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With sea levels rising under global warming, dredge-and-fill programs are increasingly employed to protect coastal development from shoreline

erosion. Such beach "nourishment" can bury shallow reefs and degrade other beach habitats, depressing nesting in sea turtles and reducing the

densities of invertebrate prey for shorebirds, surf fishes, and crabs. Despite decades of agency-mandated monitoring at great expense, much

uncertainty about the biological impacts of beach nourishment nonetheless exists. A review of 46 beach monitoring studies shows that (a) only 11

percent of the studies controlled for both natural spatial and temporal variation in their analyses, (b) 56 percent reached conclusions that were not

adequately supported, and (c) 49 percent failed to meet publication standards for citation and synthesis of related work. Monitoring is typically

conducted through project promoters, with no independent peer review, and the permitting agencies exhibit inadequate expertise to review

biostatistical designs. Monitoring results are rarely used to scale mitigation to compensate for injured resources. Reform of agency practices is urgently

needed as the risk of cumulative impacts grows.
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Beaches are in a constant state of flux, accreting
and eroding in response to waves, currents, winds,

storms, and sea-level change. As a consequence, develop-

ment along ocean shorelines entails substantial risk of prop-

erty loss. In recognition of the vulnerability of coastal

development to shoreline erosion and flooding, and in

response to the value of fish and wildlife habitat, the US

Congress passed the Coastal Barrier Resources Act in 1982

to discourage overdevelopment of largely undeveloped

coastal barriers along the Atlantic and Gulf coasts (Wells and

Peterson 1986). Under incentives from the federal Coastal

Zone Management Act, individual states have also developed

coastal management programs that establish setbacks and

impose other restrictions on development along ocean

beaches. Nevertheless, development on coastal barriers has

burgeoned dramatically.

As escalating rates of global warming lead to more rapid

rise in sea level and greater frequency and intensity of storms,

demand for engineered solutions to shoreline erosion is

intensifying (Barth and Titus 1984). Massive dredge-and-fill

projects have become a common method of combating shore-

line retreat. Between 1922 and 2003, beginning with the first

beach nourishment at Coney Island, New York, at least 970

projects have "nourished" more than 6050 kilometers (km)

of US shoreline along the Atlantic and Gulf coasts, using 430

million cubic meters (m )̂ of fill {www.nicholas.duke.edu/psds/

nourishment.htm). During nourishment, sediments from a

dredge site or terrestrial source are added to the beach to

elevate it and extend it seaward. Unlike seawalls and groins that

act only to harden the shoreline or redistribute sediment,

nourishment temporarily adds sediment to the beach system

(Bush et al. 2004). State resource agencies' preference for

beach nourishment to combat shoreline retreat is motivated

by a well-founded desire to avoid the negative impacts of hard-

ened structures on the recreational and biological habitat

values of ocean beaches; however, any presumption that

nourishment projects are ecologically benign is derived from

an incomplete and fiawed body of science.

The sand beach represents a productive and unique habi-

tat supporting the seasonal nesting of threatened and en-

dangered sea turtles and dense concentrations of benthic

invertebrates that feed surf fishes, resident and migrating

shorebirds, and crabs (Brown and McLachlan 1990). The

beach and nearshore coastal habitats are substantially dis-

turbed by and can be functionally degraded through the

process of nourishment. Permits for beach nourishment pro-

jects in the United States have routinely required monitoring

of biological resources on the beach and at the dredging site.

Despite decades of monitoring and scores of reports

(reviewed by Nelson 1993), much uncertainty persists about

the ecological impacts of nourishment and how to mini-

mize and mitigate them. Here we conduct a synthesis of the

CharlesH. Peterson (e-mail: cpeters@email.unc.edu) is Alumni Distinguished

Professor at the Institute of Marine Sciences, University of North Carolina

atChapelHill, MoreheadCity, NC28557. MelanieJ. Bishop (e-mail: melanie.

bishop-I@uts.edu.au), who was a postdoctoral scholar at the Institute of

Marine Sciences when this article was being prepared, is now a postdoctoral

research fellow in the Department of Environmental Sciences, University of

Technology, Sydney, Australia. © 2005 American Institute of Biological

Sciences.

October 2005 / Vol. 55 No. 10 • BioScience 887



Forum c

sampling designs, statistical analyses, and bases for interpre-

tations across 46 studies done to assess the ecological impacts

of beach nourishment. Using this synthesis, and an overview

of agency practices in permitting beach nourishment, we

help to explain why so much effort at such high cost has led

to so little progress toward understanding and predicting

ecological impacts, and we suggest some remedies.

