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Abstract— A variety of deep neural network (DNN)-based
image denoising methods have been proposed for use
with medical images. Traditional measures of image qual-
ity (IQ) have been employed to optimize and evaluate these
methods. However, the objective evaluation of IQ for the
DNN-based denoising methods remains largely lacking.
In this work, we evaluate the performance of DNN-based
denoising methods by use of task-based IQ measures.
Specifically, binary signal detection tasks under signal-
known-exactly (SKE) with background-known-statistically
(BKS) conditions are considered. The performance of the
ideal observer (IO) and common linear numerical observers
are quantified and detection efficiencies are computed to
assess the impact of the denoising operation on task perfor-
mance. The numerical results indicate that, in the cases con-
sidered, the application of a denoising network can result in
a loss of task-relevant information in the image. The impact
of the depth of the denoising networks on task performance
is also assessed. The presented results highlight the need
for the objective evaluation of IQ for DNN-based denoising
technologies and may suggest future avenues for improving
their effectiveness in medical imaging applications.

Index Terms— Image denoising, task-based image qual-
ity assessment, numerical observers, ideal observer, deep
learning.

I. INTRODUCTION

I
MAGE denoising is a classical image processing operation

that is commonly employed in medical imaging applica-

tions [1]–[7]. Recently, denoising methods based on deep
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neural networks (DNNs) have been proposed and widely

investigated [5], [6], [8]–[15]. These methods are typically

trained by minimizing loss functions that quantify a distance

between the denoised image and the defined target image

(e.g., a noise-free or low noise image) and have demon-

strated high performance in terms of traditional image quality

metrics such as root mean square error (RMSE), structural

similarity index metric (SSIM) [16] or peak signal-to-noise

ratio (PSNR).

In medical imaging, images are often acquired for specific

purposes and the use of objective measures of image qual-

ity (IQ) has been widely advocated for assessing imaging sys-

tems and image processing algorithms [17]–[22]. Despite this,

the objective evaluation of modern DNN-based medical image

denoising methods remains largely lacking [23]. Although

DNN-based denoising methods, by conventional design, can

improve traditional IQ measures, it is well-known that such

measures may not always correlate with objective task-based

IQ measures [24]–[28]. For example, Yu et al. [23] conducted

a study in which a DNN-based denoising method was observed

to reduce RMSE compared to an alternative method, but signal

detectability was unimproved [23].

Even more concerning is the fact that image denoising

methods can compromise the visibility of important structural

details in the denoised images even though traditional mea-

surement metrics (such as RMSE or SSIM) are improved [2],

[8], [29]. While DNN-based denoising operations may succeed

at lowering noise levels, the extent to which they perturb the

second- and higher-order statistical properties of an image

that are relevant to signal detection is not understood. Finally,

according to data processing inequality [30], the performance

of an ideal observer cannot be increased via image process-

ing operations such as denoising. However, conditions under

which DNN-based denoising methods can improve the per-

formance of sub-optimal observers on detection tasks remains

relatively unexplored.

The purpose of this study is to assess modern DNN-based

denoising methods by use of objective IQ measures, in a

preliminary attempt to address the issues described above.

Three canonical DNN-based denoising methods are identified

for analysis. The convolutional neural network (CNN)-based

observer, the Hotelling observer, the Regularized Hotelling

observer, an anthromorphic channelized Hotelling observer,
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and a non-prewhitening matched filter are implemented as

NOs. The performances of these NOs acting on the original

noisy images and the corresponding denoised images are quan-

tified via receiver operating characteristic (ROC) analysis, and

signal detection efficiencies are computed to assess the impact

of the denoising operations on NO performance. The impact

of the network depth of a DNN-based denoising method

on NO performance is assessed to understand if the deep

learning mantra “deeper is better” necessarily holds true for

signal detection performance. A covariance matrix propagation

analysis is also performed, to gain insights into how DNNs

modify the covariance structure of image data as they are

propagated through layers of a linear convolutional network.

Finally, the depth of the CNN-based observer is varied to

demonstrate how the benefit of the denoising operation is

dependent on the specification of the NO. The presented

analysis highlights the importance of objective IQ evaluation

for DNN-based denoising technologies and may suggest future

avenues for improving their effectiveness in medical imaging

applications.

The remaining of the paper is organized as follows.

Section II describes the necessary background on binary signal

detection task, numerical observers, and image denoising. The

numerical studies and the results of the proposed evaluations

of different denoising networks are provided in Sections III

and IV. Finally, the article provides a discussion of the key

findings in Sec. V.

