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ABSTRACT Multiaccess edge computing and caching (MEC) is regarded as one of the key technologies

of fifth-generation (5G) radio access networks. By bringing computing and storage resources closer to

the end users, MEC could help to reduce network congestion and improve user experience. However,

deploying many distributed MEC servers at the edge of wireless networks is challenging not only in terms of

managing resource allocation and distribution but also in regard to reducing network energy consumption.

Here, we focus on the latter by assessing the network energy consumption of different cache updating and

replacement algorithms. First, we introduce our proposed proactive caching (PC) algorithm for mobile edge

caching with Zipf request patterns, which could potentially improve the cache hit rates compared to other

caching algorithms such as least recently used, least frequently used, and popularity-based caching. Then,

we present the energy assessment models for mobile edge caching by breaking down the total network

energy consumption into transmission and storage energy consumption. Finally, we perform a comprehensive

simulation to assess the energy consumption of the PC algorithm under different key factors and compare

with that of conventional algorithms. The simulation results show that improving cache hit rates by using

the PC algorithm comes at the expense of additional energy consumption for network transmission.

INDEX TERMS Wireless edge caching, energy consumption, 5G, multiaccess edge computing, proactive

caching.

I. INTRODUCTION
Emerging technologies (e.g., virtual reality, augmented real-

ity, three-dimensional (3D) videos/games, and autonomous

driving) require high bandwidth and extremely low latency

to guarantee quality-of-service (QoS), high user quality

of experience (QoE) [1], [2] and safety. The emergence

of these applications has required rapid development of

fifth-generation (5G) wireless networks. It is expected that

5G precommercial data terminals, smartphones, and other

products will be released in the first half of 2019. By 2020,

telecom operators are expected to realize large-scale deploy-

ments of 5G base stations [3].
In the logical architecture of 5G access networks, the base-

band functionality of a cellular base station (BS) will be

The associate editor coordinating the review of this manuscript and
approving it for publication was Ilsun You.

divided into two parts—a centralized unit (CU) and a dis-

tributed unit (DU) [3], [4]. The DU can be deployed in a

macro or a small cell BS such as the micro, pico or fem-

tocell [3], [4]. This two-level network architecture allows

different deployment scenarios of multiaccess edge comput-

ing and caching (MEC) servers. For example, the MEC data

servers can be deployed in a CU or a DU depending on the

requirements of services and applications as well as usage

patterns of local users [5]. Distributed caches are deployed

very close to the end users, services and content items are

delivered from the wireless edge caches instead of going

through the backbone network to provide high bandwidth

and low latency performance to the end users [6]. Although

the power consumption of a single edge server is relatively

low, a very large number of MEC servers is expected to be

deployed in 5G networks. Therefore, the energy consumption
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of maintaining these caches at the edge of the wireless net-

works is challenging for mobile operators and has yet to be

fully investigated [7], [8].

Because edge storage capacity is relatively small compared

to a cloud data center, only a limited number of content

items can be cached in the wireless edge caches. Thus,

the most popular content items need to be identified and

stored in the MEC servers to improve content request hit

rates [5], [9]. Existing research shows that the popularity

of web content varies by time and geography [10], [11],

which requires high-frequency refreshing of cached content

according to an update and replacement algorithm. However,

the refresh rate and the size of the replacement content items

require additional transmission energy to be consumed by the

network [12]. Therefore, the design of an effective caching

algorithm to minimize the transmission energy consump-

tion while maximizing the cache hit rates remains an open

research question.

To address the above challenges, we first propose a proac-

tive cache updating algorithm for MEC based on a 5G net-

work architecture using big data analysis in our previous

work [13]. To reveal the performance of different algorithms,

we simulate the MEC network architecture and calculate

the cache hit rate and the number of cache content items

in different simulation scenarios by extending our previous

work. We then assess the transmission and storage energy

consumption of edge caching under different configurations.

We make the following contributions to the literature:

• We investigate the performance of different caching

algorithms by analyzing the cache hit rate and the num-

ber of cache content items that need to be transported in

different simulation scenarios.

