
Assessing the Generalizability of

code2vec Token Embeddings

Hong Jin Kang

Singapore Management University

hjkang.2018@phdis.smu.edu.sg

Tegawendé F. Bissyandé

University of Luxembourg, Luxembourg

tegawende.bissyande@uni.lu

David Lo

Singapore Management University

davidlo@smu.edu.sg

Abstract—Many Natural Language Processing (NLP) tasks,
such as sentiment analysis or syntactic parsing, have benefited
from the development of word embedding models. In particular,
regardless of the training algorithms, the learned embeddings
have often been shown to be generalizable to different NLP tasks.
In contrast, despite recent momentum on word embeddings for
source code, the literature lacks evidence of their generalizability
beyond the example task they have been trained for.
In this experience paper, we identify 3 potential downstream
tasks, namely code comments generation, code authorship identi-
fication, and code clones detection, that source code token embed-
ding models can be applied to. We empirically assess a recently
proposed code token embedding model, namely code2vec’s token
embeddings. Code2vec was trained on the task of predicting
method names, and while there is potential for using the vectors
it learns on other tasks, it has not been explored in literature.
Therefore, we fill this gap by focusing on its generalizability
for the tasks we have identified. Eventually, we show that
source code token embeddings cannot be readily leveraged for
the downstream tasks. Our experiments even show that our
attempts to use them do not result in any improvements over less
sophisticated methods. We call for more research into effective
and general use of code embeddings.

Index Terms—Code Embeddings, Distributed Representations,
Big Code

I. INTRODUCTION

In recent years, there have been many works [1], [2]

proposing new techniques to construct representations of text.

The representation of a word by “embedding” it onto a vector

space is known as “word embeddings”. Embedding techniques,

such as word2vec [1], output vectors of real numbers which

are successfully leveraged in a variety of Natural Language

Processing (NLP) tasks. Indeed, embedding models attempt to

represent words that are semantically similar as vectors which

are close in the vector space.

While the NLP literature provides several methods to train

word embeddings, a number of applications have successfully

demonstrated that most word embedding models generalize to

various NLP tasks, beyond the ones the embeddings have been

initially trained on. For example, word embeddings, which are

often trained over predicting the next word in a sentence given

its previous words, have been used for many downstream tasks

such as sentiment analysis, word sense disambiguation, named

entity recognition, and part-of-speech tagging [1], [3]–[6].

Besides embeddings for natural language words, various

embedding models have been proposed for object represen-

tations in other domains, including graphs, knowledge bases,

or even source code. For example, in recent years, inspired

by the advances in word embeddings, many researchers have

used embedding models for software engineering tasks. On the

one hand, the naturalness hypothesis [7], which suggests that,

like natural language, software is also likely to be statistically

repetitive and predictable, has encouraged the use of natural

language processing techniques on source code. The increase

of publicly-available source code, such as open-source projects

data on Github, facilitates research on big code [8] analysis.

In this context, several code embeddings approaches [9]–[11]

have been proposed where source code tokens are treated

similarly to text.

Apart from the direct application of word embedding

techniques to source code, other researchers have proposed

specialized methods for source code. For example, there

have been attempts to include more structural information of

the program. Among recent advances, code2vec [12], which

stands as a state-of-the-art, traverses paths in the Abstract

Syntax Tree (AST) to train embeddings for predicting method

names. The authors’ study shows that accounting for such

structural information improves the performance in method

name predictions.

Many research directions in the software engineering do-

main have proposed new methods of training code embed-

dings. However, they are often only evaluated on the single

task that they were trained for [13]–[19]. In contrast to

the plentiful evidence that word embeddings are useful in

downstream tasks, there is little evidence to suggest that

the code embeddings can be useful in a variety of software

engineering tasks. Given the promise of code embeddings, our

work is motivated by this need to fill the gap in confirming the

generalizability of code embedding models. Treating code2vec

as representative of code embeddings, our study investigates

whether it can be successfully used in a variety of software

engineering tasks beyond predicting method names.

In this paper, we assess the token embeddings proposed by

code2vec in terms of providing appropriate representations of

source code in several different software engineering down-

stream tasks, i.e. tasks in which the learned code embeddings

may be helpful on. These tasks are not directly related to its

original training task of predicting method names. Concretely,

we propose to use source code token embeddings to enhance

existing models for tasks of code comment generation, code

authorship identification and code clones detection. Then, we

evaluate the performance of these models against baseline

models [20]–[22] originally designed for the considered tasks.

We make a replication package of our work available.1 This

paper makes the following contributions:

• We investigate the generalizability of tokens embeddings

learned by code2vec for downstream software engineer-

ing tasks. To the best of our knowledge, this is the first

effort in this direction in the literature.

• We experimentally demonstrate that code2vec’s token

embeddings may not be generalizable: they do not always

contribute to a significant increase in the performance of

models for each of the software engineering tasks.

• We provide a comprehensive discussion on the general-

izability of code embeddings, and motivate the need for

further research on novel embedding models for source

code that can generalize to various downstream tasks.

The remainder of this paper is organized as follows. In

Section II, we provide details for the context of this study.

In Section III, we introduce the three software engineering

downstream tasks that we have identified for evaluating code

embeddings, evaluate code2vec on the 3 tasks and discuss

the results. In Section IV, we discuss the threats to validity

of our work. In Section V, we present related work. Finally,

in Section VI, we conclude the paper with a call for further

research.

II. PRELIMINARIES

Our study aims to answer a single research question: Are

embeddings of source code tokens generalizable for use in

tasks that they are not trained for?

The main components of our study are as follows:

• Code embedding model. Structural information from

ASTs has been widely leveraged for building models in

the literature [23]–[27]. In particular, it has been used

to train representations of source code for predicting

method names, a common task in software engineering

literature [8], [28]–[30]. As code2vec [12] is located in

the intersection of these two trends in code representation

research, we select it as a representative state-of-the-art

among embedding models. Code2vec embeds entire code

snippets into a single vector during training. However, our

work focuses on the token embeddings that result from its

training due to its similar granularity to word tokens used

in word embeddings and its broader vocabulary, which we

believe allows it to be more generalizable.

• Word embedding model. Aside from code2vec being

specialized for source code tokens, we also consider

generic NLP word embeddings to build a comparison

baseline. To that end, we consider GloVe [2] as a rep-

resentative word embedding technique, which we train

on a similar dataset as code2vec by considering source

code as natural language text.

1https://github.com/code2vec-critique/generalizability

• Downstream tasks. We identify three downstream tasks

of code comment generation, code authorship identifica-

tion and code clones detection. For each task, we select

an existing approach that uses source code tokens as part

of its input. We select models from recent work or use

well-known models. For code comment generation and

code authorship identification, we use recent work by

Hu et al. [20] and Abuhamad et al. [21] respectively.

For code clone detection, we use the well-documented

baseline model, SourcererCC [22]. We try to augment

these models using embeddings of source code tokens.

Finally, we compare the performance of the models using

embeddings against simpler models as a baseline. In the

same vein as the suggestions provided by Fu and Menzies

[31] in their comparative study of machines learning

approaches in software engineering, the first baseline

we use is the simpler basic model without the use of

code embeddings. Secondly, we compare our code2vec-

augmented model against a model that is augmented in

the same way, but this time using the GloVe vectors that

are trained over source code tokens.

A. Code2Vec

The code2vec deep representation learning technique was

initially proven effective through a demonstration of training

code embeddings for the following prediction task: a code

snippet was given as input, and a tag was predicted as output.

Code2vec was mainly used for method name prediction where

each input is a method body and the method name is used

as the associated output tag. Structural information from the

AST, notably paths between AST terminals, is extracted and

leveraged during training: each code snippet is represented

by a bag of path contexts. An attention mechanism is used to

learn the importance of each path context to the output tag.