II. BACKGROUND

A. Formulation of Binary Signal Detection Task

A linear digital imaging system can be described as a

continuous-to-discrete (C-D) mapping process [17]:

g = H f (r) + n, (1)

where g ∈ R
N×1 is the measured image vector, f (r) denotes

the object function that is dependent on the coordinate r ∈
R

k×1, k ≥ 2, H denotes a linear imaging operator that maps

L2(R
k) to R

N×1 , and n ∈ R
N×1 denotes the measurement

noise. When its spatial dependence is not important to high-

light, f (r) will be denoted as f .

A binary signal detection task requires an observer to

classify the measured image data g as satisfying either a

signal-present hypothesis H1 or a signal-absent hypothesis H0.

These two hypotheses can be described as:
H0 : g = Hfb + n = b + n, (2a)

H1 : g = H(fb + fs) + n = b + s + n, (2b)

where fs and fb denote the signal and background, respectively,

and s = Hfs and b = Hfb denote the signal and background

images. For the case of a signal-known-exactly (SKE) and

background-known-statistically (BKS) task, s is known while

b is a random vector.

To perform this task, a deterministic observer computes a

test statistic that maps the measured image g to a real-valued

scalar variable that is compared to a predetermined threshold τ

to determine if g satisfies H0 or H1. By varying the threshold

τ , a ROC curve can be formed to quantify the trade-off

between the false-positive fraction (FPF) and the true-positive

fraction (TPF) [17]. The area under the ROC curve (AUC)

can be subsequently calculated as a figure-of-merit (FOM) for

signal detection performance.

B. Numerical Observers for IQ Assessment

In preliminary assessments of medical imaging technolo-

gies, NOs have been employed to quantify task-based mea-

sures of IQ for various image-based inferences [24]. The NOs

that are employed in this study to perform binary SKE/BKS

signal detection tasks are described briefly below.

1) Ideal Observer (IO) and CNN-Based Observer: The

Bayesian Ideal Observer (IO) sets an upper limit of observer

performance for signal detection tasks and has been advo-

cated for use in optimizing medical imaging systems and

data-acquisition designs [17]–[21]. The IO test statistic tIO(g)

is any monotonic transformation of the likelihood ratio

�LR(g):

�LR(g) = p(g|H1)

p(g|H0)
, (3)

where p(g|H1) and p(g|H0) are the conditional probability

density functions that describe the measured data g under

the hypotheses H1 and H0, respectively. Equation (3) is

analytically intractable, in general, and Markov-chain Monte

Carlo (MCMC) techniques have been proposed to approximate

the IO test statistic [31]. In this study, an alternative method

based on supervised learning is employed to approximate

�LR(g). Specifically, this will be accomplished by use of

an appropriately designed CNN-based classifier as described

elsewhere [32]. The resulting NO will be referred to as the

CNN-IO observer.

Please note that when a CNN-based classifier is employed

as a NO but it does not possess sufficient model capacity to

accurately approximate �LR(g), it will simply be referred to

as a CNN-based observer. Therefore, the CNN-based observer

is, by definition, a sub-optimal observer.

2) Hotelling Observer and Regularized Hotelling Observer:

The Hotelling Observer (HO) is the IO that is restricted to

employ test statistics that are linear functions of the data

[17]. The HO employs the Hotelling discriminant, which is

the population equivalent of the Fisher linear discriminant,

and is optimal among all linear observers in the sense that

it maximizes the signal-to-noise ratio of the test statistic [17].

The HO test statistic tHO(g) is defined as:

tHO(g) = wT
HOg = (Kg

−1�ḡ)T g, (4)

where wT
HO ∈ R

N denotes the Hotelling template, �ḡ ∈ R
N

denotes the difference between the ensemble mean of the

measurements g under the two hypotheses H0 and H1, and

Kg ≡ 1
2
(K0(g) + K1(g)). Here K0(g) ∈ R

N×N and K1(g) ∈
R

N×N denote the covariance matrices of g under the two

hypotheses H0 and H1. If a linear imaging system and a SKE

signal detection task are considered, �ḡ = s. Note that the

HO only employs first and second order statistical information

about g, whereas the IO requires full knowledge of the image

data statistics.