• We investigate energy consumption of edge caching

under different configurations such as different content

refresh periods and cache size limitations.

• We compare the transmission and storage energy con-

sumption of the conventional algorithms with that of the

proposed algorithm.

The rest of the paper is organized as follows. Section II

discusses relatedwork on the energy consumption of different

networks and caching strategies. In Section III, we present

the CU/DU logical architecture and MEC server deployment

scheme in 5G wireless networks. Section IV first introduces

the conventional content update strategies. We then propose

a proactive cache update and replacement algorithm based

on big data prediction. In Section V, we first compare the

performance of PC to conventional algorithms in different

simulation scenarios. We then simulate the energy consump-

tion of network transmission and storage of caches of our

proposed caching algorithm. Finally, we compare the energy

consumption of the proposed algorithm with that of conven-

tional algorithms. Section VI concludes the paper.

II. RELATED WORK

Despite significant research on resource allocation and dis-

tribution of edge caching, a deeper understanding of what

constitutes an effective and energy-efficient design of edge

caching strategies is necessary. In [7], [8], the authors offered

energy-optimal edge content cache and dissemination designs

for both hot spot and rural areas, respectively. Due to dif-

ferent types of base stations that were deployed in differ-

ent areas with different population densities, different edge

caching strategies were designed to minimize the overall

energy consumption. In [12], the authors considered that

content data can be stored in both base stations and user

devices and analyzed the energy consumption in both back-

haul and access networks under two different caching strate-

gies. Two optimization problems were proposed to minimize

the total energy consumption for these two caching strategies

while satisfying some predefined QoS constraints. To min-

imize the energy consumption of the MEC servers in 5G

cellular networks, the authors in [14] considered the MEC

servers’ energy consumption, backhaul network capacities

and content popularity distributions, and formulated a joint

optimization framework under a given average download

latency. Simulation results showed that the proposed solution

could obtain better performance in terms of energy efficiency

gains compared to conventional caching placement strategies.

The authors in [15] minimized the energy consumption of a

clustered device-to-device caching network under a random

probabilistic caching scheme, where files were independently

cached according to a specific probability distribution.

Another strand of research has investigated the cache

performance of the optimized web caching strategies

compared with the conventional nonpredictive methods

such as least recently used (LRU), least frequently used

(LFU) [16], [17] and popularity-based caching [18]. Simu-

lation results showed that the hit rate of predictive content

update strategies increased under different content request

patterns [17]. Although 5G technology can provide high

bandwidth for high-quality mobile video streaming, mobile

users have to address the challenge of frequent handoffs

between the 5G small cells. Some research proposed proac-

tive content caching at the access edge to effectively main-

tain high-quality mobile video streaming for high-mobility

5G users moving among small cells [19], [20]. In [21],

an integrated proactive content delivery schemewas proposed

by exploiting both the availability of multiple service tiers

and mobile user behavior prediction. The performance of

the proposed scheme was then investigated to reveal the

impacts of proactive window size, service-tier price ratio and

traffic cost. For device-to-device (D2D) enabled networks,

the authors of [22] proposed a proactive caching scheme.

Their numerical results showed that up to 30% more users

could be satisfied using this scheme compared to reactive

caching [22]. In addition, the authors of [23] proposed a fog-

to-fog data caching and selection method based on a data

caching and selection strategy. The corresponding simula-

tion results showed that this method could reduce the data

retrieval latency and increase the file hit rate in 5G [23].

However, the effectiveness of different cache content updat-

ing algorithms to reduce the energy consumption in 5G
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edge caching networks still requires more comprehensive

assessments.

In our prior work, we investigated the energy assessment

models of wireless access networks [24] and end-to-end

wireless networks [25]. We proposed an energy model and

assessed the access network energy consumed by different

mobile services based on both the data and signaling traf-

fic generated by those services [24]. We also developed a

comprehensive service-specific end-to-end energy model to

assess the energy consumption of each network segment,

including the end-user devices, wireless access network,

wireline core network and data center [25]. Here, we inves-

tigate the edge cache deployment scheme for 5G network

architectures and extend these energy models to assess the

energy consumption of 5G wireless edge caching with differ-

ent cache content updating strategies.