Methods of assessing study designs
We searched for all available reports, publications, and

theses evaluating biological impacts of beach nourishment.

The search, which was restricted to the United States so as to

include only studies affected by the same federal framework

of environmental policy, was facilitated by Nelson's (1993)

identification of early unpublished reports, the category that

still constitutes the large majority of this literature. Assum-

ing that the peer-reviewed, university-examined, and more

widely cited gray literature tends to be of higher quality than

unpublished reports that are only locally available and not

readily accessible, the statistics based on our sample most likely

understate the frequencies of study deficiencies. Each of us in-

dependently reviewed every study and answered the same set

of questions about its subject matter and the scientific basis

for its conclusions. The few (< 5 percent) disagreements be-

tween our findings proved to be caused by misinterpretation,

which was resolved by reexamining the documents. Where the

same study was produced in multiple forms (e.g., as an un-

published report and as a refereed paper), we considered

only the most critically reviewed version.

Studies were characterized by decade of initiation, type

(gray literature report, thesis, or published paper), process

of interest (dredging or filling), geographic location, target

biota (soft-bottom or hard-bottom macroinvertebrates, fish,

sea turtles, or shorebirds), and approach (observational

monitoring, controlled experimentation, or modeling). For

each type of target biota, we computed how frequently each

of a series of physical habitat variables and potential biological

responses was assessed. Finally, we evaluated the sampling

designs, statistical analyses, and bases for interpretations

and conclusions in each of the studies by applying funda-

mental principles of statistical inference (as exemplified by

Schmitt and Osenberg 1996 and Underwood 1997) to answer

a series of questions (see box 1). The standard applied to the

last question on scholarship was that of Marine Ecology

Progress Series, an international journal appropriate for the

topic and for which one of us (C. H. P.) has served as editor

for two decades.

Characterization of studies
Our sample of available studies (table 1) was dominated by

unpublished reports (59 percent). Although anonymous sci-

entific peer review has been widely endorsed as the most re-

liable means of ensuring rigor (NRC 2000), this process is not

applied to environmental monitoring proposals or final re-

ports that are mandated by permitting agencies on behalf of

public trust resources. Our review illustrates a tendency of

temporally increasing publication of the impact assessment

studies from the 1970s, when they first appeared (7 percent

published in peer-reviewed journals), to the 1990s (33 per-

cent). These absolute percentages are most likely biased up-

ward because gray-literature reports of limited circulation are

more difficult to find and therefore underrepresented in our

review.
Of the 46 studies assessed, 83 percent were conducted

along the Atlantic coast and 13 percent along the Gulf coast

of the United States. Most came fi-om Florida (29 studies), re-

flecting a concentration of nourishment projects along its 200-

km southeastern coast, where at least 50 million m^ of

sediment were deposited on beaches between 1960 and 2000

(Bush et al. 2004). Other states represented are North Carolina

(9 studies). South Carolina (4), New Jersey (2), California (1),

and Michigan (1).

Benthic invertebrates were the most fî equently targeted or-

ganisms (78 percent of all studies), refiecting their suitabil-

ity as ecological indicators. Benthic invertebrates are relatively

sessile (therefore allowing spatial patterns to imply causation),

can be sampled quantitatively without high cost, are well

described taxonomically, and reveal ecologically meaningful

and important patterns, even at coarse levels of taxonomic dis-

crimination (Warwick 1988). Few assessments of beach nour-

ishment have considered its impacts on demersal fishes (33

percent), and even fewer have considered impacts on shore-

birds (4 percent), although both these groups of organisms

have value to humans and provide ecosystem services.

Only one assessment (Manning 2003) employed experi-

mental manipulations, widely acknowledged as the most rig-

orous means of inferring causation in ecology (Paine 1977),

and none employed modeling (tables 2,3), the most widely

accepted tool for evaluating the dynamics of fish popula-

tions (Hilborn and Walters 1992). Thus, two of the most

powerful scientific tools are routinely overlooked in favor of

purely observational monitoring. Monitoring can be a seri-

ously flawed means of testing impacts, because of uncon-

trolled, confounded factors that often taint inferences (see

Connell's 1974 discussion of "natural experiments"). Infer-

ences reached by comparing results of separate monitoring

studies are particularly tenuous, because in none of these

contrasts does only a single factor differ among studies.

