperature and saturation deficit (SD), temperature

and relative humidity (RH), and temperature and rainfall in either the CliMond or WorldClim sets (rainfall) or the set of “Bio” variables derived from

the WorldClim dataset (BIO). All the datasets were used at a spatial resolution of 0.1°.
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in comparison with those for H. marginatum with the

same sets of covariates. The resolution of the MODIS

imagery had an influence in the results, with AUC values

higher at lower resolution. Models based on monthly

values of MODIS-derived data produced the highest

AUC for the set of remotely sensed information. Models

based on PCA and harmonic regression had almost

similar AUC values for both resolutions of remotely

sensed products. However, interpolated climate datasets

produced high AUC values without important diffe-

rences between species. Interpolated climate covariates

also produced similar results for both species of ticks in

terms of AUC (Figure 1), with slight differences among

the different datasets used. The three sets of CliMond

based on relative humidity, saturation deficit, and rainfall

performed in similar terms. ROC curves for every model

are included in Supplementary material.

Background selection

The selection of the background affected the reliability

of the models for I. ricinus, producing consistently

higher AUC values if built against a background of

points recorded as close as possible to its recorded dis-

tribution. Such a background represents the lowest

range of the fuzzy membership function. Models built

with a random background had an AUC about 12–15%

lower than that with the optimal selection of the back-

ground points (Figure 2). This result was also observed

for H. marginatum, but the relevance of the choice of

the background points to the final AUC was less. The

AUC of models for H. marginatum with a random selec-

tion of the background was only 2–4% lower than the

optimal strategy of background choice (Figure 3).

Spatial autocorrelation and collinearity

Models developed for I. ricinus had lower values of SA,

as measured by Moran’s I, than those for H. mar-

ginatum. This result was consistently obtained for each

dataset of covariates (Figure 4). The lowest autocor-

relation values were obtained when PCA or harmonic

regression covariates of the MODIS datasets were used.

The resolution influenced SA value, and covariates of

smaller resolution had higher Moran’s I values when

transformed by a harmonic regression. However, PCA

transformations and monthly data had similar SA values.

Higher values for Moran’s I were obtained for the

monthly set of MODIS covariates. Interpolated climate

datasets had consistently higher values of Moran’s I for

each modelled species and every transformation (humi-

dity, saturation deficit, or rainfall).

Values of VIF are included in Table 1 as the measure

of CO of covariates. VIF was low for the MODIS

monthly data transformed after PCA or harmonic re-

gression, for both 0.05° and 0.1° of spatial resolution.

Maximum values of VIF among any two of the MODIS-

derived covariates was as low as 2.1 (theoretical upper

limit being around 10). However, the set of monthly

MODIS values displayed maximum VIF values of 177

and 189 for the resolutions 0.05° and 0.1°, respectively,

meaning that at least two covariates of the series were

highly correlated. Highest average VIF values were found

for the monthly series of interpolated climate. The “Bio”

series of layers derived from the WorldClim dataset

displayed a mean VIF of 3.5, but several covariates were

highly correlated between them, with maximum VIF

values up to 196, some 20 times higher than the thresh-

old indicative of a high CO.

Figure 2 AUC values of the models for Ixodes ricinus. Pseudo-absence records were either a set of 10,000 random records, or selected at

different membership values of the background or randomly distributed over the target territory. Models were trained with remotely sensed

variables from MODIS imagery, at either 0.05° or 0.1° of spatial resolution. Covariates are the 12 monthly layers of surface temperatures and 12

other layers of NDVI (“Monthly”), the reduction of these monthly values by a principal components analysis (“PCA”) involving six covariates, and

the coefficients of a harmonic regression (“Harmonic”) involving eight covariates.
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Discussion
This study evaluated the use of different sets of infor-

mative variables (covariates) to estimate the climate

suitability for two tick species with relevance for human

health. We sought to provide a comparison of the

suitability of several sets of climate covariates regarding

the statistical issues of CO and SA [26-32]. We did not

consider land features that might affect the abundance

of hosts, which are necessary for the tick’s blood meal

[33], or climatic extremes (cold spells, heat waves) that

could limit tick survival. We thus focused on the estima-

tion of systematic errors rather than on producing the

best map of the expected distribution of these ticks’

ranges, as a preliminary step to computing the probable

distribution of these species.