III. CU/DU LOGICAL ARCHITECTURE AND MEC SERVER

DEPLOYMENT SCHEME IN 5G

In 5G access networks, a CU/DU split is proposed to enable

and enhance the cloud radio access network technology via

several split options (3GPP TR 38.801). This split archi-

tecture provides centralization and distribution of control

and capabilities depending on each situation of wireless net-

works [26]. For a CU/DU structure, a stack partition between

the CU and the DU can also be optimally configured via big

data analytics based on service patterns, fronthaul capability,

frequency bands, user mobility, quality of experience [27].

Different from the fourth generation (4G) radio access

architecture, the CU, DU and radio remote unit (RRU) form

a gNodeB (gNB) BS, as shown in Figure 1. The 5G gNB is

connected to the content delivery network (CDN) server or

FIGURE 1. 5G radio access network architecture and MEC server
deployment scheme.

the data center through the network elements (e.g., routers

and gateways.) in the core network. The CU is a centralized

node, and it is connected with the DUs via a next-generation

fronthaul interface (NGFI) [3]. The DU is connected to the

RRUs via an NGFI. It can implement RF processing and

baseband processing functionalities together with the RRU.

A range of user equipment (UE) (e.g., smartphones, tablets,

and enhanced mobile broadband devices) access the 5G net-

work through these RRUs [26]. Using this architecture, a CU

can support multiple DUs. Most of the control functionalities

are centralized at the CU, while the fast scheduling of the air

interface is performed at the DU [4], [6].

The advantages of the CU/DU two-level architecture are

summarized below:
• The hardware is more flexible than in existing wireless

networks. The CU/DU can be a stand-alone device or

integrated into a baseband unit (BBU) as a software

module;

• The separation of CU and DU facilitates the coordi-

nation of performance and load management as well

as real-time performance optimization. Network func-

tion virtualization (NFV) and software-defined network-

ing SDN) are key technologies that make use of this

architecture;

• Functional partitioning is configurable to meet the needs

of different application scenarios, such as the variability

of transmission delay [4].

The MEC servers can be flexibly configured through tech-

nologies such as SDN and NFV. As shown in Figure 1,

the MEC server can be deployed at the CU level to serve

all DUs connected to this particular CU. Users connected to

these DUs can access the resources provided by this MEC

server deployed at the CU. Alternatively, the MEC server can

also be deployed in theDU.With this solution, eachDUunder

a CU can have its storage scheme, and big data analysis can

be used to provide personalized access services for different

users connected to different DUs.

IV. CONTENT UPDATE STRATEGY OF EDGE CACHING

With the large number ofMEC servers to be deployed inwire-

less networks, due to operational costs, the overall storage

capacity of MEC servers will be lower than that of traditional

data centers. Therefore, it is impractical to replicate all con-

tent items from the data center on the MEC servers. It is well

known that the popularity of network video content follows

the Zipf distribution (i.e., a relatively small number of the top

popular video content items dominate most of the requests

within a certain period of time [15]). Therefore, predictive

analytics can be used to cache the most popular video content

items in the next time period on the corresponding MEC

servers to satisfy user requests (i.e., hit rate).

In practice, updating can be challenging as web content

popularity is expected to change over time. Furthermore, each

video content item has its life cycle: (1) growing in popularity,

(2) reaching a peak, (3) declining in popularity and finally

(4) reaching a low-level long-term equilibrium (i.e., long-tail
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reduction in user requests). In addition, due to the hetero-

geneity of daily mobility patterns of users, the content request

preferences in different regions also change throughout each

day. To guarantee the requested hit rate of the cached contents

and users’ QoE, the cached content items need to be updated

periodically. Different updating algorithms have their advan-

tages and disadvantages. Theoretically, if the updating fre-

quency is higher, the content request hit rate will be higher.

