
Pro� ling the human immune system
� e immune system plays a central role not only in health 

maintenance but also in pathogenesis: excess immunity is 

associated, for instance, with auto-immune diseases (for 

example, multiple sclerosis, type 1 diabetes, psoriasis, 

lupus, rheumatoid arthritis), infl ammation (sepsis, infl am-

matory bowel disease) and allergy, as well as cell and 

organ rejection; defi cient immunity is, on the other hand, 

linked to cancer or susceptibility to infection.

When investigating immune-mediated diseases in 

humans, restricted access to relevant tissue(s) for samp-

ling, such as the brain in multiple sclerosis or the joints in 

rheumatoid arthritis, constitutes a major limitation. Cells 

of the immune system, however, become educated and 

implement their functions by recirculating between 

central and peripheral lymphoid organs as well as by 

migrating to and from sites of injury via the blood 

(Figure 1). As blood fl ows throughout the body, carrying 

naïve and educated immune cells from one site to 

another, it acts as a pipeline for the immune system. 

Indeed, it is the preferred route for immune cells to reach 

the lymph nodes where antigen-specifi c immune 

responses develop. After exiting these nodes through 

outgoing lymphatic vessels, the cells again reach the 

bloodstream to be transported to tissues throughout the 

body. Upon patrolling these tissues, they gradually drift 

back into the lymphatic system to re-enter the blood and 

begin the cycle all over again. � e complex patterns of 

recirculation depend on the state of cell activation, the 

adhesion molecules expressed by immune and endo-

thelial cells, and the presence of chemotactic molecules 

that selectively attract particular populations of blood 

cells. Circulating immune cells are, in addition, exposed 

to factors that are released systemically.

A wide range of molecular and cellular profi ling assays 

is currently available for the study of the human immune 

system (Figure 2). � e level of sophistication of instru-

ments such as polychromatic fl ow cytometers, one of the 

immunologist’s favorite tools, has increased over the past 

few years. Major technological breakthroughs have also 

occurred in the fi elds of genomics and proteomics, thus 

creating today a unique opportunity for the study of 

human beings in health and disease where inherent 

heterogeneity dictates that large collections of samples be 

analyzed. Among the high-throughput molecular profi l-

ing technologies available today, genomic approaches are 

the most scalable, have the most breadth and robustness, 

and therefore are best suited for the study of human 

populations.

� e human genome can be investigated from two 

diff erent angles that consist of either determining its 

make up or measuring its output. Sequence variation can 

be detected using, for instance, single nucleotide poly-

morphism (SNP) chips, which permit the identifi cation 

of common polymorphisms or rare mutations associated 

with diseases. Hundreds of thousands of SNPs can be 

typed using these platforms, yielding a genome-wide, 

hypothesis-free scan of genetic associations for a given 

phenotype of interest. Many such genome-wide associa-

tion studies (often referred to as GWAS) have been 

published in recent years, a number of them investigating 

the genetic underpinning of immune-related diseases [1]. 

Notably, such studies have been useful to pinpoint genes 

and pathways that may be involved in the pathogenesis of 

Abstract

Blood is the pipeline of the immune system. Assessing 

changes in transcript abundance in blood on a 

genome-wide scale a� ords a comprehensive view of 

the status of the immune system in health and disease. 

This review summarizes the work that has used this 

approach to identify therapeutic targets and biomarker 

signatures in the � eld of autoimmunity and infectious 

disease. Recent technological and methodological 

advances that will carry the blood transcriptome 

research � eld forward are also discussed.

Assessing the human immune system through 
blood transcriptomics
Damien Chaussabel*, Virginia Pascual and Jacques Banchereau

R E V I E W  Open Access

*Correspondence: DamienC@BaylorHealth.edu

Baylor Institute for Immunology Research and Baylor Research Institute, 3434 Live 

Oak, Dallas, TX 75204, USA

© 2010 Chaussabel et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative 
Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and 
reproduction in any medium, provided the original work is properly cited.