Although correlative models capture the distribution of

a given organism in the n-dimensional environmental

niche, the production of a “risk map” is only a projection

from the environmental space into the geographical one.

Both remotely sensed and interpolated climate datasets

have advantages and disadvantages in the capture of such

a niche. The first category has a high temporal resolution

but a relatively short running period (typically since the

years 1983 or 2000, according to the sensor), but satellite

data must be corrected to remove clouds, ice, or artifacts

[34]. Moreover, estimators of the saturation deficit are not

easily available in the satellite products, although reports

estimated the humidity component from standard NDVI

imagery [35,36]. The interpolated climate datasets are eas-

ily available and free of contaminations like clouds or ice.

Figure 3 AUC values of the models for Hyalomma marginatum. Pseudo-absence records were either a set of 10,000 random records, or

selected at at different membership values of the background or randomly distributed over the target territory. Models were trained with

remotely sensed variables from MODIS imagery, at either 0.05° or 0.1° of spatial resolution. Covariates are the 12 monthly layers of surface

temperatures and 12 other layers of NDVI (“Monthly”), the reduction of these monthly values by a principal components analysis (“PCA”) involving

six covariates, and the coefficients of a harmonic regression (“Harmonic”) involving eight covariates.

Figure 4 Moran’s I values for the sets of records of either Ixodes ricinus or Hyalomma marginatum.
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These products are commonly available as the long-term

average for the period 1960–1990 for the complete world,

at different resolutions, and include estimations of water

availability in the air, which are important for explaining

tick activity and mortality rates [37]. A number of

modellers have argued strongly for the use of predictors

that are ecologically relevant to the target species [38-41].

It has been stated that the ‘use of automated solutions to

predictor selection … should not be seen as a substitution

for preselecting sound eco-physiological predictors based

on deep knowledge of the bio-geographical and ecological

theory’ [27, pp: 1681–1682]. In this context, the use of

different variables describing the water content of the air

(e.g., humidity or rainfall) has not affected the final out-

come. However, these results have been obtained in the

framework of a high CO of the covariates and are difficult

to interpret.

It is important to mention that no single approach

exists for the capture of climate niche of these species of

ticks, at least with the two target species and the dif-

ferent sets of covariates used in this study. First, there is

a clear effect derived from the species, which has been

observed for remotely sensed information, but not for

interpolated climate covariates. I. ricinus is a species co-

lonizing a large area of the western Palearctic and thus

reported under a large variety of environmental condi-

tions [42]. A certain degree of adaptation of the tick

populations to the regional climate conditions should

therefore be expected, something that cannot be cap-

tured by the modelling algorithms because they work on

the basis of the niche conservatism [43]. H. marginatum

is a Mediterranean species, colonizing only the relatively

warm and dry environments of the Mediterranean basin

[17]. It is thus expected that adaptation to regional

environmental conditions is lower than for I. ricinus

because of the narrower region occupied in the environ-

mental niche [17]. We ignore why this effect is not

observed in the datasets of interpolated climate.

Studies simulating sets of pseudo-absences to train the

models have tried to assess how the strategy of choice of

background may influence the predictive abilities of

models for organisms [43,44]. A large experiment [45]

showed that a potential drawback of models generated

with random pseudo-absences is that they might coin-

cide with locations where the species actually occurs.

This coincidence would strongly affect the calculation of

the probability of presence in the model. Consequently,

the models generated with random pseudo-absences are

expected to have poorer fit [46]. The selection of the

background is different for each target species and may

depend upon the biology of each organism and the

abiotic features of the territory to be modelled. For

I. ricinus, a species that occupies a large portion of the

available climate niche in the target region, the choice of

a background near the recorded distribution of the tick

(low membership probability) produced always better

models, with a difference of about 12–14% of AUC

values over the random background. For H. mar-

ginatum, which is restricted to a smaller volume of the

available climatic conditions, such a choice of back-

ground affected model reliability in only 2–4% of AUC

values. The selection of the background points from the

n-dimensional distribution of the organism in its climate

niche, and not from the spatial structure of its distri-

bution, might be an interesting method to improve our

understanding of the factors driving such distribution

[47], a method that has not been addressed here.