A single path context comprises a tuple of the 2 terminal

nodes, and the path between them. From the path contexts, a

neural-network model is trained to predict the code snippet’s

method name. The following example of a path context for

the expression, x = 7, is given by Alon et al. [12]:

〈x, (NameExpr ↑ AssignExpr ↓ IntegerLiteralExpr), 7〉
Code2vec produces 2 sets of vectors. From its output layer,

a set of vectors for method names can be exported. From

its input layer, a set of vectors for token/identifiers can be

exported. Our work focuses on the token vectors due to its

more precise granularity, which we believe will make it more

generalizable and applicable to other tasks.

For our study, we use code2vec token vectors exported from

the trainable model downloaded from the code2vec repository.

These vectors are 128 dimensions wide, with a vocabulary size

of 1 300 852 words.

B. GloVe

To evaluate code2vec, we need a baseline set of vectors

that is simpler and easier to train. To this end, we treat source

2

code as text and we use the GloVe algorithm [2], that is used

to learn word embeddings, to train code embeddings. Due to

the naturalness hypothesis, embedding models designed for

natural language may be effective when directly applied to

source code. Unlike many word embedding algorithms, GloVe

is an unsupervised algorithm using token-token co-occurrence

statistics.

We trained GloVe vectors that are 128 dimensions, to have

the same dimensionality as the code2vec token embeddings.

We adjusted the parameters of GLoVe to have a similar number

of tokens in its vocabulary as code2vec. Thus, we set the

minimum number of occurrences to be 70. Other parameters

of GloVe are set to the default values; for example, we trained

GloVe for 15 iterations, with a window size of 15.

The dataset used to trained GloVe is the Java-Large dataset

provided by the authors of code2vec.2 It includes the 9500

most-starred Github Java projects, consisting of about 16

million methods, and amounts to 37GB of data. Eventually,

the GloVe vectors are 128 dimensions wide, with a vocabulary

size of 1 335 292 words. The original dataset used to trained

code2vec is only available in a processed form, and is not

appropriate for training GloVe embeddings. However, the Java-

Large dataset is comparable to the original dataset in terms of

size and its source. As such, we do not expect this difference

to be a threat to validity.

III. EVALUATION ON DOWNSTREAM TASKS

We consider in this study three downstream software en-

gineering tasks targeting different properties of source code

that may be encoded in embeddings: (1) code comment

generation, (2) code authorship identification and (3) code

clones detection. We now briefly describe the objective of

each task, the dataset that we use as well as the evaluation

procedure.

To evaluate code embeddings, we try to augment existing

models with the code embeddings and observe if the resulting

model leads to an improved performance. For each task, we

select a model from recent papers. Whenever it is not obvious

how to augment an existing model with embeddings, we

propose a new approach to incorporate embeddings into it.

We focus on using techniques that are token-based to make

it simple to augment the model with code embeddings. The

techniques we use in these tasks also vary. Two out of three

tasks use a neural-network-based approach, while the last task

utilizes vector space calculations to compare the similarity of

two vectors. In this study, we do not focus on the overall

effectiveness of the techniques. Instead, we evaluate if the

use of code embeddings can improve the performance of

these techniques. For each task, we select datasets and use

experiment settings similar to what was reported in literature.

A. Code Comment Generation

Our first task is code comment generation. As we focus

our work at the granularity of methods, this task involves the

2https://s3.amazonaws.com/code2seq/datasets/java-large.tar.gz

automatic generation of method-level comment from the body

of a method [11], [32], [33]. The generated method comment

should summarize the functionality provided by the method

in the form of a descriptive, high-level, natural language

sentence. The task has implications for software maintenance

and program comprehension. Techniques developed for this

task can produce a wide range of benefits for developers,

including helping in software reuse, re-documentation and

concept location [33]. Several recent works have used neural

networks to synthesize natural language from source code [11],

[20].

Approach: For this task, there have been several techniques

using a deep learning approach. We use the latest approach

proposed by Hu et al. [20]. In their approach, they treated

the problem as a machine translation task. Their approach

incorporates and retains structural information from the AST

when preprocessing the data from code snippets representing

method bodies into sequences of tokens representing the AST

nodes. A Recurrent Neural Network-based Seq2Seq language

model is used to translate these sequences to natural language

code comments. We selected this approach since it uses a

neural network approach and uses an embedding layer where

our code embeddings can be used. In addition, their model

gave state-of-the-art results. Thus, we follow the approach

described by Hu et al.

Similar to the preprocessing done by Hu et al., we took

only the first sentence of the Javadoc method comment, as

this first sentence is usually the description of the functionality

provided by a method based on Javadoc convention. Like Hu

et al., we filtered out simple cases from the dataset. We omitted

a pair of code snippet and comment if the comment is empty

or just contain a single word, Additionally, getters, setters,

constructors, and test methods are omitted.

We show a sample input for this task, taken from Table 5

in the work by Hu et al. in Listing 1. For this example, the

ground truth output will be the first (in this case, the only)

sentence of the Javadoc comment, summarizing the method.

Listing 1. Example of a code snippet

/**

* Convert Bitmap to byte array.

*/

public static byte[] bitmapToByte(Bitmap b){

ByteArrayOutputStream o = new

ByteArrayOutputStream();

b.compress(Bitmap.CompressFormat.PNG,100,o

);

return o.toByteArray();

}

The metric BLEU [34] is used to measure the quality of

generated comments. This is commonly used to evaluate the

performance of machine translation of natural language, and

measures how closely the translation is to a human translation.

BLEU takes the generated translation and reference transla-

tions as input and outputs a percentage value between 0 and

100, with scores closer to 100 indicating higher quality. It is

as computed as follows.

3

BLEU = BP · exp
(

∑N
n=1

1
N log (pn)

)

BP =

{

1 if c > r

e(1−r/c) if c ≤ r

pn is the ratio of length n subsequences that are both in

the candidate and reference translation. N is the maximum

number of N-grams. BP is the brevity penalty. c is the length

of the candidate translation generated while r is the length of

the reference translation.

The BLEU metric has been shown to correlate well with hu-

man perception of the quality of translations [35]. In software

engineering literature, this has been used for the evaluation of

several tasks [15], [36]–[38], including comment generation.

There are a few variants of BLEU, depending on the value of

N. In this task, we use BLEU-4 (i.e. N=4) since it was used

by Hu et al. to evaluate the quality of the generated comment.

BLEU-4 is a measure of precision of 4-grams.

To accurately summarize a method using high-level natural

language, a technique will need to infer semantic properties of

the source code. Thus, this task may be sensitive to the ability

of code embeddings to encode semantic information.

Preprocessing: We used the dataset that was collected by Hu

et al., which involves 9714 Java projects from Github. Then,

we followed the same procedure as Hu et al. to convert the

AST of each method body into a sequence of tokens. A high-

level overview of the procedure to preprocess the dataset is

given in Figure 1.

The Eclipse JDT parser was used to construct the AST, and

we traversed the tree following the Structure-Based Traversal

(SBT) algorithm described by Hu et al. This preserves infor-

mation about the tree structure of the AST in the sequence, and

allows the reconstruction of the AST tree from the sequence of

tokens. Tokens in the sequence consist of the AST node type

and the value of the node (either a literal or identifier name).

For example, for a local variable x, its representation in the

sequence will be SimpleName_x. For a method invocation

of a method toLowerCase, this will be represented as

follows:

(MethodInvocation

(SimpleName_toLowerCase)

SimpleName_toLowerCase

) MethodInvocation

In machine translation for natural language, the vocabu-

lary is often restricted to the most common words. Words

out of the vocabulary are marked as <UNK>. Similarly, we

limited the vocabulary of both code tokens and comments

to the 30000 most common tokens. For code tokens outside

of the vocabulary, we convert them to to the AST node

type. Concretely, this means that rare identifier names will

not be represented in the dataset. For example, a variable

veryRareAndLongName will be converted into the token

SimpleName, while a common variable name such as x will

be converted as SimpleName_x. The rationale for doing

this was given by Hu et al.: this representation of out-of-

vocabulary tokens mitigate the problem caused by the fact

Source Code AST Code sequence

Method comment Seq2seq model

Fig. 1. Preprocessing data for comment generation

that the vocabulary of source code tokens is much greater

than natural language. Rather than losing all information

when we remove rare words from the dataset, some structural

information is retained.