Hope of Progress

Chaussabel et al. BMC Biology 2010, 8:84 

http://www.biomedcentral.com/1741-7007/8/84



Figure 1. Blood is the pipeline of the immune system. Transcriptional pro� ling in the blood consists of measuring RNA abundance in circulating 

nucleated cells. Changes in transcript abundance can result from exposure to host or pathogen-derived immunogenic factors (for example, 

pathogen-derived molecular patterns activating specialized pattern recognition receptors expressed at the surface of leukocytes) and/or changes 

in relative cellular composition (for example, in� ux of immature neutrophils occurring in response to bacterial infection). The main blood leukocyte 

populations circulating in the blood are represented in this � gure. Each cell type has a specialized function. Eosinophils, basophils and neutrophils 

are innate immune e� ectors playing a key role in defense against pathogens. T lymphocytes are the mediators of the adaptive cellular immune 

response. Antibody producing B lymphocytes (plasma cells) are key e� ectors of the humoral immune response. Monocytes, dendritic cells and 

B lymphocytes present antigens to T lymphocytes and play a central role in the development of the adaptive immune response. Blood leukocytes 

can be exposed in the circulation to factors released systemically from tissues where pathogenic processes take place. In addition, leukocytes will 

cross the endothelial barrier to reach local sites of in� ammation. Dendritic cells exposed to in� ammatory factors in tissues will be transported 

via the lymphatic system and reach lymph nodes via the a� erent lymphatic vessels. These dendritic cells will encounter naïve T cells that are 

transported to the lymph node via high endothelial venules. ‘Educated’ T cells will then exit the lymph node via e� erent lymph vessels that collect 

in the thoracic lymph duct, which in turn connects to the subclavian vein, at which point these T cells rejoin the blood circulation.
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autoimmune diseases [2]. Associations between common 

genetic variants and resistance to infection have also 

been reported [3,4]. However, parameters measured by 

this approach are determined by heredity and will not 

change throughout the life of an individual. � is is in 

contrast to transcript abundance, which is the parameter 

measured by the second genome-wide profi ling approach. 

Transcriptional activity is largely dependent on environ-

mental factors and, as a result, RNA abundance will 

change dynamically over time. For instance, sets of trans-

cripts may be induced in response to an infectious 

challenge and return to baseline levels following pathogen 

clearance. Dynamic changes in the cellular make up of a 

tissue will also eff ect changes in transcript abundance that 

will be measured on a genome-wide scale.

Transcriptional profi les have been obtained from many 

human tissues -including, for instance, the skin [5,6], 

muscle [7], liver [8,9], kidney [10,11] or brain [12] - but 

the status of the immune system can be best monitored 

by profi ling transcript abundance in blood. Indeed, 

profi ling transcript abundance in blood provides a ‘snap 

shot’ of the complex immune networks that operate 

throughout the entire body. However, while this has 

proven to be a valid approach to fi nding clues about 

Figure 2. The immune pro� ling armamentarium. The number of high-throughput molecular and cellular pro� ling tools that can be used to 

pro� le the human immune system is increasing rapidly. Proteomic assays are used to determine antibody speci� city or measure changes in serum 

levels of cytokines or chemokines using multiplex assays. Cellular pro� ling assays are used to phenotype immune cells based on intracellular or 

extracellular markers using polychromatic � ow cytometry. In vitro cellular assays can measure innate or antigen-speci� c responsiveness in cells 

exposed to immunogenic factors. Genomic approaches consist of measuring abundance of cellular RNA and also microRNAs that are present in 

cells or in the serum. Other genomic approaches consist of determining gene sequence and function (for example, genome-wide association 

studies, RNA interference screens, exome sequencing).
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patho genesis as well as to identifying potential bio-

markers [13-16], a number of challenges and limitations 

exist. Data interpretation is one of them. Firstly, the 

volume of data generated from such studies can be over-

whelming, and it is necessary to integrate information 

from a multitude of sources (study design, quality control 

data, sample information, and importantly clinical infor-

mation) in order for the results to be interpretable. 

Secondly, the changes in transcript abundance observed 

in complex tissues such as blood can be caused not only 

by regulation of gene transcriptional activity but also by 

relative changes in abundance of cell populations expres-

sing transcripts at constant levels. � irdly, in addition to 

pathogenic processes, a number of factors may aff ect 

blood transcript abundance and confound the analysis. 

Medications and co-morbidities are two such factors that 

often restrict patient selection and complicate data 

interpretation. � is review will discuss some of the 

strategies recently developed that will address some of 

these limitations.

Transcriptome pro� ling: a technology primer
Real-time PCR technology is currently considered the 

gold standard for the analysis of gene expression. 

However, it can be used to measure abundance of only a 

limited number of transcripts. Introduced over 10 years 

ago, DNA microarrays are now in routine use and can 

measure transcript abundance on a genome-wide scale. 

� is technology relies on dense arrays of oligonucleotide 

probes that will capture complementary sequences 

present in biological samples at various concentrations. 