Some sets of covariates tested for this study yielded

high values of both SA and CO (as the Moran’s I and

VIF). It was expected that the sets of interpolated

climate resulted in higher SA values because these data

are gridded interpolations of climate stations, with ef-

fects that are greater in regions where a low density of

points is available, introducing uncertainties into the

predictions. CO was also expected to be higher in

datasets involving monthly covariates because each va-

riable is correlated with others. Some studies [26,27,48]

have recommended incorporating a term for SA into the

analysis. However, this method has been criticized [29]

because models that incorporate a SA term reflecting

environmental rather than biological spatial structure

could not be applied to other situations. Other ap-

proaches have involved the detection of autocorrelation

among covariates before the modelling exercises, drop-

ping the highly correlated covariates from the final

Table 1 Mean, minimum, and maximum values of the

variance inflation factor (VIF) as a measure of the

collinearity observed in the different sets of variables

Set VIF: Average (Min/Max)

Harmonic regression MODIS 0.1° 1.2 (1.0/3.3)

Harmonic regression MODIS 0.05° 1.1 (1.0/3.2)

Monthly variables MODIS 0.1° 8.2 (2.0/189.1)

Monthly variables MODIS 0.05° 8.3 (2.1/177.4)

PCA MODIS 0.1° 1.2 (1.1/2.2)

PCA MODIS 0.05° 1.1 (1.0/2.1)

WorldClim 12.2 (3.0/196.0)

WorldClim (Bio) 3.5 (1.0/125.4)

CliMond (Temperature + Rainfall) 12.1 (3.6/126.1)

CliMond (Temperature + RH) 12.4 (4.1/128.4)

CliMond (Temperature + SD) 13.5 (4.0/119.5)

The mean VIF averages such values for every pair-to-pair comparison between

variables. Minimum and maximum values result from the absolute minimum

and maximum comparisons: a high maximum VIF reflects high collinearity

between, at least, two layers of covariates. A value of VIF = 10 is considered as

the allowable maximum.
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modelling approach [49]. This method, however, might

remove the most biologically important covariates be-

cause it is an automated solution that disregards the a

priori ecological significance of covariates.

It seems, thus, that a single solution for the capture of

the environmental niche of ticks is not straightforward.

Remotely sensed information should be preferred to in-

terpolated climate. However, in situations of a large

number of pixels contaminated by water vapour, the use

of interpolated climate should be considered, together

with an explicit assessment of the CO of the residuals to

check for inflation of the models. Monthly covariates of

satellite-derived information had the highest values of

VIF, but these values were clearly lower than the inter-

polated climate, including the set of “Bio” variables.

Nevertheless, the models built upon the transformation

of the original time series either by the coefficients of a

harmonic regression or a PCA produced the best re-

moval of SA and CO, as already reported [20]. The

preferred method to infer the abiotic niche of these

arthropods should be ideally based on a transformation

of the original time series, extracting the raw temporal

values in a series of uncorrelated covariates. It has been

reported, however, that the PCA reduction of a time

series lacks its intuitive meaning [21]. In contrast, a har-

monic regression retains the terms about the amplitude

and seasonality of each time component and is therefore

easier to interpret. We advocate the use of the coeffi-

cients of a harmonic regression, which represent a sum-

marized description of the climate niche of the organism

while retaining the ability to explain seasonal trends with

a few parameters. Moreover, the selection of variables

derived from purely physical traits, like elevation, will

contribute to inflate the results of the model by further

CO with the raw climate features like the temperature.

The inclusion of elevation is a common procedure in the

building of correlative models, which cannot help in the

interpretation of the niche of the organisms and will

falsely inflate the predictive abilities of models [50].

Conclusions
Several conclusions emerged from this study, and prob-

ably the most important is that no one method exists to

elaborate maps of risk for arthropods of medical interest.

Interpolated gridded climate covariates do not seem to

be adequate tools for such a modelling exercise, even if

they output high AUC values, because issues of SA and

CO that may affect the reliability of the inference of the

niche under some conditions. This also applies to time

series of data (i.e. monthly intervals) that are obviously

correlated, either for gridded or remotely sensed cova-

riates. We might recommend the coefficients of a

harmonic regression applied to the monthly series of

remotely sensed information about LST and NDVI

because they are uncorrelated covariates explaining the

complete series. It is also important to investigate the ef-

fects of high-resolution features other than climate co-

variates (such as landscape composition or presence and

abundance of suitable hosts) in the performance of the

models. There is not a single method to select the back-

ground in presence-only models. There is an urgent

need to adopt protocols to include real absence records

of the ticks and to turn to statistical methods that can

express the relationships of biological distributions with

biologically meaningful climate covariates. It is con-

cluded that procedures aimed to capture the distribution

of arthropods with medical interest might be better

focused on the inference about the climate niche, instead

to simply project on the geographical distribution.