However, a higher updating frequency will result in addi-

tional transmission overheadwith a corresponding increase in

energy consumption. Therefore, designing an effective cache

updating algorithm and balancing the updating frequency

and the corresponding network energy costs remains a major

challenge.

Next, we evaluate the most common caching algorithms,

i.e., LRU and LFU, before introducing our PC caching

algorithm.

A. LEAST RECENTLY USED (LRU) ALGORITHM

The LRU algorithm assumes that the currently requested

content is very likely to be requested in the next time period.

Videos are first sorted according to the chronological order

in which they have been requested in the previous period of

time t . Top content items are cached based on the size of

the cache. In the next time period t1, if any new videos are

requested, the new videos will replace those at the end of the

queue [16].

The advantage of LRU is that the algorithm is simple and

has high efficiency when the access content does not change

much. The shortcoming of LRU is that it is vulnerable to ran-

dom access noise, that is, the random access of the unpopular

content items is mistaken for a large cache value, resulting in

additional data transmission and storage overhead [16].

B. LEAST FREQUENTLY USED (LFU) ALGORITHM

The LFU algorithm eliminates data based on the historical

request frequency of the data. It assumes that if the content

item has been requested multiple times in the past, it will be

requested more frequently in the future [16]. In LFU, each

video content has a request count, all content items are sorted

by their request counts, and content items with the same

reference count are sorted by time.

In general, the efficiency of the LFU algorithm is better

than LRU, and LFU can avoid the problem that the cache hit

rate is reduced due to periodic or sporadic operations. How-

ever, the LFU algorithm needs to record historical request

records of data. Once the data request mode changes, LFU

needs a longer time to apply the new request mode. The

disadvantage of the LFU algorithm is that historical data have

a greater impact on future data; that is, old content that is

no longer requested may accumulate a high frequency of

request. In addition, a queue is required to record the request

records of all content items. Each content needs to maintain

a request count, so the algorithm’s complexity is higher than

for LRU [16].

C. POPULARITY-BASED CACHING ALGORITHM

In a content-centric networking architecture, the content is

cached in the network nodes along its delivery path if caches

are available. To manage the caches of the nodes effectively,

the popularity-based caching strategy has been proposed to

achieve a higher cache hit rate than the default caching

strategy [18].

For popularity-based caching, the number of requests for

each content item is counted by every node. Then, each node

sorts the content items based on local statistics and caches

the most popular content items. At the same time, the node

notifies its neighbors to store the same content items. After

receiving the notification message, the neighboring nodes

determinewhether to cache the content according to their own

caching capabilities and constraints [18].

D. PROACTIVE CACHING (PC) ALGORITHM

To address the technical shortcomings of LRU and LFU,

i.e., both algorithms cannot predict the request rate of new

online content items, and they cannot track the rapid changes

in content popularity, we propose a proactive cache (PC)

updating and replacing algorithm based on a prediction from

big data analytics.When the user behavior of content requests

differs greatly, the PC algorithm considers the prediction

based on historical request behavior to maximize the content

request hit rate while minimizing the cache size requirements.

In other words, PC is proposed to effectively improve the

cache efficiency and minimize the network operating costs.

All symbols and parameters used in the PC algorithm are

described in Table 1.

TABLE 1. Description of symbols and parameters.

As shown in Figure 2, based on the long-term historical

data of user and content requests from the previous time peri-

ods, existing data mining algorithms can effectively predict

the content items that are most likely to be requested during

some future time period [28], [29]. However, two problems

may arise. First, too many content items might be replaced

when the prediction results are directly used to update the

cache content. Second, the cache’s efficiency relies heavily

on the accuracy of the prediction. To address these problems,

our PC algorithm determines the prioritization of the content

items in the caching queue for the next time period based

on the prediction results for future time windows and the
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FIGURE 2. A schematic of the PC algorithm.

corresponding weighting factors. Hence, the PC algorithm

replaces some expired or lowly requested content items with

predicted content items that are expected to have high hit

rates. Therefore, the PC algorithm mainly determines the

priority and discards based on the order of the new content

items that are expected to be requested in the next time period

and the existing content items in the caching queue.