� e probes can be deposited on a solid surface (printed 

microarrays), synthesized in situ (Aff ymetrix GeneChips), 

or bound to glass beads lodged into wells etched in the 

surface of a glass slide (Illumina BeadArrays). � e labeled 

material captured by the microarray is imaged and 

relative abundance determined based on the strength of 

the signal produced by each oligonucleotide feature. It 

should be noted that, while they provide a means to 

survey transcript abundance on a genome-wide scale, the 

sensitivity of microarray assays is low compared to other 

approaches such as real-time PCR. A microarray is not a 

fully quantitative assay and changes in transcript abun-

dance must be measured in reference to control samples 

that need to be included in each study. However, some of 

these limitations may be lifted by methods relying on 

high-throughput sequencing for the genome-wide 

measurement of RNA abundance [17]. Building on the 

legacy of the SAGE (serial analysis of gene expression) 

technology introduced in the 1990s, RNA sequencing 

(RNA-seq) [18] uses either total or fractionated RNA, for 

example poly(A)+, as a starting point. � is material is 

converted to a library of cDNA fragments. High through-

put sequencing of such fragments yields short sequences 

or reads that are typically 30 to 400 bp in length, depend-

ing on the technology platform used. For a given sample, 

tens of millions of such sequences will then be uniquely 

mapped against a reference genome. � e higher the level 

of expression of a given gene, the higher the number of 

reads that will be aligned against it (Figure 3). � us, this 

approach does not rely on probe design and provides 

several types of information, including not only transcript 

abundance but also transcriptome structure (splice vari-

ants), profi les of non-coding RNA species, and genetic 

polymorphisms. RNA-seq is expected to become suffi  -

ciently cost-eff ective and practical that it will eventually 

supersede microarray technologies.

Other technologies should be considered for the 

profi ling of focused sets of genes. Nanostring technology 

can, for instance, detect the abundance of up to 500 

transcripts with high sensitivity [19]. � e approach is 

‘digital’ since it counts individual RNA molecules using 

strings of fl uorochromes as reporters to identify the 

diff erent RNA species. Other technology platforms 

developed by, among others, Luminex, High � roughput 

Genomics or Fluidigm round up the off ering for ‘sub-

genome’ transcript profi ling.

Pro� ling autoimmune diseases
� e fi eld of autoimmunity has proven a fertile ground for 

blood transcriptional studies. Alterations in transcript 

abundance in the blood of patients refl ect the sustained 

response against self-antigens and, more generally, un-

con trolled infl ammatory processes. Such diseases often 

present with recurring-remitting patterns of activity, with 

episodes of fl aring that may be refl ected by fl uctuations 

in transcript abundance. � e work has initially focused 

on diseases with clear systemic involvement such as 

systemic lupus erythematosus (SLE) [20,21]. Multiple cell 

types and soluble mediators, including IL10 [22,23] and 

IFNγ [24-26], have been proposed to be at the center of 

lupus pathogenesis. While some scattered evidence 

indicated the potential role of type I interferon in lupus, 

several observations did not support the hypothesis: fi rst, 

not every SLE patient has detectable serum type I IFN 

levels [27]; second, dysregulation of type-I IFN produc-

tion is not found in most murine SLE-models [28]; and 

third, genetic linkage and association studies had not 

identifi ed candidate lupus susceptibility genes within the 

IFN pathway [29]. However, in one of our earliest micro-

array studies we demonstrated that all but one of the 

pediatric patients exhibited upregulation of IFN-

inducible genes, and the only patient lacking this signa-

ture had been in remission for over 2 years [20]. In 

addition, it was found that treating SLE patients with 

high dose IV steroids, which are used to control disease 

fl ares, results in the silencing of the IFN signature. A 

surprise from these initial studies was the absence of type 
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I IFN gene transcripts in the face of an abundance of 

IFN-inducible ones in the blood cells of SLE patients. A 

likely explanation is that the cells producing type I IFN, 

and therefore transcribing these genes, migrate to sites of 

injury. Altogether, results from microarray studies played 

a key role in convincing the community of the potential 

importance of type I IFN in SLE pathogenesis [15,30-34]. 

A phase Ia trial to evaluate the safety, pharmacokinetics, 

and immunogenicity of anti-IFNα monoclonal antibody 

(mAb) therapy in adult SLE patients was recently con-

ducted [35]. � e antibody elicited a specifi c and dose-

dependent inhibition of overexpression of type I IFN-

inducible genes in both whole blood and skin lesions 

from SLE patients, at both the transcript and protein 

levels. As expected, overexpression of BLyS/BAFF, a 

type I IFN-inducible gene, also decreased with treatment. 