In some cases, the covariance matrices K0(g) and K1(g) can

be ill-conditioned and therefore the Hotelling template cannot
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be stably computed. To address this, a regularized HO (RHO)

can be employed that implements the test statistic tRHO(g):

tRHO(g) = wT
RHOg = (K+

λ �ḡ)T g, (5)

where Kλ represents a low-rank approximation of Kg that is

formed by keeping only the singular values greater than λσmax .

Here, K+
λ is the Moore–Penrose inverse of Kλ, λ is a threshold

for the singular values and σmax represents the largest singular

value of Kg, The value of λ can be tuned on an independent set

of data and the value that leads to the best RHO performance

can be selected.

3) Channelized Hotelling Observer: When the HO is

employed with a channeling mechanism to reduce the dimen-

sionality of the image data, a channelized HO (CHO)

is formed. When implemented with difference-of-Gaussian

(DOG) channels and an internal noise mechansim, the CHO

can be interpreted as an anthropomorphic observer [33]–[35].

Let T denote a channel matrix and v ≡ Tg the corresponding

channelized image data. The CHO test statistic tCHO(g) is

given by:

tCHO(g) =
[

(Kv + Kint)
−1�v̄

]T

(v + vint), (6)

where Kv denotes the covariance matrix of the channelized

data v, Kint denotes the covariance matrix of the channel

internal noise, and vint is a noise vector sampled from the

Gaussian distribution N (0, Kint). Based on previous studies

[35], in this work Kint will be defined as:

Kint = ǫ · diag(Kv), (7)

where diag(Kv) represents a diagonal matrix with diagonal

elements from Kv and ǫ is the internal noise level. The

parameters of the DOG channels and the internal noise level

employed in this study are described below in Sec. III-C4.

4) Non-Prewhitening Matched Filter (NPWMF): The

non-prewhitening matched filter (NPWMF) is a simple NO

that utilizes only first-order statistical information [36], [37].

The NPWMF test statistic tNPWMF(g) is given by:

tNPWMF(g) = �ḡT g, (8)

where �ḡ ∈ R
N represents the difference of the means of

the ensemble of measured images g under the two hypotheses

H0 and H1, respectively. By design, the NPWMF will not be

affected by changes to the second- and higher-order statistics

of the image data.

C. DNN-Based Image Denoising

Denoising methods based on DNNs hold significant poten-

tial for medical imaging applications [1]–[8], [38], [39]. Due

to their flexibility and ability to exploit image features, many

such denoising methods have been proposed based on CNNs.

Given a noisy image g, the action of a DNN-based denoising

method can be described generically as:

ĝ = F(g,�), (9)

where the mapping F denotes the DNN that is parameterized

by the weight vector � and ĝ denotes the estimated denoised

image. Depending on how the target data are defined when

training the DNN, ĝ can be interpreted as an estimate of the

noiseless g or an estimate of g that contains a reduced noise

level. When pre-training networks by use of simulated data,

the former approach has been commonly employed [1]–[7],

[29], [38], [39].

In addition to CNN-based methods, a variety of other

approaches, including residual learning [40], have been

employed for medical image denoising [5], [39]. The perfor-

mance of denoising networks has commonly been evaluated

by use of traditional metrics such as structural similarity index

metric (SSIM) [16] and peak signal-to-noise ratio (PSNR).

III. NUMERICAL STUDIES

Computer-simulation studies were conducted to objectively

evaluate DNN-based denoising methods for SKE/BKS binary

signal detection tasks. Three different DNNs were investi-

gated, which were trained on simulated image data. The

performances of the five different NOs reviewed in Sec. II-

B on the noisy and denoised image data were analyzed under

different conditions to gain insights into the potential impact

of DNN-based denoising on signal detection.

A. Simulated Nuclear Medicine Images From a
Parallel-Hole Collimator Imaging System

Planar scintigraphy images were simulated via an ide-

alized linear parallel-hole collimator imaging system. The

system was described by a linear C-D mapping [g]m ≡
∫

V
f (r) hm(r) dr that was specified by Gaussian point

response functions [31]:

hm(r) = Am exp

[

− (r − rm)T (r − rm)

2w2
m

]