Table 1 denotes the cache refresh period by R. R can by

optimized by mobile operators by changing the duration of

the parameter (e.g., 15minutes or longer). For example, R can

be varied depending on network load requirements, e.g., find-

ing a time window with low network load for transportation

of content items so that it will not disrupt users’ traffic. If the

number of sliding time windows is 4, then the four time win-

dows are {t→ t+R, t+R→ t+ 2R, t+ 2R→ t+ 3R, t+ 3R

→ t + 4R}. We then assume that the weighting factors of the

list of content items to be requested in different time windows

are W1 ∼ W4. Generally, the corresponding weight factor of

a closer time window will be greater due to different caching

values. The weighting factors can be updated with the objec-

tive of reducing content transportation (therefore reducing

transport energy consumption) while at the same maximizing

the hit rates of caches. In our simulation, we set W1 ∼ W4

to 1, 0.75, 0.5, and 0.25. However, it should be noted that

the weight factors are dependent on the length of the time

window, the similarity of user content request patterns, cache

size and network conditions. The dependency of the weight

factor on those factors mentioned above will be investigated

in future work. The content items in the current cache list

and the content items predicted to be requested in different

time windows are combined to calculate the total weight of

all content items, and the content items are rearranged in

descending order relative to the total weight to obtain the new

list. The PC algorithm is shown in Algorithm 1.

Algorithm 1 PC Algorithm

Input:

List of contents in current cache, C : {S1, S2, . . . , Sm};

Content refresh rate,R (15minutes, 30minutes, etc.); Time

windows, {t → t + R, t + R → t + 2R, t + 2R → t + 3R,

t + 3R → t + 4R};

Weighting factors, W1 ∼ W4.

Output:

List of content items in the cache for the next time win-

dow, C ′.

1: Predict the probability of each content item being

requested in the next 4 time windows, and obtain four

lists of scores C1 ∼ C4 (Cj: {Sj1, Sj2, . . . , Sjn});

2: for (j = 1; j <= 4; j+ +)

3 for (i = 1; i <= n, i+ +)

4 Si+ = Sji
∗Wj;

5: Sort content list in descending order relative to the

total content weight, S1 ∼ Sn;

6: Determine the list of content items with topm scores,

C ′, for the next time window, t → t + R

7: Discard contents that are in the cache list C but not

in the list C ′;

8: Transport the new contents in the list C ′;

9: At time t + R, shift the four time windows by R, and

repeat 1 to 6 for the next C ′.

V. SIMULATION OF PERFORMANCE AND ENERGY

CONSUMPTION OF EDGE CACHING

A. SIMULATION SETUP

We simulate the mobility patterns of 2,500 users on an 8 ×

8, 64-cell playground (intercell-distance of 500 m) using the

smoothly truncated Levy walks algorithm [30] with an aver-

age user movement speed of 20 km/h (which indicates that

users are commuting). The algorithm simulates the mobil-

ity pattern of individual mobile users within the environ-

ment using preset probability distributions for travel distance,

pause length, and change in travel direction [30]. Content

requests from mobile users are modeled based on Poisson

arrivals.

Related research has shown that the number of requests for

web content follows Zipf’s distribution [10], [15].We assume

that the maximum number of video contents that can be

stored per edge cache isM and that the total number of video

contents is Nf . All video content items are sorted according

to popularity, from high to low, then the probability P(i) of

each content is subject to Zipf’s distribution as follows:

P (i) =
i−α

Nf∑

k=1

k−α

(1)
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where α indicates the similarity in content requests of differ-

ent users. A smaller α indicates lower similarity. For example,

if α = 0, the probability that each video content is requested

has a uniform distribution. As α increases, different users’

requests have a higher similarity. In other words, the lower

indexed content has a higher request probability [10]. We use

Zipf’s distribution to model the popularity of video content

items in our simulation, and wemodel two different scenarios

in terms of user similarity: low and high similarity, by setting

α to 0.4 and 1.2, respectively.