We preprocessed the vocabulary in the embeddings simi-

larly, by prefixing AST node types to each word. Next, for any

word found in the training data that is not contained in the code

embeddings, we expanded the vocabulary of the embeddings

to include it and initialize it with a random vector. We found

that there are less than 200 such tokens in the dataset. This

indicates that the step of normalizing rare identifiers into their

AST node types is effective in minimizing the number of

out-of-vocabulary tokens seen during training of the machine

translator.

For the example about bitmapToByte in Listing 1,

the following sequence will be generated for the statement

return o.toByteArray();. We do not show the se-

quence for the entire method due to space constraints.

(ReturnStatement

(MethodInvocation

(SimpleName_o) SimpleName_o

(SimpleName_toByteArray)

SimpleName_toByteArray

) MethodInvocation

) ReturnStatement

Training: Next, we trained a Recurrent Neural Network-based

Seq2Seq language model using OpenNMT [39]. The model

consists of an encoder-decoder network. On both encoder and

decoder, we use a 2 Long Short-Term Memory (LSTM) [40]

layers with 500 hidden units in each layer. We set the learning

rate to 0.5, the dropout to 0.5, and we train it for 50 epochs.

In total, there are over 330,000 methods in the training data,

and we limit the validation and test data to 5000 methods.

The model consists of an embedding layer. When the

code2vec and GloVe embeddings are not used, randomly

initialized vectors are used instead, similar to the work in Hu

et al. There are 2 settings that we use for the experiments

on this task. As the tokens from code2vec are all lower-cased,

we lower-cased the identifiers from the AST trees we extracted

and also created a version of the GloVe vectors with its tokens

lowercased. For a more comprehensive evaluation, we trained

a new set of code2vec embeddings on the Java-Large dataset

described above. In this set of embeddings, the words are not

lowercased.

4

TABLE I
QUALITY OF COMMENTS GENERATED, WITH SBT PREPROCESSING

Preprocessing Embedding model BLEU-4

Lowercased GloVe 27.4

Lowercased code2vec 29.9

Lowercased No pretrained embeddings 28.1

Non-lowercased GloVe 28.1

Non-lowercased code2vec 29.3

Non-lowercased No pretrained embeddings 33.5

TABLE II
QUALITY OF COMMENTS GENERATED, WITHOUT SBT PREPROCESSING

Preprocessing Embedding model BLEU-4

Lowercased GloVe 29.7

Lowercased code2vec 29.3

Lowercased No pretrained embeddings 31.3

Non-lowercased GloVe 22.0

Non-lowercased code2vec 31.0

Non-lowercased No pretrained embeddings 26.7

Results: We report results in Table I. As the SBT traversal

adds structural information to the model, we wish to investi-

gate if not doing so will affect the performance of the model.

Thus, we present the results of running a seq2seq model

without performing proprocessing with the SBT traversal. In

this case, without the handling of rare tokens in the source

code, there are over 300,000 tokens that are unrepresented in

the code2vec vectors. The results of not using the AST node

information in comment generation are given in Table II

Findings: Based on the results, it appears that the use of pre-

trained embeddings do not improve the sequence-to-sequence

model. The best performing configuration does not use ei-

ther code2vec or GloVe. However, code2vec token vectors

outperforms GloVe vectors in each setting, indicating that

structural information may be valuable during the training of

code embeddings. These results suggest that this approach

of generating code comment cannot utilize any semantic

information encoded in either the GloVe or code2vec vectors

to boost performance.

B. Code Authorship Identification

Our second task is to identify the authors of short programs.

While identifying authors of natural language documents have

been studied extensively [41], there are fewer works for doing

so on source code.

This task has many implications for privacy and security

concerns. For example, techniques on this task may be used

to violate the privacy of programmers. They may be used to

de-anonymize programmers who wish to hide their identities,

such as the creator of Bitcoin. Other uses of such techniques

include copyright infringement or plagiarism detection. The

process of identifying the author of a code fragment may also

be useful for identifying the authors of malware and other

malicious programs.

To identify authors successfully, approaches must be able

to distinguish between the coding styles of programmers in

their code. Techniques used in this task leverage features that

express the programming style of programmers, such as layout

and lexical features [42]. Previous works have found that

the use of machine learning using TF-IDF features covering

unigrams, bigrams and trigrams can be used to identify pro-

grammers at high accuracy [21].

Dataset: As we did not manage to find any of the datasets

used in prior work, we follow the same procedure described

by Abuhamad et al. [21] to build a similar dataset. This dataset

is collected from program submissions to the Google Code

Jam.3 The Google Code Jam is a programming competition

organized by Google over several years. Participants may

choose from several programming languages and have to solve

a small number of problems within a short time period. For

any problem, a participant may make multiple submissions.

Naturally, in this setting, a single program only has one author.

We obtain 9 programs written in Java from 250 authors

participating in Google Code Jam and train a model over the

dataset. In total, there are 2250 programs in our dataset. On

average, there are 106 lines in each Java program although the

number of lines varies from 1 to over 70000 lines. Existing

works on code authorship [21], [42] evaluate their approaches

using accuracy. The dataset is constructed such that each

author has the same number of programs in it. Thus, as a

classification task, the classes are balanced and accuracy is a

sufficient evaluation metric.

While the previous task of code comment generation eval-

uates techniques for capturing semantic properties of code,

we select this task for evaluation as it requires techniques

to encode features related to syntactic style. The ability of

code embeddings to improve basic models on this task may

indicate that it is able to distinguish between syntactic styles

of different authors.

Approach: Inspired by the work of Abuhamad et al. [21], we

propose a similar neural network. As baseline, we compare

our approach against a model using TF-IDF features, which

was shown to be effective by Abuhamad et al. [21]. This

network is comprised of 2 hidden fully-connected layers with

1024 nodes. We use dropout for regularization and set it to

0.6. We use the top 1000 TF-IDF features, determined by

feature selection using the ANOVA F-value between each

feature and the authors. While the work of Abuhamad et al.

[21] used a random forest classifier based on the intermediate

outputs of their neural network, we were not able to replicate

good results, without our own modifications, on a neural

network based on the architecture they described. As such, we

experimented with a neural network with some modifications

that allowed it to produce comparably accurate predictions.

As our goal was to evaluate the code embeddings and not to

have a state-of-the-art system, we did not use the second step

3https://code.google.com/codejam/past-contests

5

h1
t

h2
1

h3
1

...

hn
1

LSTM-1

x1

x2

x3

...

xn

h1
2

h2
2

h3
2

...

hn
2

LSTM-2

h1
t

h2
t

h3
t

...

hn
t

Fully-connected

y1

y2

...

yn

Fig. 2. Neural Network for code authorship identification

of passing the neural network results through a random forest

classifier once we achieved good performance on our model.

While our objective is to evaluate code embeddings, we

were not able to successfully replace the TF-IDF features with

them. We attempted to use the average of the code vectors

in the program and replace each TF-IDF feature with one

dimension of the averaged code vectors. This will result in

128 features (each corresponding to one dimension of the

code vectors). However, we find that this results in poor

performance. Further tuning of the model’s hyperparameters

did not help to improve its performance.

As there are 1000 TF-IDF features and only 128 dimensions

in our code vectors, the number of input features decreased

from 1000 to 128 features. Hence, it may be possible that

the poor performance can be attributed to the decrease in the

number of features. We tried to train a new set of code2vec

vectors of 1000 dimensions. However, this did not improve

the performance of the model. Thus, to further evaluate the

potential of code embeddings on this task, we used another

neural network using LSTM layers. An LSTM neural network

provides the advantage of allowing variable length input, hence

we can input the entire code snippet into our model. This

neural network comprises of 2 hidden LSTM layers followed

by a fully-connected layer. We illustrate the neural network in

Figure 2.