The physical habitat and biological response variables

commonly monitored in beach nourishment projects (tables

2,3) include many of relevance. Among those that monitored

habitat condition, varying percentages of studies measured

turbidity; mean grain size; sediment grain-size distribution;

surface cover by hard substrata (shells, limestone, etc.); sed-

iment mineralogy, organic content, and compaction; sur-

face topography; and habitat damage from gear contact. The

biological responses assessed included total abundance of

the entire biotic assemblage, abundance of component taxa,

total biomass, biomass of selected taxa, size-frequency dis-

tribution of selected taxa, various species diversity indices,

community composition, and some measure of physiologi-

cal status of an important species (table 4). Nevertheless,
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disturbingly high percentages of assessment studies (25 to 38

percent for dredging and 17 to 80 percent for filling) failed to

measure any habitat variable (tables 2, 3). Despite the need

for dredging contractors to monitor topography as a permit

condition and as a measure of performance, this important

habitat characterization was not routinely reported in the im-

pact assessment documents. Its complete omission from

dredge sites (table 2) is especially critical because creation of

deeper pits induces fine sedimentation, which can inhibit

recovery of the natural benthic invertebrate community for

years (Rakocinski et al. 1996).

Although studies frequently measured relevant aspects of

physical habitat condition, only sedimentation rate, out of

many potentially important physical processes, was estimated

with any appreciable frequency (tables 2,3). Sediment trans-

port, erosion of fine sediments off the beach face, dynamics

of turbidity plumes, concentration of large shells, and other

physical processes likely to influence the biota and affect re-

covery went without evaluation in any impact study. Few

studies measured changes in body size within species, which

can indicate mode of recolonization (larval transport and set-

dement versus migration of older stages; table 4). Measure-

ments of biological processes such as burrowing and predation

rates have been reported from only one study (Manning

2003) and recruitment rate from one other (Lindeman and

Snyder 1999). Gut contents offish were only occasionally mea-

sured as an indication of feeding success (included in phys-

iological status; table 4). Despite the scientifically compelling

advice of Nelson (1993) to avoid use and risky interpretation

of diversity indices, this practice is still common in beach nour-

ishment studies (table 4) and still without rigorous concep-

tual support (Hurlbert 1971). When the simple, more readily

interpretable species richness is measured (matching cur-

rent usage in basic ecology), the necessary adjustments for sta-

tistical dependency on abundance (Hurlbert 1971) are missing.

Sampling design

Our synthesis of sampling designs reveals numerous inade-

quacies that seriously compromise the studies' results and con-

clusions (box 1). Researchers engaged in field sampling to

estimate biotic abundances usually used appropriate devices,

but the 39 percent incidence of failure to employ the least

biased gear would be viewed as unacceptably high for any

scientific granting agency. The most frequent violation came

from the use of grab samplers instead of cores to sample

soft-sediment invertebrates. This results in failure to sample

to the full depth of occupation of the sediment column.

Furthermore, those sedimentary strata that are included in a

grab sample are not sampled equally (in contrast to a core,

which projects its surface area downward), making it im-

possible to estimate density accurately. Grab samples also

include varying amounts of sediments per sample, depend-

ing on bottom hardness and on obstructions such as shells.

A serious shortcoming in the sampling designs of most

studies was the failure to consider both natural spatial vari-

ation and natural temporal variation on multiple scales so as

890 BioScience • October 2005 / Vol. 55 No. 10
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to craft a sampling design that minimized unexplained

error variance and prevented confounding of sources of

variation (Green 1979, Underwood 1997). Although 26

percent of the studies included sampling in a spatially

nested and 30 percent in a temporally nested design, not

one incorporated this information into a nested analy-

sis so as to partition out scales of natural variability.

Few of the monitoring studies of heach nourishment

employed a priori power analyses of any sort (9 of 46

contained inappropriate power analyses, and only 1

contained an appropriate analysis) to help determine

how much replication was required to detect an effect

of biologically meaningful magnitude. Only one study

(Wilber et al. 2003) employed post hoc power analysis

to quantify the magnitude of the effect that could he de-

tected and thereby provide insight into how to interpret

an absence of a statistically significant difference. This power

analysis showed that the design could detect only threefold

or greater differences in surf fish abundance, which obviously

did not provide much resolution. A large fraction (62 percent)

of past assessments of ecological impacts of beach nourish-

ment possessed sampling designs without adequate power to

detect effects of importance (defined as an ability to detect with

80 percent probability a decline of approximately 50 per-

cent or an increase of approximately 100 percent).