Methods
Explanatory variables and data preparation

The selection of the explanatory variables is a critical

step in the inference and projection of the climate niche

of an organism. In the case of ticks, additional complica-

tions arise because rain has little influence on the tick

life cycle at large scales. The tendency is to correlate

empirical observations on tick phenology with rainfall

patterns; however, the factors affecting such phenology

are temperature, relative humidity, and saturation deficit

[4,51], and rainfall probably is adequate only at regional

scales but unreliable for large patterns of variation. In

the case of remote sensing, the Normalized Derived

Vegetation Index (NDVI) is a variable that better cap-

tures the reported distribution of some species of ticks

[37,52] because it is considered as a proxy for water

availability.

We tested several sets of abiotic covariates at different

resolutions and processed with different methodologies.

Table 2 includes a list of the sets of raw abiotic variables

and the further processing to obtain the variables driving

the models. We used a set of MODIS satellite-derived,

Land Surface Temperature (LST) and NDVI, at a spatial

resolution of 0.05° (LST/NDVI A) or 0.1° (LST/NDVI B),

obtained at a temporal resolution of either 8 (A) or 30

days (B), for the years 2000–2011. LST/NDVI A cor-

responds to the product MOD11C2, available at https://

lpdaac.usgs.gov/products/modis_products_table (accessed

May 2011) and contains the quality layers necessary to ad-

equately assess the effects of clouds and aerosols on the

image. Quality flags were addressed by removing pixels

that were catalogued by MODIS as being obscured by

clouds, water, or null/non-valid measurements. For every

8-day interval of the 2000–2011 period, we used only the

pixels marked as “perfect”, “optimal”, and “valid but mo-

derately affected by water vapour”, which yielded a set of

monthly composites of either LST or NDVI. The monthly
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composites were obtained by the maximum pixel value of

the 8-day products for such months.

LST/NDVI B is based on the MODIS product MOD11C2

and is available at http://neo.sci.gsfc.nasa.gov/Search.html

(accessed December, 2011). This product has a smaller

resolution than the original (0.1° instead of 0.05°) but is

available as a ready-to-use set of monthly data, with the

pixel contamination by water already removed by the

MODIS team. The use of the data already processed by

the MODIS processing team ensures its quality, signifi-

cantly reduces the time for processing, and provides a

clean set of data that can be directly used to feed the mod-

elling chain of processes. We specifically tested it to check

if its smaller resolution could affect the performance of

the models.

These two products were used in three different ways:

(1) averaged monthly values for the years 2001–2011

(12 variables for LST and 12 for NDVI); (2) the ortho-

gonal transformations by PCA of the original series of

data (the first 3 components for LST and the first 3 axes

for NDVI, explaining 88.2% and 87.9% of the original

variance, respectively); and (3) the coefficients of a har-

monic regression of the series of data against time.

Harmonic regression is a mathematical technique used

to decompose a complex signal into a series of indi-

vidual sine and cosine waves, each characterized by a

specific amplitude and phase angle [53]. In the process,

a series of coefficients describe the cyclical variation of

the series, including the seasonal behaviour. A variable

number of components can be extracted, but only a few

terms are in general necessary to describe annual,

semi-annual, and smaller components of the seasonal

variance. Such a procedure is similar to the trans-

formation of a time series by a Fourier analysis [20], in

which the harmonics of the series produce values for the

maximum, phase, and period of the series. The har-

monic regression was applied on the average of the 8- or

30-day MODIS images of LST or NDVI. The harmonic

regression model used in this study was defined as

follows:

Y ¼ β0 þ cT þ

X

n

i¼1

Ai sin
2πi

s
T

� �

þ ϕi

where Y is the value of LST or NDVI, B0 is the offset, c

is the trend, Ai is the amplitude of the ith oscillation, ϕ

is the phase component of the ith oscillation, s is the

fundamental frequency, and T is the time-dependent

variable. We performed both the PCA transformations

and the harmonic regressions in R [54] and the package

“raster” version 2.0-08 [55]. Four coefficients for LST

and four for NDVI were used for model fitting because

the addition of more terms did not significantly improve

the fitting of the original series.