We limited our study to programs written in Java, the same

language that code2vec and our GloVe vectors were trained

on. For the LSTM neural network, we use both pretrained

embeddings as well as randomly initialized embeddings. We

present the accuracy as a number between 0 to 100, with 100

indicating a perfect accuracy. For each model, we train to 50

epochs.

Results: From Table III, we see that initializing the LSTM

neural network using both code2vec and GloVe embeddings

underperforms a randomly initialized embedding layer. Fur-

TABLE III
ACCURACY FOR IDENTIFICATION OF CODE AUTHORSHIP

Setting Accuracy

LSTM, code2vec 39

LSTM, GloVe 50

LSTM, randomly initialized 69

Fully connected layers, TF-IDF 77

thermore, the use of the LSTM neural network using code

embeddings underperformed a fully-connected neural network

that used TF-IDF features. When using the code embeddings

with the neural network with only fully-connected layers, we

get accuracies of near 0.

Findings: Comparing code2vec vectors and GloVe vec-

tors, the GloVe vectors obtained a higher accuracy than

the code2vec vectors. This implies that GloVe embeddings

may encode syntactic relationships better than the code2vec

token embeddings. However, both GloVe and code2vec token

embeddings were outperformed by a randomly initialized set

of embeddings. This suggests that code2vec token embeddings

do not generalize to the task of code authorship identification.

Finally, the model with the TF-IDF features is the best

performing model in our experiments. The poor performance

of using code2vec token embeddings suggests that they are

unable to distinguish between the syntactic differences of code

authors as well as TF-IDF features.

C. Detecting Code Clones

Finally, our last task is to detect code clones. Code clones

detection is the task of determining if a pair of code fragments

are similar to each other. This task has received much attention

in the literature. Detecting code clones has numerous implica-

tions for software development and maintenance. For example,

code clones can potentially increase the cost of maintenance,

complicating the design of software and make it difficult to

introduce minor changes in the long run [43], [44]. Code

clones are also likely to cause bugs to be propagated through

copy-paste behaviour in a software system [45], [46].

Dataset: We use 2 datasets for this task. Firstly, we use the

standard BigCloneBench [47]–[49], which is a benchmark of

known clones in the IJaDataset [50]. The IJaDataset is a large

repository of over 25000 open-source Java projects, with over

3 million source files. In BigCloneBench, a code fragment

is a single method and there are over 8 million validated

code clones in the dataset. As only a subset of code fragment

pairs in the entire IJaDataset is validated, the BigCloneBench

benchmark reports only the estimated recall of a model, but not

its precision. As such, we use a second dataset, OJClone [27],

[51]. OJClone is a dataset of 104 programming problems with

the student submissions to each problem. Each programming

problem has 500 submissions. For detecting code clones, two

submissions to the same problem are considered as code

clones. In total, there are 52000 code fragments in this dataset.

Between each pair of code fragments, we can determine

6

TABLE IV
RECALL ON BIGCLONEBENCH

Setting Type-1 Type-2 Strong Type-3 Moderately Type-3 Weak Type-3, Type-4

code2vec 0.99 0.81 0.50 0.28 0.16

GloVe 0.92 0.81 0.50 0.28 0.16

SourcererCC 0.98 0.93 0.43 0.01 0.00

whether a pair is code clones based on whether or not they

are submitted to the same programming problem. As such, we

can compute both recall and precision on this dataset.

Researchers have classified code clones into 4 types, based

on the level of syntactic similarity. Pairs of Type-1 clones

are syntactically the same, while pairs of Type-4 clones have

no syntactic similarity but implements the same functionality.

While BigCloneBench classifies each code clone from Type-

1 to Type-4, there is no classification of the code clones into

their types in the OJClone dataset although previous work have

considered them to be Type-3 and above [51].

For Type-1 and Type-2 clones, approaches that only use

syntactic information is sufficient for achieving high precision

and recall, but for Type-3 and Type-4 clones which are syntac-

tically different, approaches need to consider the semantics of

the program fragment. There has been documented difficulties

in detecting Type-3 and Type-4 clones at high precision and

recall [52].

Success at detecting code clones of Type-1 and Type-

2 indicates that syntactic information is encoded within an

approach, while successfully detecting Type-3 and Type-4

code clones may indicate that semantic information can be

encoded. Thus, this task measures both the ability of code

embeddings to capture syntactic and semantic information at

the same time.

Approach: Technique-wise, we used SourcererCC [22],

a token-based model that gives near state-of-the-art

performance for Type-1 to Type-3 clones, as basis for

our work. SourcererCC compares the tokens contained in

pairs of code fragments. To do so efficiently, SourcererCC

implements a sophisticated algorithm using several properties

and heuristics they identified to reduce the number of

comparisons to perform. However, the main criterion to

determine if two code fragments are code clones is based on

the number of tokens that are present in both code fragments.

Given 2 code fragments Bx and By , to determine if they are

code clones, it counts the number of tokens that overlap in

both code fragments, computing its overlap similarity, and

compare it against a configurable threshold, θ, to identify

if the fragments are code clones. The measure of overlap,

O(Bx, By), is computed as follows:

O (Bx, By) = |Bx ∩By|
To adapt SourcererCC to use vectors of source code tokens,

we changed the criteria to determine if a pair of code fragments

are code clones. Instead of a count-based measure of the

overlap between tokens, our criteria is based on the cosine

similarity of the average of the token vectors of the 2 code

fragments. Prior work has shown that averaging vectors for

both natural language and source code can be used to represent

larger fragments of tokens [6], [53], [54].

Thus, in our adaptation of SourcererCC, for two code

fragments, Bx and By , to be considered as code clones,

they must share at least one token, and the Cosine Similarity

between them should exceed a threshold, θ (in this work,

we use a default value of θ = 0.8). This requirement of

sharing at least one token is made for scalability reasons.

Without this additional criteria, all pairs of code fragments

need to be compared, which will be prohibitively large for

our experiments. For tokens in the code fragments that not

in the embeddings’ vocabulary, we use the zero vector. The

Cosine Similarity of two code fragments is computed based

on averaging all the vectors of tokens contained in Bx and

By . After averaging the token vectors, we have X and Y ,

the average of token vectors in the two code snippets, that

are vectors in an n-dimensional space. Let Xi refer to the

ith dimensional value of the vector X . Then, the Cosine

Similarity is computed as follows:

∑
n

i=1
Xi×Yi√∑

n

i=1
X2

i

√∑
n

i=1
Y 2

i

Results: As described earlier, we evaluated our adaptations to

SourcererCC on two datasets, BigCloneBench and OJClone. In

our experiments on BigCloneBench, we only consider clones

that are greater than 6 lines and 50 tokens. This is the standard

configuration for measuring recall [52]. As described earlier,

BigCloneBench does not provide a process for evaluating

precision. Table IV shows the recall of our approach on each

clone type. For ease of interpretation, we provide the definition

of the classification of the clone types that are widely used in

literature:

• Type-1: Identical code fragments differing by whitespace,

comments

• Type-2: Identical code fragments differing by identifier

names or literal values

• Type-3: Code fragments that have statements added,

modified, or removed

• Type-4: Code fragments that semantically perform the

same computation with little syntactic similarity.

Type-3 clones can be split up further based on the level

of syntactic similarity. Strong Type-3 clones refer to Type-3

clones that are syntactically similar, while weak Type-3 clones

7

TABLE V
RECALL AND PRECISION ON THE OJCLONE DATASET

Setting Precision Recall F1

code2vec 0.03 0.45 0.06

GloVe 0.03 0.67 0.06

SourcererCC 0.87 0.01 0.01

Random 0.01 0.02 0.01

TABLE VI
COUNTS OF TOKENS IN THE CODE FRAGMENTS THAT ARE OUT OF THE

EMBEDDINGS’ VOCABULARY

Vectors Tokens found OOV tokens

Code2vec 15,172,900,000 250,200,000

GloVe 14,861,900,000 561,200,000

are syntactically dissimilar.