, (10)

where [g]m denotes the mth component of g, V denotes the

support of f (r), and the amplitude Am = h
2πw2

m
with the height

h and width wm . The to-be-imaged objects f (r) = fb(r) +
fs(r) contained a random background and a superimposed

deterministic signal in the signal present case. The random

background fb(r) was specified by lumpy object model [31]

as:

fb(r) =
Nb
∑

n=1

l(r − rn |a, wb), (11)

where Nb ∼ P(N̄ ) denotes the number of the lumps with

P(N̄ ) denoting a Poisson distribution with the mean N̄ . The

lump function l(r − rn|a, wb) was modeled by a 2D Gaussian

function with lump amplitude a and lump width wb:

l(r − rn |a, wb) = a exp(− (r − rn)T (r − rn)

2w2
b

), (12)

where rn denotes the center location of the nth lump that

was sampled from a uniform distribution over the spatial

support of the image. For the signal present cases, the signal

corresponded to a Gaussian signal:

fs(r) = As exp

[

− (r − rs)
T (r − rs)

2w2
s

]

, (13)
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Fig. 1. These images are examples that depict (a) a possible signal s,
(b) a noise-free signal-present image s + b, and (c) the corresponding
noisy measurement g. The dimensions of the images are 64 × 64.
As described in the text, the signal amplitude was relatively small to
emulate a situation where the detection task is challenging.

where As is the signal amplitude, ws is the signal width and

rs is the center of signal. The images s = Hfs and b = Hfb

are given by:

[s]m = Ashw2
s

w2
m + w2

s

exp

[

− (rm − rs)
T (rm − rs)

2(w2
m + w2

s )

]

, (14)

and

[b]m =
ahw2

b

w2
m + w2

b

Nb
∑

n=1

exp

[

− (rn − rm)T (rn − rm)

2(w2
m + w2

b)

]

. (15)

The measurement noise n was described by an uncorrelated

mixed Possion-Gaussian noise model. Details regarding the

signal, background and noise are provided in Sec. III-C

below. Figure 1 shows an example of the signal and a noise

free signal-present image along with the corresponding noisy

image data g.

The relatively simple image models employed in our study

provided a means by which simulated image data could

be computed and degraded in a clear and controlled way,

without being influenced by unknown noise sources that could

potential be present in clinically acquired images.

B. DNN-Based Denoising Methods, Training, and
Validation

A simple linear denoising network and two nonlinear

denoising networks with CNN-based or ResNet-based archi-

tectures were considered as three representative examples to

be evaluated in this study. Figure 2 shows the architectures of

these three networks, which are described next.

1) Linear DNN-Based Denoising Method: As depicted in

Fig. 2(a), the linear DNNs include only a collection of D

linear convolutional layers. Although such networks will not

achieve state-of-the art performance, they are considered here

because they permit the analytic propagation of covariance

matrices, and hence Hotelling templates, through the different

layers of the network. Therefore, preliminary insights into how

DNNs perturb information relevant to binary signal detection

tasks can be gained. The network input was a noisy image g of

dimension 32×32 and the output was the estimated ĝ with the

same dimensions. In the first layer of the network, 32 filters

of dimension 3 × 3 × 1 were employed to generate 32 feature

maps. In each of the 2nd to the (D-1)th layers, 32 filters of

dimension 3×3×32 were employed. In the penultimate layer,

Fig. 2. The three denoising networks evaluated in this study were based
upon a (a) linear CNN, (b) non-linear CNN, and (c) non-linear ResNet
denoising network, respectively. The dimensions of the input and output
images are (a) 32 × 32, (b) 64 × 64, (c) 64 × 64, respectively.

a single filter of dimension 3 ×3 ×32 was applied to map the

tensor-valued feature map to the scalar-valued output image.

As described in Eqn. (1), let Hf j denote a given ground

truth (noiseless) image corresponding to either a signal absent

or signal present case and let g j denote the corresponding

measured noisy image. Here, the subscript j has been added

to index the objects and images. Given the collection of paired

training data {(g j ,Hf j )}J
j=1, the linear network was trained by

minimizing the mean-square-error (MSE) loss function:

LMSE(�) = 1

J

J
∑

j=1

‖F(g j ; �) − Hf j‖2
2. (16)

2) Nonlinear CNN-Based Denoising Network: As depicted in

Fig. 2(b), a traditional non-linear CNN architecture of depth

D was considered. The network input was a noisy image g

of dimension 64 × 64 and the output was the estimated ĝ

with the same dimensions. The CNN contained four types

of layers. The first layer was a Conv+ReLU layer, in which

64 convolution filters of dimension 3 × 3 × 1 were applied

to generate 64 feature maps. In each of the 2nd to (D-2)th

Conv+BN+ReLU layers, 64 convolution filters of dimension

3 × 3 × 64 were employed and batch normalization was

included between the convolution and ReLU operations. In the

(D-1)th Conv+BN layer, 64 convolution filters of dimension

3 × 3 × 64 were employed and batch normalization was

performed. In the last Conv layer, one single convolution filter

of dimnension 3 × 3 × 64 was employed to form the final

denoised image of dimension 64×64. The network was trained

by use of the MSE-based loss function.