We also included monthly values of temperature and

moisture obtained from two sets of interpolated grid-

ded climate data, namely WorldClim [56] (available at

http://www.worldclim.org) and CliMond [57] (http://

www.climond.org). The former does not include data on

the water content of the air but includes precipitation, and

the latter includes both precipitation and relative humidity

estimates. Although methods to interpolate the tempe-

rature are the same in both sets of data, the interpolation

of the humidity features may differ. Therefore, we used

both sets of data, namely temperature and precipitation,

as available from WorldClim, and temperature and hu-

midity, as available from CliMond. Details on the prepa-

ration of the datasets are available in references [56,57],

respectively. In short, they include averaged monthly

values for temperature and moisture (either precipitation

or relative humidity) for the period 1960–1990, obtained

from ground climate stations and interpolated thin-plate

smoothing splines, using elevation, latitude, and longitude

as independent variables.

We further processed the values of relative humidity

as available in CliMond to obtain estimates of the satu-

ration deficit because of the importance of such a feature

in the life cycle processes of the ticks [51]. Monthly fea-

tures of both sets were downloaded and used at a spatial

resolution of 0.1° from their respective web sites

(accessed February, 2012). We also used a set of variables

Table 2 List of the datasets used in this study and the transformations carried out and applied to modelling purposes

Set Which variables Resolution Time Covariates

MODIS LST and NDVI 0.05° and 0.1° 2000–2011 Monthly values: 24 variables

MODIS LST and NDVI 0.05° and 0.1° 2000–2011 Principal components of the monthly datasets: 6 variables

MODIS LST and NDVI 0.05° and 0.1° 2000–2011 Coefficients of harmonic regression of monthly values: 8 variables

WorldClim Temperature and rainfall 10´ 1960–1999 Monthly values: 24 variables

WorldClim Temperature and rainfall 10´ 1960–1999 Transformation of monthly values into “Bio variables”: 19 variables

CliMond Temperature and relative humidity 10´ 1960–1999 Monthly values: 24 variables

CliMond Temperature and saturation deficit 10´ 1960–1999 Monthly values: 24 variables

The basic set of data included the MODIS series of monthly values of Land Surface Temperature (LST) and Normalized Derived Vegetation Index (NDVI), as well as

the interpolated gridded monthly climate data of temperature and rainfall or temperature, rainfall, and water saturation deficit.
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derived from the main WorldClim dataset, which are

called “Bioclimatic” variables and include information

derived from the main monthly dataset. The bioclimatic

variables represent annual trends (e.g., mean annual tem-

perature, annual precipitation), seasonality (e.g., annual

range in temperature and precipitation), and extreme or

limiting environmental factors (e.g., temperature of the

coldest and warmest months and precipitation of the wet

and dry quarters). Interpolated climate covariates were

not processed for further orthogonal transformations.

Model building and comparison

For each species, models were developed with the sets of

environmental covariates and a set of data point loca-

tions where the species has been observed in the western

Palearctic. The ‘Maximum Entropy Approach’ using the

MaxEnt computer program for modelling species geo-

graphic distributions (v.3.3.3k [58]) was employed to ge-

nerate models for the species studied. The algorithm

generates inferences from incomplete information, esti-

mating a target probability distribution by finding the

probability distribution of maximum entropy, subject to

a set of constraints that represent the incomplete infor-

mation about the reported distribution. This is a ma-

chine learning modelling method, which has recently

gained attention for its favourable performance in com-

parison to other modelling methods [59]. We did not

address a comparison of the reliability of the different

modelling algorithms, and other methods using presence-

only data are available [59].

We used the reports of tick surveys as input data to

train the models. These reports were previously com-

piled from different sources [17] and include 4,908 re-

cords of I. ricinus and 698 records of H. marginatum

with a reliable geolocation. Figure 5 includes the spatial

distribution of these data points in the target territory.

More than 98% of the records were originally recorded

for the period 1970–2010; however, some of the oldest

records for I. ricinus were originally reported in the

years 1910–1925. These records represent 1.5% of the

total dataset and could affect the reliability of the cap-

tured niche because the periods of time of tick reporting

and preparation of the climate dataset do not overlap

[17]. This small fraction of old records was removed

from the dataset before further analysis.