Most, but not all, studies included sampling of control

sites, but there was a relatively high incidence of potential vio-

lations of the basic principle of independent controls (box 1).

Few beach nourishment studies followed the sound statisti-

cal advice (Hurlbert 1984) of interspersing treatments and

controls to avoid spatial interdependence. This is due, in

part, to the lack of replication of fill sites in most projects, be-

cause sediments are typically deposited along a continuous

stretch of the shoreline (Nelson 1993). Despite the common

practice of extracting sediments for nourishment from mul-

tiple dredge sites, interspersion of treatments and controls to

determine the impacts of sediment mining is also rare. Where

the lack of replication of disturbed sites prevents a fully in-

terspersed design, bracketing of the disturbed site with con-

trols on both sides is the next best option. This was done in

11 of 35 controlled studies examining the impacts of filling.

Table 2. Physical habitat variables most frequently measured in

studies of the impacts of dredging practices as part of beach
nourishment.

(percent)

Environmental

variable

Turbidity
Sedimentation
Mean grain size

Sediment grain-size distribution
Surface cover by hard substrata

Sediment mineralogy
Organic content of sediment

Sediment compaction

Topography

Habitat damage from gear contact

No habitat variables measured

Macroinvertebrates

Soft bottom

(n = 16)

13
13

56
56

0

25
44

0

0

0

25

Hard bottom

(n = 8)

25

50
13
38

0
0

13
0

0

25

38

FIsb

(n = 6)

33
0

17

33

0
17

33

0

0

0

33

Often, however, the putative control site was located too near

the fill site, so that impacts transported by physical along-shore

processes probably modified the control at least at one end

of the beach (Hayden and Dolan 1974). Absent a gradient

design that spaces sites at varying distances away from the fill

site, rigorously identifying when a putative control has been

compromised and quantifying the spatial extent of impact is

difficult or even impossible. A gradient design has been em-

ployed in only one assessment of fill impacts (Hayden and

Dolan 1974). In some studies, sites that had been recently

nourished were then used to represent controls for subsequent

nourishment (Burlas et al. 2001). Such a design violates the

concept of a control and should be avoided to prevent the bias

of underestimation of impacts of nourishment.

The duration of monitoring in these studies was frequently

insufficient to characterize the biota before nourishment or

to demonstrate the duration of habitat and biological impacts

afterward. Sampling before the disturbance occurs should be

sufficient to characterize natural preexisting differences

between treatment and control sites in physical habitat and

biotic systems (Stewart-Oaten et al. 1986). Frequently, stud-

ies did not adequately anticipate the nourishment project, and

permit-granting agencies failed to delay the project to allow

initial biotic characterization during relevant productive

seasons. Eighty-seven percent of monitoring studies, with

Table 3. Physical habitat variablesmost frequently measured

practices as part of beach nourishment.

(percent)

Macroinvertebrates

Environmentai Soft bottom

variable (n

Turbidity
Sedimentation
Mean grain size
Sediment grain-size distribution
Surface cover by hard substrata
Sediment mineralogy
Organic content of sediment
Sediment compaction
Topography
Habitat damage from gear contact
No habitat variables measured

= 27)

33
4

59
52

7
26
30

4

52
0

11

Hard bottom

(n = 5)

0

20
20
20

0
0
0
0
0
0

80

in studies of the impacts of filling

Fish

(n = 9)

44
0

11
22

22
0
0
0

33
0

22

Sea turtles

(n = 6)

0

0
17
33

0
0
0

67
0
0

17

Shorebirds

(n = 2)

0

0
100

0

100
0
0
0

100

0
0
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Table 4. Biological response variables most frequently assessed
nourishment.

(percent)

Biologicai response variable

Total abundance
Taxon-specific abundance
Total biomass

Taxon-specific biomass
Size-frequency distribution
Diversity index
Community composition
Physiological status

Macroinvertebrates

Soft bottom

(n = 32)

88
84

6
6
6

78
41

6

Hard bottom

(n = 9)

78
89

0
0

11
22

0
11

in monitoring studies of beach

Fish

(n = 15)

87

100
13
27
40
60
33
40

Sea turties

(n = e)

17

17
0
0
0
0
0

67

Shorebirds

(n = 2)

100
100

0
0

0
0

0
0

an average duration of t.5 years, were terminated before re-

covery of the affected biological resource was demonstrated.

Statistical analyses
The statistical analyses done on the monitoring data to test

for biological impacts suffer from critical flaws in the basic

sampling design; from improper analyses that do not match

the sampling design; from failure to fully explain, justify, and

report on the analyses; and from unjustified interpretations

(box 1). A disappointing 27 percent of the beach nourishment

studies conducted no formal statistical tests of significance.