The results of evaluating SourcererCC on BigCloneBench

suggests that the use of code embeddings improve the recall of

the SourcererCC on the less syntactically-similar clone types

(Type-3 and Type-4), but may cause the recall on Type-1 and

Type-2 clones to drop. However, it is unclear what its effects

on precision are.

In order to evaluate our approach’s precision, we used

a second dataset, OJClone. We used all 104 programming

contest questions in the dataset and our results are shown

in Table V. As about 1% of pairs of code snippet in this

dataset are clone pairs, we introduce another baseline where

we randomly accept a pair of code fragments as code clones

1% of the time.

The clones in the OJClone dataset has been previously

considered to be of Type-3 and above [51]. The increase in

recall that we see is consistent with what we observe in the

BigCloneBench benchmark on Type-3 and Type-4 clones. On

the other hand, the results suggest that our approach causes

the precision of SourcererCC to decline. Due to the poor

recall of SourcererCC, the overall F1 of the approach using

code embeddings are slightly higher than the F1 when using

SourcererCC alone.

One hypothesis is that the poor precision of code embed-

dings is caused by a large number of tokens encountered in

the task’s dataset that are out-of-vocabulary (OOV) in the

embeddings. We count the number of times our approach tried

to retrieve a code vector, and the number of times it failed to

retrieve a token. The counts are presented in Table VI. We

see that over 95% of the time, our approach can successfully

retrieve the vectors of the tokens in the program fragments.

Therefore, out-of-vocabulary tokens are not the cause of poor

performance of our model.

Findings: While it appears that the approaches using embed-

dings improves the overall F1 score, the improvement is small.

It is unconvincing that the approaches using code embeddings

have encoded semantic qualities of code fragments necessary

to detect code clones. Overall, the recall of all approaches

are low and the embeddings-enhanced approaches suffer a

drastic loss of precision (0.87 to less than 0.1). Therefore, we

do not conclude that embeddings have successfully improved

SourcererCC’s ability to detect clones.

From a practical standpoint, our augmentation to Sourcer-

erCC also resulted in a large decline in speed, as we cannot use

the heuristics employed by SourcererCC to reduce the number

of clone pairs to compare. Scalability of detecting code clones

is a key concern for real-world usage, and we note that our

technique is only proposed to evaluate the code embeddings

and our technique may not be appropriate for real-world usage

due to its lack of scalability.

D. Lessons Learned

From the 3 tasks above, we see that code embeddings

cannot be used readily to improve simpler models. In

fact, in 2 out of 3 tasks, the use of embeddings lowers the

performance of the models they are added to. In the case of

the code authorship task, simpler approaches such as TF-IDF

outperforms models augmented with embeddings of source

code tokens. The only task where the code vectors do not

cause performance to deteriorate is the task of detecting code

clones. Even in this task, it appears that the use of embeddings

exchanges SourcererCC’s high precision for a higher recall

while maintaining a similar F1 score.

Our findings support the observations by Fu and

Menzies [31] that simpler baselines run faster and may

outperform complex techniques and they should be used

as baselines. We see that on the task of code authorship

identification, the use of code embeddings under-perform a

simpler approach that uses simple TF-IDF features. Likewise,

the use of code embeddings did not improve performance of

SourcererCC. In short, having a continuous representation of

code tokens may not necessarily perform better than simple

baselines that treat code tokens simply as symbols.

Code embeddings may not be a silver bullet to boost the

performance of deep learning models; other considerations

may have more impact. For example, we found that the

pre-processing on the data has large consequences on the

model’s performance. One hurdle to the effective use of neural

networks in the Software Engineering domain is the problem

of out-of-vocabulary tokens. Hellendoorn and Devanbu have

raised this issue before [55], and in their work, suggested that

deep learning techniques struggle with the large vocabulary

of source code. They demonstrated their point with a non-

deep learning model that can update and expand its vocabulary,

outperforming a deep learning model with a fixed vocabulary.

Our experiments validate the importance of pre-processing on

the code comment generation task, in which the technique of

converting rare tokens into the AST node type proposed by Hu

et al. result in improved performance. On the other hand, on

both the code clone detection and code authorship tasks, we

achieve poor performance although out-of-vocabulary tokens

did not appear to be an issue on those tasks. In the code

authorship identification task, the baseline features of just 1000

TF-IDF features were sufficient for good performance.

8

The composition of source code token embeddings

requires further investigation. In the domain of natural

language, it has been suggested that the composition of tokens

by summation, averaging or concatenation may be useful

for representing larger fragments of tokens [6], [53], [54].

However, in the code clones detection task, the composition

of source code tokens by these operators does not appear to

represent a body of tokens meaningfully enough to effectively

detect code clones. We believe that this result should motivate

research into other operators or methods of composing code

embeddings.

We find the lack of interpretability of code embeddings

to be a source of difficulty in this work. SourcererCC’s

criteria of measuring the overlap of code tokens is simple and

easy to interpret, on the other hand, our approach averaging

code vectors result in a representation that is hard to debug. In

additional, there are practical ramifications of our approach.

The original SourcererCC, with its heuristics based on its

count-based criteria, runs in a significantly shorter time and

achieves a comparable F-measure.

Finally, due to the lack of success we face trying to improve

models with code embeddings, it may indicate that token

embeddings learned over source code may not encode a

significant amount of either semantic or syntactic informa-

tion usable in different downstream tasks. We are unable

to use either the code2vec or GloVe embeddings effectively

in the 3 downstream tasks we identified, which may suggest

a lack of generalizability of token embeddings.

We believe our findings should motivate more work in the

area of finding good representations of code tokens, and that

future work on code representation should aim to address the

difficulties of using code embeddings on downstream tasks.

IV. THREATS TO VALIDITY

A. Threats to Internal Validity

Threats to internal validity concern factors that may influ-

ence our results. Our evaluation of code embeddings relies

on enhancing other techniques with the embeddings. One

limitation is that the techniques we have picked may not

be suitable for using a vector representation of source code.

Another limitation is that our integration of code2vec into

these techniques may be too naive. We have tried to mitigate

these limitations by selecting techniques that already use

code tokens in its input, and by using a variety of different

techniques in our evaluation. Both neural network-based ap-

proaches and techniques to use vector space calculations are

used, which will explore both the potential of code embeddings

to be used to initialize a neural network model and also

its ability to encode semantic and syntactic qualities through

vector space calculations.

Our experiments do not provide any insight about the code

embeddings’ lack of generalizability that we observed. They

suggest that code embeddings may not generalize beyond the

task it was trained on, but we were unable to find conclusive

reasons explaining why the code embeddings did not help

existing techniques. We leave further experiments and detailed

analysis that may provide these reasons for future work.

B. Threats to External Validity

Threats to external validity concern the generalizability of

our findings. While we have experimented on 3 downstream

tasks, there are other tasks that may benefit from the use of

pretrained token embeddings. It may also be possible that the

3 downstream tasks we have selected are not the best tasks for

applying code embeddings. For example, we only considered

downstream tasks where the input data is homogeneous.

We did not explore the effectiveness of code embeddings

in downstream tasks involving heterogenous inputs, such as

duplicate bug report detection [56] or duplicate StackOverflow

post detection [57]. The inputs to models may contain multiple

types of data (e.g. code snippets, stack traces, and text). To

use code embeddings, they will have to be used together

with other types of embeddings (e.g. word embeddings for

natural language text) and it will be interesting to observe if

code embeddings is helpful in these tasks. However, existing

literature does not suggest what common software engineering

tasks can benefit from token embeddings. To the best of our

knowledge, this is the first work that applies any model of code

embeddings to multiple downstream tasks. Indeed, the lack of

obvious software engineering tasks to apply code embeddings

on is motivation of our work. Moreover, in our work, we try to

cover a diversity of tasks that are different from one another.