� us, this fi rst trial supports the proposed central role of 

type I IFN in human SLE.

Systemic onset juvenile arthritis (SoJIA) is another 

disease with systemic involvement that greatly benefi ted 

from the study of blood transcriptional profi les with the 

development of both therapeutic and diagnostic modali-

ties [14,16,36,37]. Diseases with specifi c organ involve-

ment have also been the subject of signifi cant, yet not 

always extensive, blood profi ling eff orts. Blood signatures 

have, for instance, been obtained from patients with 

Figure 3. RNA pro� ling technologies. Several technology platforms are available for measuring RNA abundance on large scales. Microarray 

technologies rely on dense arrays of oligonucleotide probes used to capture complementary sequences present in biological samples at 

various concentrations. Following extraction, RNA is used as a template and ampli� ed in a labeling reaction. The labeled material captured by 

the microarray is imaged and relative abundance determined based on the strength of the signal produced by the � uorochromes that serve as 

reporters in this assay. The Nanostring technology measures RNA abundance at the single molecule level. RNA serves as starting material for this 

assay, which does not involve the use of enzymes for ampli� cation or labeling. Capture and reporter probes form complexes in solution with 

RNA molecules. These complexes are captured on a solid surface and imaged. Molecule counts are generated based on the number of reporter 

probes detected on the image. The reporter consists of a string of seven � uorochromes, with four di� erent colors available to � ll each position. 

Up to 500 di� erent transcripts can be detected in a single reaction on this platform. For RNA sequencing (RNA-seq) the starting RNA population 

must � rst be converted into a library of cDNA fragments. High throughput sequencing of such fragments yields short sequences or reads that 

are typically 30 to 400 bp in length. For a given sample tens of millions of such sequences will then be uniquely mapped against a reference 

genome. The density of coverage for a given gene determines its relative level of expression. Similarities and di� erences between these technology 

platforms should be noted. For instance, microarrays and Nanostring technologies rely on oligonucleotide probes to capture complementary target 

sequences. Nanostring and RNA-seq technologies measure abundance at the single molecule level, with results expressed as molecule counts and 

sequence coverage, respectively. Microarray and RNA-seq technologies require extensive sample processing, which include ampli� cation steps. 
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multiple sclerosis [38,39]. Given the inaccessibility of the 

brain, blood constitutes a particularly attractive source of 

surrogate molecular markers for this disease. � ese 

eff orts have yielded a systemic signature and identifi ed 

potential predictive markers of clinical relapse and 

response to treatment [40-42]. Transcriptional signatures 

have also been generated in the context of dermatologic 

diseases. In this case, the target organ being readily 

accessible, eff orts have been focusing on profi ling 

transcript abundance in skin tissues [43,44]. However, 

systemic involvement has been recognized in recent 

years to be an important component of autoimmune skin 

diseases and unique blood transcriptional profi les have 

also been identifi ed in patients with, for example, 

psoriasis [45-47].

Blood transcriptional profi les have been generated in 

the context of many other autoimmune diseases. Indeed, 

the range of autoimmune/autoinfl ammatory diseases that 

have been investigated encompasses SLE [20,21,48,49], 

juvenile idiopathic arthritis [16,50-53], multiple sclerosis 

[54,55], rheumatoid arthritis [56-59], Sjogren’s syndrome 

[60], diabetes [61,62], infl ammatory bowel disease [63], 

psoriasis and psoriatic arthritis [45,47], infl ammatory 

myopathies [64,65], scleroderma [66,67], vasculitis [68] 

and anti-phospholipid syndrome [69]. � e body of work 

produced that focuses on blood transcript profi ling in the 

context of autoimmune diseases has been covered at 

length in a recent review [70].

Pro� ling infectious diseases
Global changes in transcript abundance have also been 

measured in the blood of patients with infectious 

diseases. In this context, alterations of blood transcrip-

tional profi les are a refl ection of the immunological 

response mounted by the host against pathogens. � is 

response is initiated by specialized receptors expressed at 

the surface of host cells recognizing pathogen-associated 

molecular patterns [71]. Diff erent classes of pathogens 

signal through diff erent combinations of receptors, elicit-

ing in turn diff erent types of immune responses [72]. � is 

translates experimentally into distinct transcriptional 

programs being induced upon exposure of immune cells 

in vitro to distinct classes of infectious agents [73-75]. 