Many studies (70 percent of the 33 studies that employed

formal statistical testing) failed to include all appropriate in-

dependent factors or did not test for significance of all the mea-

sured response variables. The most serious analytic deficiency

was the almost universal failure (in 41 of 46 studies) to iso-

late estimates of impact from confounding contributions of

natural spatial and temporal variation by using a BACI

(before-after, control-impact) type of analysis (Green 1979,

Stewart-Oaten et al. 1986). The tests for biological impacts gen-

erally used either a spatial contrast among control and dis-

turbed sites or a temporal contrast across time at sites before

and after dredging or filling. Use of only spatial contrasts re-

quires that no natural spatial variation exists between control

and disturbed sites, a generally flawed assumption, since the

structure of macrobenthic assemblages varies according to the

morphology of beaches at scales of tens to hundreds of me-

ters (Barros et al. 2002). Using a temporal contrast to evalu-

ate the impacts of nourishment requires the assumption that

the response variable (typically organism density) would re-

main constant over time in the absence of any impact. This

assumption is violated by benthic invertebrate populations,

whose seasonal variation is quite dramatic on sandy beaches

(Manning 2003). Even if season is controlled, interannual dif-

ferences can be large, confounding the ability to use tempo-

ral contrasts to infer impacts. Interestingly, 50 percent of the

studies of beach nourishment were designed with the potential

for BACI-type analysis, yet failed to conduct this most ap-

propriate and rigorous analysis of variance to reach conclu-

sions unbiased by natural spatial and temporal change.

Despite the emergence of powerful methods of multivari-

ate statistical analysis of community responses to perturba-

tions (Clarke 1993), few studies of impacts of beach nour-

ishment went beyond tests on separate taxa or totals of taxa.

Those few studies that did conduct assessments of commu-

nity response employed similarity indices to compare nour-

ished and control biotas (typically restricted to the

soft-sediment invertebrates). No study applied the gold stan-

dard of multivariate analysis, nonmetric multidimensional

scaling (n-MDS), an ordination procedure that has been

demonstrated to discriminate ecological patterns with far

greater resolution than univariate responses (Clarke 1993). The

software package for this analysis, PRIMER 5 (www.pml.ac.

uk/primer/), also includes other routines that permit analy-

sis of how well physical habitat variables explain biotic re-

sponse patterns.

Most (84 percent) studies overlooked formal statistical

analysis of how changes in a physical factor or process may

have caused a biological response (box 1). This oversight

is particularly important in the case of the benthic inver-

tebrates, for which much basic biological research demon-

strates that sedimentology can dictate community

composition (Gray 1974). Often the physical factors are

monitored by a consultant separate from the one who con-

ducts the biological studies, thereby inhibiting coordinated

sampling and joint analyses of sampling results. Partly as a

consequence, no monitoring study of beach nourishment has

critically assessed how mismatched sediments continue to

serve as a press disturbance (Bender et al. 1984) after com-

pletion of the beach filling activity. (A "press disturbance"

is one that continues to affect the biological system for

some relatively long period of time, as contrasted with a

"pulse disturbance," which is a discrete event.) Beach nour-

ishment is universally considered a short-term pulse dis-

turbance, inappropriately viewed as analogous to natural

sediment movements during a major storm. Uncharacter-

istically coarse sediments can be expected to remain for

years on intertidal beaches and to become concentrated by

wave action in the biologically most important zone, the

swash zone, where they can continue to modify natural in-

vertebrate abundance and community composition for

years. Enhancement of the fraction of fine sediment during

beach nourishment also has the potential to represent a

press disturbance long after filling is completed, as wave

892 BioScience • October 2005 / Vol. 55 No. 10



energy over time erodes and exposes fill materials into

which mud has been embedded and thereby continues to

inject biologically deleterious turbidity into the surf zone.

For both methodological and biological reasons, the bio-

logical impacts of elevating turbidity during and after beach

nourishment are never properly assessed (Telesnicki and

Goldberg 1995). The persistence of a veneer of sediments

over a coral reef or hard-bottom habitat constitutes a press

perturbation that can last at least as long as the typical 3- to

10-year interval between repeated nourishment projects

(Lindeman and Snyder 1999).