We assume that the size of the video content pool

is 500,000, the average size of each video content, Sf ,

is 15 Mbytes (approximately 1 minute of high definition

video on YouTube) and the edge cache constraint is limited to

20% of the size of all contents. In other words, an edge cache

can store up to the top 20% of the top popular contents.

The updating of stored content causes new content items to

be transferred from the CDN server to the edge caches. The

energy consumption of transmission of content items can be

calculated using the following equation:

Etransport = (NcEc + NeEe + Ebng + Esw) × St (2)

where Nc and Ne are the numbers of core and edge routers

in the core network and edge network, Ec, Ee, Ebng, and Esw
denote the energy per bit of the core router, the edge router,

the broadband network gateway (BNG), and the Ethernet

switch, respectively. St indicates the data size of the content

item needing to be transported [25]. Table 2 lists the estimated

energy per bit of different types of equipment in the wireline

core network [31].

TABLE 2. Energy per bit of equipment in the wireline core network.

Next, we assume that the power consumption per bit of

caching in the MEC server, Pcaching, is 6.25 × 10−12 W/bit.

We then calculate the energy consumption for caching one

content item for a certain period of time (for example, 1 hour)

as below:

Ecaching = Pcaching × Sf × T (3)

where T is the caching duration. A summary of simulation

parameters and assumptions is provided in Table 3.

B. PERFORMANCE OF PROACTIVE CACHING WHEN

CACHING AT THE DUs

The number of active users connected to a wireless network

varies at different times of the day. For instance, the busy

hours refer to the hours with more active users and compara-

tively high traffic. In this simulation, we assume serving user

demands during medium traffic loads with approximately

TABLE 3. Simulation parameters and assumptions.

1,250 users (out of 2,500) being simultaneously active. Fig-

ure 3 shows the average cache hit rates of PC with differ-

ent refresh periods compared to the conventional caching

algorithms. We then analyze the impact of cache size on

performance by varying its size. We find that when the cache

capacity reaches 1,000, the average hit rate of the PC algo-

rithm is close to 100%, so the maximum cache size in our

simulation is set to 1,500. In addition, different user behavior

similarities can also have an impact on performance. Here,

we simulate low similarity in content requests (α = 0.4) as

shown in Figure 3(a) and high similarity in content requests

(α = 1.2) as shown in Figure 3(b).

Figure 3(a) shows that the average cache hit rates

of LRU/LFU and the popularity-based caching are very

low (approximately 1% for LRU/LFU and 3% for the

popularity-based caching) even if the cache size reaches

the maximum of 1,500 because when the similarity in user

behavior is relatively low, the users’ requests are relatively

scattered. The caching strategies of LRU and LFU are not

based on the prediction of user behavior, so they cannot

effectively satisfy the requests of most users. Figure 3(a)

also shows that PC algorithm improves the cache hit rate

significantly compared to LRU, LFU, and popularity-based

caching, which is because PC utilizes predictive analytics on

user content requests and can precache popular video content

at DU caches. Furthermore, as the refresh period R increases,

the cache hit rate of the PC will decrease, especially when the

cache size is small. For example, if a DU caches 100 video

contents, the cache hit rate of PC is 48% when R = 15

minutes, and it decreases to 31% when R = 1 hour because

a higher refresh rate enables timely prediction and update of

cached content items to better meet user requests. However,

comparing Figures 3(a) and 3(b), we observe that the average

cache hit rates increase significantly as the user similarity in

content requests increases, especially for LRU/LFU and the

popularity-based caching.

Figure 4 shows the number of content items, which

need to be transported from CDN servers to DUs caches
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FIGURE 3. Cache hit rate vs. cache size when caching at DU with different similarity in content requests.

FIGURE 4. Number of content items to be transported vs. different cache sizes when caching at DU with different similarity in content requests.

when adopting different caching algorithms. In general,

the PC algorithm needs to transport more content items than

LRU/LFU and the popularity-based caching due to the use

of a proactive refresh method. Moreover, more content items

need to be transported as the refresh period is short and, the

number of content items that need to be transported for all

algorithms decreases as the cache size increases because an

increase in cache size allows more content items to be stored,

and hence, reduces the requirement of transporting contents

from the CDN server. Comparing Figures 4(a) and 4(b),

we observe that the number of content items that need to be

transported decreases dramatically as the similarity in user

content requests increases because the greater similarity in

user behavior reduces the additional transport requirements

of new content items.