Similarly, patterns of transcript abundance measured in 

the blood of patients with infections caused by diff erent 

etiological agents were found to be distinct [13].

Predictably, dramatic changes were observed in the 

blood of patients with systemic infections (for example, 

sepsis) [76,77]. However, profound alterations in patterns 

of transcript abundance were also found in patients with 

localized infections (for example, upper respiratory tract 

infection, urinary tract infections, pulmonary tubercu lo sis, 

skin abscesses) [13,16,78]. Measuring changes in host 

transcriptional profi les may therefore prove of diagnostic 

value even in situations where the causative pathogenic 

agent is not present in the test sample. Importantly, it 

may also help ascertain the severity of the infection and 

monitor its course.

Infections often present as acute clinical events; thus, it 

is important to capture dynamic changes in transcript 

abundance that occur during the course of the infection 

from the time of initial exposure. Blood signatures have 

been described in the context of acute infections caused 

by a wide range of pathogenic parasites, viruses and 

bacteria, including Plasmodium [79,80], respiratory 

viruses (infl uenza, rhinovirus, respiratory syncytial virus) 

[13,81-84], dengue virus [85,86], and adenovirus [82], as 

well as Salmonella [87], Mycobacterium tuberculosis [78], 

Staphylococcus aureus [88], Burkholderia pseudomallei 

[76] and the general context of bacterial sepsis [77,89-91]. 

Some of those pathogens will persist and establish 

chronic infections (for example, human immuno defi -

ciency virus and Plasmodium) that may lead to a state of 

latency (for example, tuberculosis), and transcript profi l-

ing may be used in those situations as a surveillance tool 

for monitoring disease progression or reactivation.

Blood profi ling of infectious diseases remains limited in 

scale. In particular, additional studies will be necessary to 

ascertain dynamic changes occurring over time.

Pro� ling other diseases
In addition to autoimmune and infectious diseases, blood 

transcript profi ling studies have been carried out in the 

cancer research fi eld. While hematological malignancies 

have led the way (reviewed in [92]), blood profi les have 

also been obtained more recently from patients with solid 

organ tumors [93]. Notably, these signatures can refl ect 

not only the immunological or physiological changes 

eff ected by cancers but also the presence of rare tumor 

cells in the circulation [94-96].

Blood signatures have also been obtained from solid 

organ transplant recipients in the context of both toler-

ance [97-99] and graft rejection [10,100,101]. While such 

signatures can also be detected in biopsy material [102-

104], blood off ers the distinct advantage of being acces-

sible for safely monitoring molecular changes on a 

routine basis.

Some work has also been done in the context of cardio-

vascular diseases where infl ammation is known to play 

an important role. Hence, profi les have been identifi ed in 

a wide range of conditions, including stroke, chronic 

heart failure or acute coronary syndrome [105-108].

� e body of published work is too large to be cited in 

this review - and it is likely to be only the tip of the 

iceberg, with a lot more unpublished data scattered 

through out public and private repositories. Other eff orts 

have yielded, for instance, blood transcriptional signa-

tures in patients with neurodegenerative diseases 
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[109-111], and those associated with disease exacerbation 

or responsiveness to glucocorticoids in patients with 

asthma [112, 113], and with responses to environmental 

exposure [114-116], exercise [117,118] or even laughter 

[119]. Unfortunately, too many published studies are 

underpowered and sometimes lack even the most 

rudimentary validation steps. All too often primary data 

are not available for reanalysis either, refl ecting a lack of 

enforcement of editorial policies, or the absence thereof 

in some journals. Hence, one of the main challenges for 

this fi eld is to move beyond the proof of principle stage 

and consolidate the wealth of data being generated.

Collectively, studies published thus far demonstrate 

that alterations in transcript abundance can be detected 

on a genome-wide scale in the blood of patients with a 

wide range of diseases. � is statement is far from trivial 

given the skepticism that initially met studies 

investigating the blood transcriptome of patients. We 

have also learned that: 1) multiple diseases can share 

components of the blood transcriptional profi le - for 

instance, the case for infl ammation or interferon signa-

tures; 2) while no single element of the profi le may be 

specifi c to any given disease it is the combination of those 

elements that makes a signature unique; and fi nally, 3) 

the work accomplished to date highlights the importance 

of carrying out analyses aiming at directly comparing 

transcriptional profi les across diseases. Indeed, much can 

be learned, for instance, about autoimmunity from 

studying responses to infection, and vice versa. Further-

more, such eff orts may eventually lead us closer to a 

molecular classifi cation of diseases. First, however, 

technological and methodological advances are necessary 

for the blood transcriptome research fi eld to move 

beyond the proof of principle stage.