For each species, models were developed with every set

of environmental covariates together with the set of data

point locations where the species had been observed. We

used quadratic and product terms to handle the non-

linear response of ticks to climate covariates and to allow

relationships among covariates to be included [49]. We

explored a range of regularization parameters according

to published recommendations [59] to choose a final

regularization parameter (2 for both species to be mo-

delled). Sampling bias was not addressed because of the

inherent difficulties in its calculation on a historical

dataset of records where no sampling effort was specifically

Figure 5 The spatial distribution in the western Palearctic of the compiled records of the ticks Ixodes ricinus (black dots) and

Hyalomma marginatum (blue dots) used to train the models.
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included. Models were trained with 70% of records and

evaluated against the remaining 30%. The modelled distri-

butions were evaluated for predictive performance using

the area under the receiver operating characteristic (ROC)

curve to assess the agreement between the presence–

absence records and the model predictions [60]. Model

reliability was determined by calculating the area under the

curve (AUC) such that a curve that maximizes sensitivity

for low values of the false-positive fraction is considered a

good model. The AUC represents a reliable important

metric for evaluating diagnostic procedures, providing a

single measure of model reliability, independent of any par-

ticular choice of threshold value [60]. Since its first pro-

posal as an appropriate method to estimate the accuracy of

species distribution models, reports have described its use

in this field of research [61-63]. However, other studies

have criticised its indiscriminate application [45,64]. We

calculated and compared AUC using the R package pROC

[65]. Additional file 1: Figure S1 and Additional file 2:

Figure S2 include the ROC curves for the models.

Additional file 3: Figure S3 and Additional file 4: Figure S4

include maps of the climate similarity for either Ixodes

ricinus or Hyalomma marginatum in the target territory.

Selection of pseudo-absences

The lack of a set of negative (absence) records—a usual

bias in surveillance information—makes it necessary to

compute pseudo-absences, which are randomly selected

over the background of the target territory. The mode-

lling software selects a random set of background points;

however, the wide range of environmental conditions

under which pseudo-absences can be located might se-

verely alter/bias the outputs of the calculations [66,67].

We elaborated on a method to select a background,

comparing the AUC values obtained by the default ran-

dom selection of absences provided by MaxEnt software

against those built employing a customized, ad-hoc ap-

proach that select negative records from the background

on the basis of criteria with ecological meaning. To do

so, a grid with cells at a resolution of 0.01 degrees was

created for the study area, and the probability for each

pixel to be selected as background was calculated on a

cell-by-cell basis. The rationale is that each cell of the

grid has a probability to be a “background site”, which

depends on both the distance to the nearest record of

the target organism and the terrain ruggedness. The ter-

rain ruggedness is defined as the difference in elevation

between adjacent cells in a digital elevation grid covering

the area of study. This is a standard definition (Topo-

graphic ruggedness index [68]) aimed to produce an

evaluation of how variable the terrain in the cell is. A

digital elevation model at a resolution of 1 km (obtained

from http://www.worldclim.org, accessed December

2011) was used to compute the landscape heterogeneity,

using a script for ArcGIS Desktop (ESRI, Redlands, CA,

USA) available at http://arcscripts.esri.com (Topographic

ruggedness index, accessed January, 2012).

A fuzzy membership operator was applied to the

distance-to-presences and terrain ruggedness variables

to derive for each cell the probability to be selected as

background. Mean and maximum distances within each

set of records were the values of 0% and 100% of mem-

bership for “distance”. Mean and 75th percentile values

of ruggedness were the values of 0% and 100% of mem-

bership for “ruggedness”. If the target cell is “far” from a

cell where the organism has been recorded, the tick is

probably absent in the candidate cell, and that cell has a

high probability of being a background site. The pro-

bability of being background decreases as terrain rug-

gedness increases, meaning that the target cell may

contain populations of the tick not yet surveyed. Figure 6

provides a visual explanation of the values of back-

ground membership, ranging from 0 to 1, for either

I. ricinus (2A) or H. marginatum (2B) over the target

territory. We produced models with background points

based on different degrees of membership to the

Figure 6 The membership function used to select the background to train the models for Ixodes ricinus (A) and Hyalomma

marginatum (B). The tone from blue to red shows the degree of membership to the background (pseudo-absence) records and is based on the

landscape heterogeneity and distance to known records of the target tick.
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background, from 0.1 to 0.9, and each combination of re-

motely sensed covariates. Models were also built using a

set of 10,000 randomly selected background points and

compared against the models built with background

points selected as described before. The influence of back-

ground selection on AUC values was done only for the set

of remotely sensed covariates and their transformations.