By observing the results shown in Figures 3 and 4, our

proposed PC algorithm outperforms LRU, LFU, and the

popularity-based caching in terms of cache hit rate. However,

this comes at the cost of transporting additional video content

items.

C. PERFORMANCE OF PROACTIVE CACHING WHEN

CACHING AT THE CUs

In 5G access networks, the CUs are deployed at a rela-

tively higher network hierarchical level than DUs. In general,

the CU’s cache capacity is much larger than that of the DU,

and one CU can provide service for more users than one

DU. In the simulation, we assume that a CU can support five

DUs. Figure 5 shows the average cache hit rates of different

algorithms with different cache sizes of a CU. We find that

when the cache capacity of a CU reaches 6,000, the average

hit rate of the PC algorithm is close to 100%, so the maximum

cache size in our simulation is set to 6,000.

Similar to Figure 3(a), Figure 5(a) shows that the average

cache hit rates of LRU, LFU, and popularity-based caching

are very low (i.e., from less than 1% when the cache size is
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FIGURE 5. Cache hit rate vs. different cache sizes when caching at CU with different similarities in content requests.

100 to approximately 13.8% when the cache size increases

to 6,000.) with low similarity in content requests (α = 0.4).

Due to the use of predictive analytics on user content requests,

Figure 5(a) also shows that the PC algorithm improves the

cache hit rate significantly compared to LRU, LFU and the

popularity-based caching. Furthermore, the cache hit rate of

PC decreases as the refresh period R increases. Additionally,

by comparing Figures 5(a) and 5(b), we can see that the

average cache hit rates increase significantly as the user

similarity in content requests increases, especially for the

conventional methods. As the cache size grows, the hit rate

of the PC algorithm is more likely to reach 100% when the

user similarity is high (α = 1.2). Moreover, as the similarity

in content requests increases, the performance gap between

conventional algorithms and PC algorithms is significantly

reduced.

Figure 6 shows the number of content items that need to

be transported from CDN servers to the CU caches. Similar

to Figure 4, the PC algorithm needs to transport more content

items than the conventional algorithms due to the use of a

proactive refresh method. As the refresh period of the PC

algorithm increases, the number of content items that need

to be transported decreases dramatically. The number of con-

tent items that need to be transported using all three algo-

rithms also decreases as the cache size increases. Comparing

Figure 6(a) and 6(b), we can also see that the number of con-

tent items that need to be transported decreases dramatically

as the similarity in user content requests increases.

D. ENERGY CONSUMPTION OF CACHING AT THE DUs

If we deploy the edge caches at the DUs, the power consump-

tion consists of two parts: the network transmission energy

consumed by transmitting the content items that need to be

updated from the CDN server to the caches, and the cache

energy consumption of storing different numbers of video

content items. We simulate the energy consumption using

these cache updating algorithms, i.e., LRU, LFU, popularity-

based caching and PC.Wemodel the PC algorithm with three

refresh cycles, by setting R to 15 minutes, 30 minutes, and

1 hour. The simulation results are shown in Figure 7.

As shown in Figure 7(a), when user similarity is low, the

conventional algorithms such as LRU, LFU, and popularity-

based caching cannot achieve a 100% user request hit rate

even when storing up to 1,500 content items. The PC algo-

rithm uses the proactive refresh technique, which can achieve

a 100% hit rate when the cache usage is small. For example,

if the refresh period R is set to 15 minutes, the hit rate can

reach 100% when the number of cached content items is

greater than or equal to 500. However, the extra cost is that

more video content items need to be updated and transferred,

which consumes more network transmission power.

In addition, when the PC algorithm is adopted, as the

number of stored content items increases, the storage energy

consumption increases linearly, but the transmission energy

consumption decreases. Therefore, in the actual network

deployment, the trade-off between cache energy consumption

and the transport energy should be considered. Furthermore,

as the refresh period R increases, more content items need

to be stored in the DU caches to achieve a higher hit rate.