3) Nonlinear ResNet-Based Denoising Network: An alterna-

tive nonlinear denoising network based on a ResNet archi-

tecture [40] was also investigated. As shown in Fig. 2(c),
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the ResNet architecture employs shortcut connections (the

so-called skip connections) between non-adjacent convolu-

tional layers. This network design can better address the

vanishing gradient issue [40], and allows for a deeper network

with more convolutional layers. In this study, skip connections

were added every other layer, as depicted by the gray line in

Fig. 2(c). An additional skip connection, depicted as the brown

line in Fig. 2(c), was added to connect the output of the 1st

layer and the input of the Dth (i.e., last) layer. Except for the

skip connections, the network architecture was identical to that

described above for the non-linear CNN.

Instead of using MSE-based loss, the perceptual loss was

employed to train this network:

LPerceptual(�) = 1

J

J
∑

j=1

‖φ(F(g j ; �)) − φ(Hf j )‖2
2, (17)

where φ(·) represents a feature extraction operator. It has

been observed that denoising networks trained by use of a

perceptual loss function can be effective in reducing noise

while retaining image details [5].

4) Datasets and Denoising Network Training Details:

The standard convention of utilizing separate

training/validation/testing datasets was adopted. The

training dataset included 10,000 noisy signal-present and

10,000 noisy signal-absent measurement images along with

the corresponding noise-free target images. The validation

datatset included 200 signal-present images and 200 signal

absent images and the corresponding noise-free target images.

Finally, the testing dataset comprised 10,000 signal-present

images and 10,000 signal-absent noisy images.

These datasets were computed as follows. First, lumpy

background images, which were generated according to Eqn.

(15), were employed as the noise-free signal-absent images.

Then, a Gaussian signal was inserted to the background

images to create noise-free images under the signal-present

hypothesis. The signal was defined in Eqn. (14). Finally, mixed

Poisson and Gaussian noise was added to the noise-free images

under both hypotheses. The training, validation, or testing

datasets were generated separately according to the steps

described above. The statistical properties of these images

varied between studies and are described below.

All the denoising networks were trained on mini-batches

at each iteration by use of the Adam optimizer [41] with a

learning rate of 0.0001. Each mini-batch contained 200 signal-

present images and 200 signal absent images that were ran-

domly selected from the training dataset. The network model

that possessed to the best performance on the validation

dataset was selected for use. Keras [42] was employed for

implementing and training all networks on a single NVIDIA

TITAN X GPU.

When training the nonlinear ResNet-based denoising net-

work, the output before the first pooling layer from a

pre-trained VGG19 [43] network was employed as a feature

extraction operator to compute the perceptual loss in Eqn. (17).

A similar feature extraction operator was utilized by Gong

et al. [5]. The VGG19 network contained 16 convolutional

layers, 5 max pooling layers, and 3 fully connected layers,

and was trained by use of images from ImageNet [44]. A total

of 64 feature maps were extracted with spatial size 64×64 to

compute the perceptual loss.

C. Objective Evaluation of Denoising Networks

1) Studies Involving Linear Denoising Networks: A study

was implemented to assess the performance of the RHO

when acting on data corresponding to the outputs of different

intermediate layers in the linear denoising network. In this

way, the RHO performance could be observed as it propagates

through the network. The RHO was utilized because the

resulting covariance matrices were generally ill-conditioned.

In the detection task, the signal defined in Eqn. (13) was

employed with As = 2.5, ws = 1, and rs = [16; 16]T .

The parameters of the lumpy background model defined in

Eqn. (11) were N̄ = 15, a = 5, and wb = 3. The

dimensions of s, b, n, and g in Eqn. (2) were 32 × 32.

The assumed parameters of the imaging system defined in

Eqn. (10) were Am = h
2πw2

m
, h = 20 and wm = 2.

For the mixed Possion-Gaussian noise, the Gaussian noise

was sampled from a Gaussian distribution with the mean

0 and the standard deviation 25. Based on these settings,

the training/validation/testing datasets were established and the

linear denoising networks with depths varying from D = 2 to

D = 15 were trained as described above in Sec. III-B1. Each

network with different D was trained separately to achieve the

optimal performance based on the defined loss function.