For example, only code comment generation is closely related

to Natural Language Processing. Each task is likely to measure

different qualities that the code embeddings can encode. For

example, the code authorship tasks will require techniques to

distinguish between syntax preferences of different authors

while detecting Type-3 and Type-4 code clones will require

techniques that detect the same semantic functionality. In

addition, the tasks in this work involve both generative and

classification tasks.

Our experiments also may not imply anything about em-

beddings of other granularity of source code. Embeddings

have been trained over execution traces [53] or sequences

of API method invocations [58]. These embeddings may be

generalizable to other downstream tasks that do not use token-

based approaches. We note that evaluating these embeddings

are out of the scope of our work, and we do not say anything

about their generalizability. In this work, we focus only on

embeddings of source code tokens and code2vec is selected to

be representative of these embedding techniques. Comparison

with other code embedding techniques is beyond the scope

of this paper and it is worth investigating them in future to

confirm or refute the findings of this work.

V. RELATED WORK

In this section, we discuss prior work on evaluation of

word embeddings done in the NLP domain and embeddings

of source code. Due to page limitations, the survey here is by

no means complete.

9

A. Evaluation of word embeddings

In Natural Language Processing, there has been identical

work on evaluating word embeddings. Evaluation of word em-

beddings can be categorized into intrinsic and extrinsic eval-

uation [4], [59]. Intrinsic evaluation involves the use of word

analogy or similarity tasks, while extrinsic evaluation refers to

the evaluation of embeddings when used on downstream tasks.

Research has also found that intrinsic evaluations of word

embeddings do not correlate with extrinsic performance [60].

We believe that these insights and conclusions are applicable to

code embeddings as well, thus our work performs an extrinsic

evaluation of code embeddings.

B. Embeddings for source code

Granularity of embeddings: Other than code2vec, there

have been many proposed embeddings for code. A survey of

existing code embeddings are presented by Chen and Mon-

perrus [61], where works on embeddings are into categories

depending on the granularity of source code that is embedded:

source code tokens, functions, sequences or sets of method

calls, and binary code are the granularities of source code that

have been considered.

For examples of models that embed granularities of pro-

gram elements other than source code tokens, consider the

work by Xu et al. [62] and Theetan et al. [18] Xu et al.

trained embeddings of binary instructions and Theetan et al.

trained embeddings of library imports. While in this work we

investigated only token-based code embeddings, future work

should investigate and evaluate other granularities of code

embeddings on downstream tasks.

Token-based embeddings: In our work, we focused on em-

bedding source code tokens, which we consider to be the

most specific granularity. Researchers have trained and used

embeddings in a diverse set of tasks.

There are several examples of models that trained em-

beddings from source code tokens into a vector space [13],

[14], [16], [63]. Azcona et al. [13] proposed user2code2vec,

which are embeddings trained for profiling students. These

embeddings are used to predict if a student’s submissions are

correct. White et al. [14] trained embeddings for automatic

program repair. They used embeddings to compute the sim-

ilarity between identifiers for use in their repair technique.

They used a recurrent neural network language model to learn

embeddings and used them to transform program repair ”ingre-

dients” by replacing identifiers based on identifier similarity.

For code search, Gu et al. [16] trained a joint-embedding space

representing both code snippets and method documentation.

They represented code snippets by their method names, API

sequences in the method bodies, and the tokens in the method

bodies. They are jointly trained such that the method and its

documentation are embedded near to each other in the vector

space. Hellendoorn et al. [63] used a deep neural network for

type inference for dynamically-typed languages. Their model

first embeds tokens into a vector space then learn type vectors

in order to annotate the types of variables.

Evaluation of embeddings: While there are many embed-

dings proposed on a large variety of tasks, many research

works, including the works discussed above, did not evaluate

their embeddings on downstream tasks or did so only on tasks

that are closely related to the training task [13]–[19]. We

found only few examples of works that evaluate their work

on downstream tasks.

Similar to code2vec, Alon et al. [29] trained embeddings

of AST paths. They evaluated it on predicting names of

variable and methods, and predicting types of local variables.

They compared it against a baseline trained using word2vec

[1]. Defreez et al. [64] proposed func2vec, which maps

synonymous functions to vectors grouped together and a

downstream task of mining error-handling specifications in the

Linux kernel. Their miner successfully detected 2 violations

of the specifications they mined.

Henkel et al. [53] proposed to embed traces of symbolic

execution into a vector space. They evaluated their code

embeddings on a downstream task of predicting error codes.

Their results indicate that their embeddings may be useful

for finding bugs or suggesting repairs. In their work, they

proposed a benchmark for the code analogy task. The code

analogy task is an intrinsic evaluation on code embeddings,

where the embeddings are evaluated on their ability to express

relationships between analogous words in the vector space,

such as the analogy that ”mutex lock is to mutex unlock as

spin lock is to spin unlock”. However, work on NLP [60] has

suggested that performance on the word analogy task does not

imply good performance on downstream tasks.

In these works, while the code embeddings are shown to be

useful, they are often not compared against simpler baselines

and the use of code embeddings is evaluated only in at most

one other task. One exception is the work by Ben-Nun et

al. [65], where the trained embeddings are evaluated on 3

downstream tasks. They trained statement embeddings over a

graph constructed from both the data and control-flow graph.

They evaluated their embeddings on 3 downstream tasks of

classifying algorithms, a prediction task to predict if a program

will run faster on a CPU or GPU, and another prediction task

of the amount of work done on each GPU thread while running

a given program. However, unlike our evaluation of code2vec,

the downstream tasks they use include uncommon software

engineering tasks and are similar to one another.

VI. CONCLUSION AND FUTURE WORK

To conclude, our experiments on source code embeddings

suggest that they do not generalize readily to other tasks.

We performed experiments using code embeddings on three

downstream tasks: code comment generation, code authorship

identification and code clones detection. In each task, the

code embeddings do not result in models with improved

overall performance. Furthermore, in two of the tasks, they

are outperformed by simpler models.

As a consequence of our work, we call for the community

to evaluate embedding models more carefully. Similar to the

work already done for NLP, we propose that the usefulness of

10

embeddings are more appropriately evaluated using a variety

of downstream tasks. While it may be interesting to have

distributed representations of program elements, it is far more

important that embeddings can help in downstream tasks.

Users of code embeddings should be careful in their choice of

code embeddings, keeping in mind that not all code embed-

dings will necessarily be helpful for their targeted downstream

task.

For future work, a more comprehensive evaluation of ex-

isting source code token embeddings can be done on the

three tasks we identified in this work. Deeper analysis of the

differences between embeddings may lead to deeper insights

into how to train and use token embeddings. Beyond token

embeddings, an evaluation of distributed representations of

other granularities, e.g. function embeddings, in downstream

tasks is a natural next step for future work.

We end with a call for further research beyond the in-

troduction of new models of training code embeddings, but

to describe how the embeddings can be used for a variety

of downstream tasks and to demonstrate that they can be

useful beyond the single task they were trained on. We believe

that the software engineering community should not view the

training of embeddings as an end to itself, but instead, as a

means to achieve better performance in other tasks.

REFERENCES

[1] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean,
“Distributed representations of words and phrases and their composi-
tionality,” in Advances in neural information processing systems, 2013,
pp. 3111–3119.

[2] J. Pennington, R. Socher, and C. Manning, “Glove: Global vectors
for word representation,” in Proceedings of the 2014 conference on

empirical methods in natural language processing (EMNLP), 2014, pp.
1532–1543.

[3] R. Collobert and J. Weston, “A unified architecture for natural language
processing: Deep neural networks with multitask learning,” in Proceed-

ings of the 25th international conference on Machine learning. ACM,
2008, pp. 160–167.