Moving forward
Recent progress in blood transcriptome research has 

been possible thanks to the development of robust 

sample collection techniques and the introduction of 

high throughput gene expression microarray platforms. 

Such advances have been necessary but the margin for 

progression in the fi eld is still very signifi cant. We 

describe here some of the current hurdles and discuss 

potential solutions for overcoming them.

Data management

For years the scale of blood transcriptional studies has 

been constrained by the cost of the technology. With the 

price tag on a commercial whole genome microarray 

below the $100 US mark, this is not the case anymore. 

� us, data management has now become the fi rst essen-

tial step to making large scale molecular profi ling a viable 

proposition. Beyond storing the output of microarray 

instruments, data management must capture and 

organize information that is essential for the 

interpretation of the results (Figure  4). � is includes 

sample information, data quality metrics, clinical 

information collected at the time of sampling, details 

about the experimental design, and materials and 

methods. Capturing such information ensures that the 

large volumes of data generated, which are often not 

published immediately, will remain exploitable for years 

to come. � is point has become critical given the fact 

that results from genome-wide profi ling studies can 

never be exploited to their fullest extent and possess 

considerable cumulative value when re-analyzed 

collectively. Notably, the results generated by other 

cellular and molecular profi ling platforms will also need 

to be integrated in order to complete the picture. � ere-

fore, implementing eff ective data management solu tions 

and practices is essential to sustain the necessary increase 

in the scale of blood transcriptional studies (Figure  3) 

[120]. Unfortunately, implementing data management 

solutions in the laboratory is often an expensive 

proposition, requiring customization of off -the-shelf pro-

ducts or development of custom software adapted to 

handle specifi c workfl ows. Managing data also takes time 

and requires dedicated personnel. � us, while the need is 

widely perceived, the commitment and steps necessary to 

implement eff ective data management solutions and 

practices are rarely adopted.

Data mining

A myriad of approaches have been developed for the 

analysis of genome-wide transcriptional profi ling data 

[121-124]. However, there is no silver bullet when it 

comes to microarray data analysis. � e challenges en-

countered are several fold: 1) dimensionality, or how to 

cope with the fact that the number of parameters 

measured exceeds by several orders of magnitude the 

number of conditions included in most experiments; 2) 

noise - a direct consequence of the fi rst point is that results 

from microarray analyses are particularly permissive to 

noise (false discovery); 3) ‘seeing’ the data - data visual-

ization is critical as it helps promote insight and supports 

data interpretation; 4) biological context - it is important 

to keep the biology in sight at all times. Indeed, while it is 

easy to become absorbed by the data, it is essential to use 

biological knowledge when designing analysis strategies. 

Finally, there is hardly a one-size-fi ts-all approach to 

micro array data analysis and what works in one situation 

may not be universally applicable. Indeed, the most 

common response from experts when questioned on the 

best way to analyze a given dataset is that ’it depends…’: it 

depends, for instance, on the extent of the diff erences 

being observed or on the variability inherent to a given 

disease or study population; it depends on what questions 

are being asked; or it can depend on whether follow-up 
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confi rmatory experiments are planned. In Table 1 we 

provide a data mining primer that explains the basic steps 

involved in microarray data analysis and the considera-

tions that arise [125-129]. Ad hoc data mining approaches 

can be developed to meet specifi c needs. For instance, we 

have developed a data mining strategy for the specifi c 

purpose of analyzing blood transcriptional profi les [15]. 

� is approach simply consists of a priori grouping of sets 

of genes with similar transcriptional patterns. � is is 

repeated for several diff erent datasets and subsequently, 

when comparing the cluster membership of all the genes 

across those datasets, the genes with similar membership 

Figure 4. Data management is key to progress. Extensive cellular and molecular pro� ling of human subjects generates vast amounts of 

disparate data. E� ective data management and integration solutions are essential to the preservation of this information in an interpretable 

form. Thus, data management e� orts occurring ‘behind the scenes’ have an essential role to play in realizing the full potential of high throughput 

pro� ling approaches in human subjects.