For example, when R is 30 minutes, 1,000 content items

need to be stored to achieve a 100% hit rate. In contrast,

when R is 15 minutes, only 500 content items need to be

stored. Moreover, as R increases, the transmission energy

consumption decreases, thus the trade-off betweenR and total

energy consumption needs to be jointly considered.

Comparing Figures 7(a) and 7(b), it can be seen that when

the similarity in content requests increases, the transmission

energy consumptions of all algorithms decreases, which is

because the number of requests for popular content items

increases significantly compared to the low similarity sce-

nario, and hence, fewer content items need to be updated

in each cache refresh cycle. Moreover, fewer content items
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FIGURE 6. Number of content items to be transported vs. different cache sizes when caching at CU with different similarities in content
requests.

FIGURE 7. Comparison of network energy consumption when caching at
DU with different similarities in video content item requests. (Note:
Numbers (%) above the bars indicate the average hit rate.)

need to be stored on the DU to achieve a 100% hit rate.

For example, when using the PC algorithm and setting R

to 30 minutes, only 300 content items need to be stored

with high similarity in content requests, and this number is

1,000 with low similarity in content requests.

FIGURE 8. Comparison of network energy consumption when caching at
the CU with different levels of similarity in video content items requests.
(Note: Numbers (%) above the bars indicate the average hit rate.)

E. ENERGY CONSUMPTION OF CACHING AT CUs

For edge caches deployed at the CUs, the total power con-

sumption consists of three parts: (i) the transmission energy

consumed by transmitting the content items that need to be

updated from the CDN server to the CUs, (ii) the transmission
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energy consumed by transmitting these content items from

the CUs to the DUs, and (iii) the cache energy consumption

of storing different numbers of video content items. The

simulation results are shown in Figure 8. We observe that

the PC algorithm, in theory, can relatively easily achieve a

100% hit rate but at the cost of higher transmission energy

consumption compared to conventional algorithms such as

the LRU and LFU.

Since the storage capacity of the CU is higher than that of

the DU, when the user similarity is relatively high, the trans-

mission energy from the CDN server to the CU is very small.

Particularly, when the number of stored video content items

is relatively large, the cache storage energy consumption is

almost negligible compared to the transmission energy from

the CU to DU.

In addition, by comparing Figures 7 and 8, caching at the

CUs generally consumes less energy than caching at the DUs

because each DU uses the same update and storage algorithm,

which results in the same content items being stored in multi-

ple DUs. However, this causes additional transfers of content

items from the CDN server to the DUs, which consumesmore

storage and transmission power.

VI. CONCLUSION

The flexibility of the 5G network architecture has pro-

vided a platform for the deployment of MEC infrastructure.

By deploying a large number of MEC servers, network con-

tent items can be cached in advance at the wireless edge to

provide users with an ultimate QoE, extremely low latency

and high bandwidth performance. However, due to limited

storage capacity of edge caches, only top popular content

items can be selected for storage to satisfy the QoS of mobile

users. In addition, due to the differences in user similarity, the

performance of the conventional cache updating algorithms,

such as the LRU, LFU and the popularity-based caching, can-

not meet the dynamic real-time changes of user requirements.

In this paper, we introduce a predictive caching algorithm

that utilizes big data analytics to predict user content requests

and determine what content items need to be cached where

in the network to achieve a better QoE. However, the cost of

adopting this new algorithm is that more content items need

to be updated and transferred, which consumes more network

transmission energy. We performed a comprehensive simula-

tion to assess the network transmission and storage energy

consumption of our proposed PC algorithm under different

refresh cycles. The simulation results provide useful insights

for mobile operators to assess the trade-off between cache

energy consumption and transport energy, and the trade-off

between refresh cycles R and the total energy consumption of

MEC. The key findings in this paper will provide a reference

baseline for the energy-efficient deployment of edge caching

in future wireless networks such as 5G and beyond.
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