[4] T. Schnabel, I. Labutov, D. Mimno, and T. Joachims, “Evaluation
methods for unsupervised word embeddings,” in Proceedings of the 2015

Conference on Empirical Methods in Natural Language Processing,
2015, pp. 298–307.

[5] J. Turian, L. Ratinov, and Y. Bengio, “Word representations: a simple
and general method for semi-supervised learning,” in Proceedings of the

48th annual meeting of the association for computational linguistics.
Association for Computational Linguistics, 2010, pp. 384–394.

[6] I. Iacobacci, M. T. Pilehvar, and R. Navigli, “Embeddings for word sense
disambiguation: An evaluation study,” in Proceedings of the 54th Annual

Meeting of the Association for Computational Linguistics (Volume 1:

Long Papers), vol. 1, 2016, pp. 897–907.
[7] A. Hindle, E. T. Barr, Z. Su, M. Gabel, and P. Devanbu, “On the

naturalness of software,” in 2012 34th International Conference on

Software Engineering (ICSE). IEEE, 2012, pp. 837–847.
[8] V. Raychev, M. Vechev, and A. Krause, “Predicting program properties

from big code,” in ACM SIGPLAN Notices, vol. 50, no. 1. ACM, 2015,
pp. 111–124.

[9] V. Efstathiou and D. Spinellis, “Semantic source code models using
identifier embeddings,” in 16th International Conference on Mining

Software Repositories (MSR 2019), 2019.
[10] M. Pradel and K. Sen, “Deepbugs: a learning approach to name-based

bug detection,” Proceedings of the ACM on Programming Languages,
vol. 2, no. OOPSLA, p. 147, 2018.

[11] S. Iyer, I. Konstas, A. Cheung, and L. Zettlemoyer, “Summarizing source
code using a neural attention model,” in Proceedings of the 54th Annual

Meeting of the Association for Computational Linguistics (Volume 1:

Long Papers), vol. 1, 2016, pp. 2073–2083.

[12] U. Alon, M. Zilberstein, O. Levy, and E. Yahav, “code2vec: Learning
distributed representations of code,” Proceedings of the ACM on Pro-

gramming Languages, vol. 3, no. POPL, p. 40, 2019.
[13] D. Azcona, P. Arora, I.-H. Hsiao, and A. Smeaton, “user2code2vec:

Embeddings for profiling students based on distributional representations
of source code,” in Proceedings of the 9th International Conference on

Learning Analytics & Knowledge. ACM, 2019, pp. 86–95.
[14] M. White, M. Tufano, M. Martı́nez, M. Monperrus, and D. Poshyvanyk,

“Sorting and transforming program repair ingredients via deep learning
code similarities,” in 2019 IEEE 26th International Conference on

Software Analysis, Evolution and Reengineering (SANER). IEEE, 2019,
pp. 479–490.

[15] X. Gu, H. Zhang, D. Zhang, and S. Kim, “Deep api learning,” in
Proceedings of the 2016 24th ACM SIGSOFT International Symposium

on Foundations of Software Engineering. ACM, 2016, pp. 631–642.
[16] X. Gu, H. Zhang, and S. Kim, “Deep code search,” in 2018 IEEE/ACM

40th International Conference on Software Engineering (ICSE). IEEE,
2018, pp. 933–944.

[17] C. Piech, J. Huang, A. Nguyen, M. Phulsuksombati, M. Sahami, and
L. Guibas, “Learning program embeddings to propagate feedback on
student code,” in Proceedings of the 32nd International Conference on

International Conference on Machine Learning-Volume 37. JMLR. org,
2015, pp. 1093–1102.

[18] B. Theeten, F. Vandeputte, and T. Van Cutsem, “Import2vec-learning
embeddings for software libraries,” 16th International Conference on

Mining Software Repositories (MSR 2019), 2019.
[19] C. S. Corley, K. Damevski, and N. A. Kraft, “Exploring the use of deep

learning for feature location,” in 2015 IEEE International Conference

on Software Maintenance and Evolution (ICSME). IEEE, 2015, pp.
556–560.

[20] X. Hu, G. Li, X. Xia, D. Lo, and Z. Jin, “Deep code comment
generation,” in Proceedings of the 26th Conference on Program Com-

prehension. ACM, 2018, pp. 200–210.
[21] M. Abuhamad, T. AbuHmed, A. Mohaisen, and D. Nyang, “Large-scale

and language-oblivious code authorship identification,” in Proceedings

of the 2018 ACM SIGSAC Conference on Computer and Communica-

tions Security. ACM, 2018, pp. 101–114.
[22] H. Sajnani, V. Saini, J. Svajlenko, C. K. Roy, and C. V. Lopes, “Sourcer-

ercc: scaling code clone detection to big-code,” in 2016 IEEE/ACM 38th

International Conference on Software Engineering (ICSE). IEEE, 2016,
pp. 1157–1168.

[23] M. Allamanis, M. Brockschmidt, and M. Khademi, “Learning to repre-
sent programs with graphs,” in 6th International Conference on Learning

Representations, ICLR 2018, Vancouver, BC, Canada, April 30 - May

3, 2018, Conference Track Proceedings, 2018.
[24] J. Devlin, J. Uesato, R. Singh, and P. Kohli, “Semantic code re-

pair using neuro-symbolic transformation networks,” arXiv preprint

arXiv:1710.11054, 2017.
[25] L. Büch and A. Andrzejak, “Learning-based recursive aggregation of

abstract syntax trees for code clone detection,” in 2019 IEEE 26th Inter-

national Conference on Software Analysis, Evolution and Reengineering

(SANER). IEEE, 2019, pp. 95–104.
[26] N. D. Bui, L. Jiang, and Y. Yu, “Cross-language learning for program

classification using bilateral tree-based convolutional neural networks,”
in Workshops at the Thirty-Second AAAI Conference on Artificial

Intelligence, 2018.
[27] L. Mou, G. Li, L. Zhang, T. Wang, and Z. Jin, “Convolutional neural

networks over tree structures for programming language processing,” in
Thirtieth AAAI Conference on Artificial Intelligence, 2016.

[28] M. Allamanis, E. T. Barr, C. Bird, and C. Sutton, “Suggesting accurate
method and class names,” in Proceedings of the 2015 10th Joint Meeting

on Foundations of Software Engineering. ACM, 2015, pp. 38–49.
[29] U. Alon, M. Zilberstein, O. Levy, and E. Yahav, “A general path-based

representation for predicting program properties,” in ACM SIGPLAN

Notices, vol. 53, no. 4. ACM, 2018, pp. 404–419.
[30] K. Liu, D. Kim, T. F. Bissyandé, T. Kim, K. Kim, A. Koyuncu, S. Kim,

and Y. Le Traon, “Learning to sport and refactor inconsistent method
names,” in 41st ACM/IEEE International Conference on Software Engi-

neering (ICSE). IEEE, 2019.
[31] W. Fu and T. Menzies, “Easy over hard: A case study on deep learning,”

in Proceedings of the 2017 11th Joint Meeting on Foundations of

Software Engineering. ACM, 2017, pp. 49–60.

11

[32] G. Sridhara, E. Hill, D. Muppaneni, L. Pollock, and K. Vijay-Shanker,
“Towards automatically generating summary comments for java meth-
ods,” in Proceedings of the IEEE/ACM international conference on

Automated software engineering. ACM, 2010, pp. 43–52.
[33] S. Haiduc, J. Aponte, and A. Marcus, “Supporting program compre-

hension with source code summarization,” in Proceedings of the 32nd

ACM/IEEE International Conference on Software Engineering-Volume

2. ACM, 2010, pp. 223–226.
[34] K. Papineni, S. Roukos, T. Ward, and W.-J. Zhu, “Bleu: a method

for automatic evaluation of machine translation,” in Proceedings of

the 40th annual meeting on association for computational linguistics.
Association for Computational Linguistics, 2002, pp. 311–318.