Conclusions and interpretations
The conclusions of beach nourishment studies are often

flawed by lack of compelling support from adequate evi-

dence, analysis, or interpretation (box 1). In our sample, the

authors of 73 percent of the studies misinterpreted at least

some of their results. Few studies (22 percent) included at-

tempts to interpret observed biological responses by appeal

to mechanistic processes. The conclusions of 56 percent of

studies lacked rigorous support from evidence and analysis,

most often because the sampling design, the analyses, or

both failed to control for both natural spatial and temporal

variation. The failure to address the power of the study de-

sign also frequently led to unjustified conclusions of absence

of impacts, when capacity to detect even large impacts was

compromised by high natural variability and low replica-

tion. The scholarship of the science in these studies was poor.

A large fraction (49 percent) of beach nourishment studies

failed to do more than a superficial job of citing (0 to 10 ci-

tations) and synthesizing relevant scientific literature.

Agency practice and policy implications
Our review of studies of impacts of beach nourishment,

mostly monitoring studies conducted as a condition for per-

mits, reveals serious deficiencies. The widespread fiaws in

design, analysis, and interpretation help explain why so much

uncertainty still persists over the ecological consequences of

beach nourishment despite four decades of monitoring at sub-

stantial expense. Substandard biological monitoring of beach

nourishment persists despite the publication of reviews that

provide explicit guidelines for the variables that should be

monitored and the spatial and temporal scales to consider

(Nelson 1993, NRC 1995, Schmitt and Osenberg 1996, Greene

2002). Further detailed guidance required to produce a model

study design to assess impacts of beach nourishment with rigor

is implicit in our descriptions of study fiaws (box 1).

Inadequate funding of basic process-oriented science in the

beach ecosystem contributes to the prevailing high uncertainty

involved in predicting biological impacts of beach nourish-

ment projects. To extrapolate from the demonstration of

any given nourishment project's impacts and make reliable

predictions about future projects requires a basic under-

standing of the processes that drive the dynamics of the nat-

ural system at 1- to 10-km resolution, a typical length scale

of nourishment. Although many monitoring studies are ad-

Box 1 . Frequency of flaws in sampling design,

statistical analyses, and interpretations and

conclusions of 46 studies monitoring biological

impacts of beach nourishment.

Flaws In sampling design

• Failure to employ the least-biased device available:
39 percent

• Failure to incorporate both spatial and temporal
variation: 48 percent

• No nested sampling of spatial patterns: 74 percent

• No nested sampling of temporal patterns: 70 percent

• Failure to consider full consequences of seasonal
variation: 39 percent

• Lack of appropriate a priori power analyses: 98 percent

• Lack of appropriate post hoc power analyses:
98 percent"

• Inadequate power in design to detect large impacts:
62 percent"

• Absence of controls: 15 percent

• Controls not independent of treatment or each other:
36 percent''

• Insufficient duration of sampling to demonstrate
recovery: 87 percent"

Flaws in statistical analyses

• Absence of formal statistical tests: 27 percent"

• Multiple factors confounded in tests: 70 percenf̂

• Absence of BACI (before-after, control-impact)
analysis: 89 percent"

• No inclusion of multivariate testing of community
composition: 67 percent''

• Failure to test linkages between physical habitat and
biological responses: 84 percent"

• No testing to discriminate between a pulse and press
disturbance: 100 percent"

Flaws in interpretations and conclusions

• Misinterpretation of statistical test results: 73 percent"̂

• Lack of credible mechanistic explanation for biological
responses: 22 percent"

• Conclusions not properly supported by observations
and statistical test results: 56 percent"

• Citation and synthesis of literature fails to meet
minimal publication standards: 49 percent"

a. n = 45 studies that, at the time of review, included results.
b. II = 39 studies with controls.
c. « = 33 studies that did statistical tests.
d. n = 39 studies that sampled multiple species.

equately funded for the narrow goal of assessing impacts, fiind-

ing for interdisciplinary studies of fundamental processes

in the natural beach system, such as coupled physical and

biological consequences of relative sea-level rise, waves,

currents, and storms, either has not been sufficient or has not

been pursued by the basic science community. The US Army

Corps of Engineers recently invested $8.6 million in an 8-year
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program monitoring the impacts of a New Jersey project

(Burlas et al. 2001), a monitoring effort that, despite its cost,

advanced basic understanding relatively little (Greene 2002).