DATA MANAGEMENT
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are grouped together to form what we have termed a 

transcriptional module. Structuring the data permits 

focusing downstream statistical testing on these sets of 

transcripts that form coherent transcriptional and 

functional modular units. � is is in contrast with more 

traditional approaches that rely on iterative statistical 

testing for thousands of individual transcripts that are 

treated as independent variables. � e modular trans-

criptional framework that we have developed reduces the 

number of variables by collapsing sets of coordinately 

expressed genes into a new entity, the module. Reducing 

data dimensionality as such can: 1) facilitate functional 

inter pretation; 2) enable comparative analyses across 

multiple datasets and diseases; 3) minimize noise and 

improve robustness of biomarker signatures; and 4) yield 

multivariate metrics that can be used at the bedside [15]. 

Data visualization is also of critical importance for the 

interpretation of large-scale datasets. We have devised a 

straightforward visualization scheme for mapping global 

transcriptional changes for individual diseases on a 

modular basis (Figure 5).Briefl y, diff erences in expression 

levels between study groups are displayed for each 

module on a grid. Each position on the grid is assigned to 

a given module; a red spot indicates an increase and a 

blue spot a decrease in transcript abundance. � e spot 

intensity is determined by the proportion of transcripts 

reaching signifi cance for a given module. A posteriori, 

biological interpretation has linked several modules to 

immune cells or pathways (see legend of Figure 5). Hence, 

in the example provided in Figure 5, patients with S. aureus 

infection demonstrate signifi cant over-expression of genes 

in modules related to innate immunity, including myeloid 

(M1.5, M2.6), neutrophil (M2.2), and infl ammation 

(M3.2, M3.3) modules, and under-expression of genes 

regulating adaptive immunity such as those in B cell 

(M1.3), cytotoxic cell (M2.1), and T-cell-specifi c (M2.8) 

Table 1. A data mining primer: basic steps used for analysing microarray data

Here we provide basic analysis steps and important considerations for microarray data analysis:

- Per-chip normalization: This step controls for array-wide variations in intensity across multiple samples that form a given dataset. Arrays, as with all 
� uorescence based assays, are subject to signal variation for a variety of reasons, including the e�  ciency of the labeling and hybridization reactions and 
possibly other, less well de� ned variables, such as reagent quality and sample handling. To control for this, samples are normalized by � rst subtracting 
background and then employing a normalization algorithm to rescale the di� erence in overall intensity to a � xed intensity level for all samples across 
multiple arrays.

- Data � ltering: Typically more than half of the oligonucleotide probes present on a microarray do not detect a signal for any of the samples in a given 
analysis. Thus, a detection � lter is applied to exclude these transcripts from the original dataset. This step avoids the introduction of unnecessary noise in 
downstream analyses.

- Unsupervised analysis: The aim of this analysis is to group samples on the basis of their molecular pro� les without a priori knowledge of their phenotypic 
classi� cation. The � rst step, which functions as a second detection � lter, consists of selecting transcripts that are expressed in the dataset and display 
some degree of variability, which will facilitate sample clustering. For instance, this � lter could select transcripts with expression levels that deviate by at 
least two-fold from the median intensity calculated across all samples. Importantly, this additional � lter is applied independently of any knowledge of 
sample grouping or phenotype, which makes this type of analysis ‘unsupervised’. Next, pattern discovery algorithms are often applied to identify ‘molecular 
phenotypes’ or trends in the data.

- Clustering: Clustering is commonly used for the discovery of expression patterns in large datasets. Hierarchical clustering is an iterative agglomerative 
clustering method that can be used to produce gene trees and condition trees. Condition tree clustering groups samples based on the similarity of their 
expression pro� les across a speci� ed gene list. Other commonly employed clustering algorithms include k-means clustering and self-organizing maps.

- Class comparison: Such analyses identify genes that are di� erentially expressed among study groups (‘classes’) and/or time points. The methods for analysis 
are chosen based on the study design. For studies with independent observations and two or more groups, t-tests, ANOVA, Mann-Whitney U tests, or 
Kruskal-Wallis tests are used. Linear mixed model analyses are chosen for longitudinal studies.

- Multiple testing correction: Multiple testing correction (MTC) methods provide a means to mitigate the level of noise in sets of transcripts identi� ed by 
class comparison (in order to lower permissiveness of false positives). While it reduces noise, MTC promotes a higher false negative rate as a result of 
dampening the signal. The methods available are characterized by varying degrees of stringency, and therefore they produce gene lists with di� erent 
levels of robustness.

  • Bonferroni correction is the most stringent method used to control the familywise error rate (probability of making one or more type I errors) and 
   can drastically reduce false positive rates. Conversely, it increases the probability of having false negatives.

  • Benjamini and Hochberg false discovery rate [125] is a less stringent MTC method and provides a good balance between discovery of statistically 
   signi� cant genes while limiting false positives. By using this procedure with a value of 0.01, 1% of the statistically signi� cant transcripts might be 
   identi� ed as signi� cant by chance alone (false positives).