Assessing spatial autocorrelation and collinearity

We assessed the SA and CO of the sets of explanatory

variables used in this study. The effect of SA on linear

regression significance values has been tested using arti-

ficially generated variables with known spatial structures

[69-71]. A common procedure to cancel the effect of the

spatial structure of species occurrences is to incorporate a

term for SA into the analysis [26,27,48], usually a measure

of contagion that encompasses the effect of spatial neigh-

bourhood in the statistical test. However, spatial patterns

observed in the residuals could just as well result from

failure to include an important autocorrelated predictor in

the model [28] as much as from a real biological process.

As a result, models that incorporate a SA term reflecting

environmental rather than biological spatial structure will

hardly be applicable to other situations [29].

On the other hand, it has been reported that CO does

not affect MaxEnt performance (i.e., the predicted distri-

bution range of the target species) but can hinder model

interpretation (i.e., obstruct the decision about the co-

variates driving the distribution of the target species)

[30]. The focus here is not the reliability of MaxEnt as

affected by CO but to demonstrate that such a spatial ef-

fect exists in the sets of covariates most commonly used

to map the distribution of arthropods that affect human

health. In most cases, it is important to know how each

variable influences the presence of the modelled species

and, subsequently, which variables have the greatest

influence on the model and in what manner these va-

riables influence species occurrence [31]. Caution must

be used when assessing this importance because a strong

CO can influence results by implying greater importance

for one of two or more highly correlated variables.

We used the Moran’s I for the model residuals to

assess the SA of the covariates, separately for each set of

covariates and respective transformations, the different

spatial resolutions, and the two sets of tick records used

to train the models [71]. We computed Moran’s I with

the module “Autocorr” in Idrisi for Windows (V14) on

the first lag only so that the algorithm scans through the

whole image of model residuals and looks at each cell and

its immediate neighbours. Moran’s I ranges between −1

and +1, where +1 means absolute and 0 no spatial auto-

correlation. A negative index could indicate some kind of

regular pattern. We assessed CO of the covariates with

the variance inflation factor (VIF), which is a measure of

correlation between pairs of variables [72]. Values of

VIF > 10 denote a potentially problematic CO within the

set of covariates, indicating that these covariates should be

carefully evaluated in model development [32]. VIF was

calculated for every combination of covariates and their

orthogonal transformations and resolutions. Results are

presented as the mean, minimum, and maximum values

of VIF found in every pair combination of covariates

among each set.

Additional files

Additional file 1: Figure S1. ROC curves for the models built with

different sets of remotely sensed variables and selecting the background

according to the membership values of a fuzzy logic set of rules. The

comparison with the ROC curves as obtained by a random selection of

the background is included. A, B, C, D: Hyalomma marginatum; E, F, G, H:

Ixodes ricinus. The sets of remotely sensed variables are as follows:

Harmonic regression from MODIS data at 0.05° (A, E) and 0.1° (B, F);

monthly values of the MODIS series (C, G) and a transformation by a

principal components analysis over the monthly series of values of

MODIS at 0.1° (D, H).

Additional file 2: Figure S2. ROC curves for the models built with

different sets of interpolated gridded climate. A: Hyalomma marginatum.

B: Ixodes ricinus.

Additional file 3: Figure S3. Maps of climate similarity in the target

territory (from 0 to 100) for Ixodes ricinus produced by four different sets

of variables. A: WolrdClim using 12 months of averaged temperatures

and 12 months of averaged precipitation; B: MODIS monthly values,

using 12 months of LST and 12 months of NDVI. C: Transformation of

MODIS monthly values by a harmonic regression (Fourier transformation)

using the first coefficients of LST and the first 5 coefficients of NDVI. D:

PCA transformation (3 axes) of MODIS monthly values.

Additional file 4: Figure S4. Maps of climate similarity in the target

territory (from 0 to 100) for Hyalomma marginatum produced by four

different sets of variables. A: WolrdClim using 12 months of averaged

temperatures and 12 months of averaged precipitation; B: MODIS

monthly values, using 12 months of LST and 12 months of NDVI. C:

Transformation of MODIS monthly values by a harmonic regression

(Fourier transformation) using the first coefficients of LST and the first 5

coefficients of NDVI. D: PCA transformation (3 axes) of MODIS monthly

values.
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