[35] D. Coughlin, “Correlating automated and human assessments of machine
translation quality,” in Proceedings of MT summit IX., 2003, pp. 63–70.

[36] M. Linares-Vásquez, L. F. Cortés-Coy, J. Aponte, and D. Poshyvanyk,
“Changescribe: A tool for automatically generating commit messages,”
in 2015 IEEE/ACM 37th IEEE International Conference on Software

Engineering, vol. 2. IEEE, 2015, pp. 709–712.
[37] Z. Liu, X. Xia, A. E. Hassan, D. Lo, Z. Xing, and X. Wang, “Neural-

machine-translation-based commit message generation: how far are we?”
in Proceedings of the 33rd ACM/IEEE International Conference on

Automated Software Engineering. ACM, 2018, pp. 373–384.
[38] S. Jiang, A. Armaly, and C. McMillan, “Automatically generating

commit messages from diffs using neural machine translation,” in Pro-

ceedings of the 32nd IEEE/ACM International Conference on Automated

Software Engineering. IEEE Press, 2017, pp. 135–146.
[39] G. Klein, Y. Kim, Y. Deng, J. Senellart, and A. M. Rush, “Opennmt:

Open-source toolkit for neural machine translation,” in Proc. ACL,
2017. [Online]. Available: https://doi.org/10.18653/v1/P17-4012

[40] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural

computation, vol. 9, no. 8, pp. 1735–1780, 1997.
[41] E. Stamatatos, “A survey of modern authorship attribution methods,”

Journal of the American Society for information Science and Technology,
vol. 60, no. 3, pp. 538–556, 2009.

[42] A. Caliskan-Islam, R. Harang, A. Liu, A. Narayanan, C. Voss, F. Ya-
maguchi, and R. Greenstadt, “De-anonymizing programmers via code
stylometry,” in 24th {USENIX} Security Symposium ({USENIX} Secu-

rity 15), 2015, pp. 255–270.
[43] J. Mayrand, C. Leblanc, and E. Merlo, “Experiment on the automatic

detection of function clones in a software system using metrics,” in
1996 International Conference on Software Maintenance (ICSM ’96),

4-8 November 1996, Monterey, CA, USA, Proceedings, 1996, p. 244.
[44] Y. Dubinsky, J. Rubin, T. Berger, S. Duszynski, M. Becker, and K. Czar-

necki, “An exploratory study of cloning in industrial software product
lines,” in 2013 17th European Conference on Software Maintenance and

Reengineering. IEEE, 2013, pp. 25–34.
[45] S. Thummalapenta, L. Cerulo, L. Aversano, and M. Di Penta, “An

empirical study on the maintenance of source code clones,” Empirical

Software Engineering, vol. 15, no. 1, pp. 1–34, 2010.
[46] L. Barbour, F. Khomh, and Y. Zou, “Late propagation in software

clones,” in 2011 27th IEEE International Conference on Software

Maintenance (ICSM). IEEE, 2011, pp. 273–282.
[47] J. Svajlenko and C. K. Roy, “Evaluating clone detection tools with

bigclonebench,” in 2015 IEEE International Conference on Software

Maintenance and Evolution (ICSME). IEEE, 2015, pp. 131–140.
[48] J. Svajlenko, J. F. Islam, I. Keivanloo, C. K. Roy, and M. M. Mia,

“Towards a big data curated benchmark of inter-project code clones,”
in 2014 IEEE International Conference on Software Maintenance and

Evolution. IEEE, 2014, pp. 476–480.
[49] J. Svajlenko and C. K. Roy, “Bigcloneeval: A clone detection tool

evaluation framework with bigclonebench,” in 2016 IEEE International

Conference on Software Maintenance and Evolution (ICSME). IEEE,
2016, pp. 596–600.

[50] “Ambient software engineering group seclone project,”
https://sites.google.com/site/asegsecold/projects/seclone, accessed:
2019-05-13.

[51] H.-H. Wei and M. Li, “Positive and unlabeled learning for detecting
software functional clones with adversarial training,” in Proceedings of

the 27th International Joint Conference on Artificial Intelligence. AAAI
Press, 2018, pp. 2840–2846.

[52] V. Saini, F. Farmahinifarahani, Y. Lu, P. Baldi, and C. V. Lopes, “Oreo:
Detection of clones in the twilight zone,” in Proceedings of the 2018

26th ACM Joint Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engineering. ACM,
2018, pp. 354–365.

[53] J. Henkel, S. K. Lahiri, B. Liblit, and T. Reps, “Code vectors: under-
standing programs through embedded abstracted symbolic traces,” in
Proceedings of the 2018 26th ACM Joint Meeting on European Software

Engineering Conference and Symposium on the Foundations of Software

Engineering. ACM, 2018, pp. 163–174.
[54] Q. Le and T. Mikolov, “Distributed representations of sentences and

documents,” in International conference on machine learning, 2014, pp.
1188–1196.

[55] V. J. Hellendoorn and P. Devanbu, “Are deep neural networks the best
choice for modeling source code?” in Proceedings of the 2017 11th

Joint Meeting on Foundations of Software Engineering. ACM, 2017,
pp. 763–773.

[56] C. Sun, D. Lo, X. Wang, J. Jiang, and S.-C. Khoo, “A discriminative
model approach for accurate duplicate bug report retrieval,” in Pro-

ceedings of the 32nd ACM/IEEE International Conference on Software

Engineering-Volume 1. ACM, 2010, pp. 45–54.
[57] M. Ahasanuzzaman, M. Asaduzzaman, C. K. Roy, and K. A. Schneider,

“Mining duplicate questions in stack overflow,” in Proceedings of the

13th International Conference on Mining Software Repositories. ACM,
2016, pp. 402–412.

[58] X. Gu, H. Zhang, D. Zhang, and S. Kim, “Deepam: migrate apis with
multi-modal sequence to sequence learning,” in Proceedings of the 26th

International Joint Conference on Artificial Intelligence. AAAI Press,
2017, pp. 3675–3681.

[59] M. Faruqui, Y. Tsvetkov, P. Rastogi, and C. Dyer, “Problems with evalu-
ation of word embeddings using word similarity tasks,” in Proceedings

of the 1st Workshop on Evaluating Vector-Space Representations for

NLP, 2016, pp. 30–35.
[60] B. Chiu, A. Korhonen, and S. Pyysalo, “Intrinsic evaluation of word

vectors fails to predict extrinsic performance,” in Proceedings of the 1st

Workshop on Evaluating Vector-Space Representations for NLP, 2016,
pp. 1–6.

[61] Z. Chen and M. Monperrus, “A literature study of embeddings on source
code,” arXiv preprint arXiv:1904.03061, 2019.

[62] X. Xu, C. Liu, Q. Feng, H. Yin, L. Song, and D. Song, “Neural network-
based graph embedding for cross-platform binary code similarity detec-
tion,” in Proceedings of the 2017 ACM SIGSAC Conference on Computer

and Communications Security. ACM, 2017, pp. 363–376.
[63] V. J. Hellendoorn, C. Bird, E. T. Barr, and M. Allamanis, “Deep learning

type inference,” in Proceedings of the 2018 26th ACM Joint Meeting

on European Software Engineering Conference and Symposium on the

Foundations of Software Engineering. ACM, 2018, pp. 152–162.
[64] D. DeFreez, A. V. Thakur, and C. Rubio-González, “Path-based function

embedding and its application to specification mining,” in Proceedings

of the 2018 26th ACM Joint Meeting on European Software Engineering

Conference and Symposium on the Foundations of Software Engineering.
ACM, 2018.

[65] T. Ben-Nun, A. S. Jakobovits, and T. Hoefler, “Neural code compre-
hension: A learnable representation of code semantics,” in Advances in

Neural Information Processing Systems, 2018, pp. 3585–3597.

12