- Class prediction: Class prediction analyses assess the ability of gene expression data to correctly classify a study subject or sample. K-nearest neighbors is 
a commonly used technique for this task. Other available class prediction procedures include, but are not limited to, discriminant analysis, general linear 
model selection, logistic regression, distance scoring, partial least squares, partition trees, and radial basis machine.

- Sample size: The number of samples necessary for the identi� cation of a robust signature is variable. Indeed, sample size requirements will depend on the 
amplitude of the di� erence between, and the variability within, study groups.

A number of approaches have been devised for the calculation of sample size for microarray experiments, but to date little consensus exists [126-129]. Hence, 
best practices in the � eld consist of the utilization of independent sets of samples for the purpose of validating candidate signatures. Thus, the robustness of 
the signature identi� ed will rely on a statistically signi� cant association between the predicted and true phenotypic class in the � rst and the second test sets.
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modules. It should also be noted that no changes were 

observed for other modules, such as module M3.1, which 

includes interferon-inducible genes, abundance of which 

would be increased in the context of a viral infection.

Beyond mRNA: pro� ling microRNAs

MicroRNA (miRNA) control has emerged as a critical 

regu latory circuit of the immune system. Measuring 

changes in miRNA abundance in the blood of human 

subjects in health and disease is therefore a promising 

new fi eld of investigation. � ese short non-coding single-

stranded RNAs about 22 nucleotides in length have been 

found to play essential regulatory roles [130-132]. � ese 

molecules exhibit highly specifi c, regulated patterns of 

expression and control protein expression by trans la-

tional repression, mRNA cleavage, or promotion of 

mRNA decay. Interestingly, thanks to their small size, 

miRNA molecules are stable and can be measured not 

only in blood cells but also in circulation in the serum 

[133]. � ey are thus not only potentially important 

contributors to immune function, but also potential 

sources of biomarkers.

Deconvoluting blood transcriptional signatures

Blood transcriptome research will also benefi t from 

concep tual advances that may help address shortcomings 

inherent to whole blood profi ling.

First, blood is a complex tissue and changes in trans-

cript abundance can be attributed to either transcrip-

tional regulation or relative changes in composition of 

leukocyte populations. Two approaches exist for 

‘deconvoluting’ these two phenomena. First, one can 

isolate and individually profi le diff erent cell populations 

present in the blood. � is approach may also permit the 

identifi cation of transcripts expressed at low levels or the 

detection of diff erences in expression that would 

otherwise be drowned in whole blood [134,135]. How-

ever, isolation methods may introduce technical bias, and 

require extensive sample processing. A second approach 

consists of deconvoluting whole blood transcriptional 

profi les ‘in silico’. � is type of analysis attempts to deduce 

cellular composition or cell-specifi c levels of gene expres-

sion using statistical methodologies [136-141].

Finally, we must also keep in mind that the immune 

status of a human subject is not entirely refl ected by its 

blood profi le obtained at the steady state. Indeed, an 

individual’s capacity to respond to innate as well as 

antigen-specifi c immune signals may also provide useful 

and complementary information.

In conclusion, blood transcript profi ling has earned its 

place in the molecular and cellular profi ling armamen-

tarium used to study the human immune system. Changes 

in transcript abundance recapitulate the infl uence of 

genetic, epigenetic, cellular and environ mental factors. 

Initially considered to belong to the ‘cutting edge’, this 

approach has become both robust and practical.  As 

discussed in this review, it has become a mainstay for the 

study of immune function in patients with a wide range 

of diseases. Furthermore, recent studies have demon-

strated the utility of blood transcriptome profi ling for 

monitoring immune responses to drugs or vaccines 

[35,142,143]. � us, blood transcript profi ling is developing 

Figure 5. Blood transcriptional � ngerprints of patients with Staphylococcus aureus infection. Relative changes in transcript abundance in the 

blood of patients with S. aureus infection compared to that of healthy controls are recorded for a set of 28 transcriptional modules. Colored spots 

represent relative increase (red) or decrease (blue) in transcript abundance (P < 0.05, Mann Whitney) within a module. The legend shows functional 

interpretation for this set of modules. Fingerprints have been generated for two independent cohorts of subjects (divided into a training set used in 

the discovery phase, n = 30, and an independent test set used in the validation phase, n = 32).
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into a mainstream tool for the assessment of the status of 

the human immune system.
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