Funding at about twice this level and for the same duration

could have created a model study of fundamental beach

processes that would improve the generic capacity to predict

impacts. Funding agencies for basic science and the scientists

who apply for their research grants bear partial responsibil-

ity for this poverty of understanding. The National Science

Foundation and NOAA (National Oceanic and Atmospheric

Administration), through their coastal ocean programs, could

provide targeted funding for physical-geological-biological

process studies of beaches to enhance the necessary funda-

mental understanding that is now lacking. Such interdisci-

plinary studies, using observation, experimentation, and

modeling of the nearshore ecosystem, also provide potential

for incorporating the consequences of multiple stressors on

a landscape scale and thereby approach the ideal of ecosys-

tem-based management endorsed by the US Commission on

Ocean Policy (US COP 2004). There is a need for more ba-

sic and holistic research on process as well as more rigor in

project-specific impact analyses.

So why do the federal (US Army Corps of Engineers) and

state permit-granting agencies that are responsible for carrying

out the mandates of the National Environmental Policy Act

(NEPA) fail to ensure prevailing standards of scientific rigor

and thus to discharge their obligation to protect public trust

resources? Partial answers to this critical question come from

a consideration of the process by which the monitoring

components of beach nourishment permits are developed.

Neither the US Army Corps of Engineers nor the state per-

mitting agency employs the anonymous scientific peer-review

process that is central to insuring high standards of excellence

in basic scientific research (NRC 2000). Unfortunately, the fed-

eral and state permit offices, in their approval of monitoring

designs, do not demonstrate adequate expertise in the criti-

cal discipline of biostatistics to ensure that the studies meet

high standards of scientific rigor. The absence of expert re-

view and rereview in the approval process to achieve accept-

able designs is made more serious by the recognition that the

monitoring is typically designed and conducted by private con-

tractors, usually associated with the proponents of the nour-

ishment project, rather than by independent research

organizations. Anonymous peer review is needed for envi-

ronmental impact statements (EISs), environmental assess-

ments (EAs), monitoring proposals, and final reports to

induce consulting agencies to employ their expertise to

elevate beach nourishment science to prevailing standards of

scientific rigor. Towns, counties, and other local units of gov-

ernment cannot be expected to possess the technical exper-

tise to ensure scientific and statistical analytic rigor in

monitoring studies for beach nourishment: they trust the

state and federal governments to perform that function, a trust

that is misplaced.

Not only can environmental permitting agencies be criti-

cized for failure to ensure that studies of environmental im-

pacts of beach nourishment meet basic standards of rigor in

science, but the justification for the permit decision and re-

quired monitoring can also be challenged on occasion. Per-

mitting agencies often yield to political pressure for

nourishment permits and justify allowing high or uncertain

risks by arguing that the agency can improve future permit

decisions by learning from monitoring this risky aspect of the

project. Such an argument is disingenuous if there is insuf-

ficient biostatistical expertise on the agency's staff and no in-

dependent scientific peer-review process to guarantee the

rigor needed to assess impacts effectively. Furthermore, if

this were an honest motivation and not just a rationalization,

then funding would be in order for directed research on

whether the very aspect of the study that is under question

is adequately tested. This would often involve funding well-

designed experiments and population modeling to comple-

ment the monitoring.

The most important scientific challenge in meeting the

obligations of NEPA is evaluating the potential cumulative im-

pacts of multiple projects in the context of the growing im-

pacts of other human activities on coastal ecosystems. With

rising sea levels and enhanced storminess driving increased

demand for beach nourishment and washing away the fill even

faster, cumulative impact is a critical concern that is not ad-

equately evaluated through the current process of simply at-

taching scientifically flawed monitoring requirements to

individual permits. Not only must rigorous analysis of cu-

mulative effects address the expanding scope of beach nour-

ishment, but it must also include the consequences of multiple

escalating stressors in this coastal zone. This is the essence of

ecosystem-based management for coastal resources, an over-

arching recommendation of the US Commission on Ocean

Policy (US COP 2004). Absent legitimate assessment of cu-

mulative impacts, EISs and EAs done for beach nourishment

projects will also continue to be chronically deficient (Lin-

deman 1997).

Federal and state permitting agencies also often allow the

required assessment studies to evade evaluation of important

and highly uncertain potential impacts on the grounds of in-

trinsic difficulty of monitoring. Impacts to fish populations

fall in this category, because their mobility and high natural

variation in space and time prevent direct or indirect impacts

on population size from being detected by empirical sampling

of any individual beach nourishment project. Full evaluation

of potential impacts on fish populations would require pop-

ulation modeling based on rigorous observations of process,

probably including experimental tests of mechanisms. Such

modeling should be done on the relevant large spatial and long

temporal scales that define population processes, an impos-

sibility for empirical monitoring. No permit condition for

beach nourishment has required such modeling, despite the

central role that this approach plays in fisheries science, the

great importance of surf zone and nearshore habitats to

many valuable fish populations (Hackney et al. 1996), and the

documented extreme damage that beach nourishment inflicts

on invertebrate prey on beaches (Rakocinski et al. 1996,

894 BioScience • October2005/Vol. 55No. 10



Forum

Peterson et al. 2000) and on reef habitat (Lindeman and

Snyder 1999). Consequently, beach nourishment threatens

essential fish habitats to an undetermined degree.

Environmental monitoring requires explicit goals. With-

out a defensible goal, monitoring becomes a tax on those who

are paying for the project, functioning merely to sustain em-

ployment in consulting companies. Monitoring of beach

nourishment should have two goals: first, to answer open ques-

tions about environmental impacts, and second, to quantify

injury to public trust resources so as to allow compensatory

mitigation. If the rigor of the science assessing impacts of

beach nourishment were elevated through changes in agency

process and through improved basic understanding of beach

processes, the first of these motivations could disappear over

time as the critical questions about environmental impact are

answered. The second motivation should persist, except that

only rarely now is mitigation ever required for habitat degra-

dation, and never for injury to living resources arising from

beach nourishment. Habitat mitigations that are now applied

(e.g., rock removals from beaches by heavy equipment) are

generally ineffective and typically involve intense distur-

bances likely to cause even more biological injury. Because

restoring the natural granulometry of beach sands after fill-

ing with incompatible sediments may be impossible and re-

taining natural sediments is of such great biological

significance (Nelson 1993), monitoring sediment size com-

position would best be done during the project. Then ongo-

ing application of fill that fails to meet strict compatibility

standards could be halted, and coarse components could be

sieved out or fine ones winnowed out before completing the

project.

Permitting any, let alone unlimited, filling and bulldozing

of beach habitat without providing effective mitigation is

inconsistent with regulatory treatment of other important

habitats, such as salt marshes, seagrass beds, and coral reefs.

NOAA requires compensatory mitigation for loss of ecosys-

tem services to be funded by the party responsible for dam-

age in other coastal habitats (Fonseca et al. 2000), a

requirement somehow forgotten when beach ecosystem ser-

vices are lost through nourishment. Restoring each injured

species may not be feasible, and may require indirect measures

such as protection of shorebird nests. However, some restora-

tions could be achieved using aquaculture methods to reseed

nourished beaches with lab-raised bivalves and those am-

phipods that lack pelagic dispersal to aid recolonization.

We suggest one solution to the challenge of how to make

fundamental changes in the permitting process at federal

and state levels so as to ensure compliance with NEPA and pro-

tection of public trust resources. The piecemeal project-by-

project approach to assessing impacts and (rarely) providing

mitigation for impacts should be replaced by a centralized pro-

gram analogous to the wetland mitigation banking programs

present in many states. Appropriate levels of monitoring and

mitigation charges could be assessed to each project and

paid into a single fund. The money could be used to fund re-

search proposals addressing impacts of beach nourishment

that are reviewed by qualified biostatistical and interdisci-

plinary scientific experts. Funded studies could include mod-

eling at appropriately broad spatial and temporal scales to

assess cumulative impacts and to evaluate fish population im-

pacts. Studies could also involve experimental and observa-

tional tests of coupled physical-biological processes critical

to understanding, modeling, and predicting biological impacts

of beach nourishment.

Our review demonstrates that much uncertainty sur-

rounding biological impacts of beach nourishments can be

attributed to the poor quality of monitoring studies. Be-

cause neither federal and state permit-granting agencies nor

consulting companies ensure sufficient rigor in beach mon-

itoring done as a permit condition, and because the agencies

rarely require compensatory mitigation of even egregious

injuries, the required monitoring now serves little public

purpose. Enhancing understanding of the impacts of beach

nourishment consequently requires changes in agency process

so that (a) monitoring studies are designed by adequately qual-

ified scientists and required to meet prevailing standards of

scientific rigor, (b) studies have clear goals that will advance

knowledge of environmental impacts and be used to mitigate

injuries, and (c) the process-oriented science required to

fully understand the ecological impacts of beach nourishment

is funded. Unless agency practices change, environmental

uncertainty over impacts of beach nourishment will persist,

and projects will continue to externalize significant costs by

passing on natural resource injuries to the public at large with-

out due avoidance, minimization, and mitigation.
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