In order to compute the RHO acting on the tensor-valued

feature data produced by each network layer, the covariance

matrix Kd of the output data tensor of each layer needed to

be estimated. Here, d denotes a layer index. To accomplish

this, the tensor-valued data were vectorized and the associ-

ated covariance matrices corresponding to each layer were

computed by propagating the covariance matrix K0 of the

noisy input image through the network. Details regarding this

procedure are provided in Sec. 1 of the Supplementary file.

2) Studies Involving the Non-Linear Denoising Networks: A

study was designed to investigate the performance of NOs

when acting on the original noisy measurement images and

the corresponding denoised images produced by the non-linear

CNN and ResNet-based networks. Several parameters of the

simulated images and denoising networks were varied to

gain insights into the potential impact of denoising on NO

performance.

For the considered detection tasks, the signals, the lumpy

object model, and the parallel-hole collimator imaging system

were defined as in Sec. III-C1 but with different parameter

settings. The signal possessed an amplitude As = 3, width

ws =
√

2, and center location rs = [32; 32]T . The parameters

of the lumpy background model defined in Eqn. (11) were

N̄ = 50, a = 5, and wb = 3. The dimensions of s, b, and n in

Eqn. (2) were 64 × 64. The parallel-hole collimator imaging

system was specified as Am = h
2πw2

m
, h = 20 and wm = 2.

The standard deviation of Gaussian noise was set to 75.

Based on these settings, the training/validation/testing datasets

were established and nonlinear denoising networks of depth

D = {3, 5, 7, 9, 11, 13} were trained as described above in
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Fig. 3. The images, from left to right, in each row represent the
denoised estimates ĝ obtained by use of a) the CNN-based and b)
the ResNet-based non-linear networks with varied {3, 7, 11, 13} layers,
respectively. The related noise-free signal-present target image H(fs +
fb) and the original noisy image g were the second and third images
shown in Fig. 1. The dimensions of the images are 64 × 64.

Sec. III-B2. Examples of denoised images ĝ produced by use

of the CNN-based and ResNet-based denoising networks of

different depths D are shown in Fig. 3. This study was also

repeated for the case where low-noise, instead of noiseless,

target images, were employed for training. Those studies are

presented in Sec. 2 of the Supplementary file.

Finally, the impact of the signal size on the perfor-

mance of the RHO was investigated. Signals of width

ws = {1,
√

2, 2, 2.5, 3} were considered. All other parameters

were kept the same as that described above.

3) Observer Performance Evaluation Metrics: To evaluate the

performance of the NOs, ROC analysis was conducted and

AUC values were computed and employed as a figure-of-

merit. The ROC curves were fit by use of the Metz-ROC

software [45] that employs the proper binormal model [46].

The error bars of the AUC values were estimated as well.

Detection efficiencies for a given NO and denoising method

were defined as

e ≡ AUCdenoised

AUCnoisy
, (18)

where AUCdenoised and AUCnoisy denote the AUC values cor-

responding to a NO acting on the denoised and original noisy

image data, respectively. The detection efficiency quantifies

the impact of the denoising operation on the performance of

the NO. It should be noted that this definition is different

from that employed elsewhere in the literature, where detection

efficiency is typically referenced to an IO [47]. As such, it is

possible that e > 1 when the IO is not employed. The denoised

images were also assessed by use of RMSE and SSIM.

4) Numerical Observer Computation: The CNN-IO was

employed to approximate the IO test statistic [32]. Details

regarding the implementation of the CNN-IO and CNN-based

observers are provided in Sec. 5 of the Supplementary file.

For computing the HO and RHO test statistics, the covari-

ance matrix Kg need to be estimated. For use in evaluating the

linear denoising networks, the covariance matrix decomposi-

tion method [17], [32] was initially employed to estimate the

covariance matrix of the original noisy images. To estimate the

covariance matrix of the background images, 100,000 signal-

present and 100,000 signal-absent noiseless images were uti-

lized. Subsequently, to examine how task-performance prop-

agates through the networks, the covariance matrices corre-

sponding to the vectorized feature tensors at each network

layer were computed by use of the propagation strategy

described in Sec. 1 of the Supplemental file. For evaluating

the nonlinear denoising networks, the covariance matrices

corresponding to both the noisy and denoised images were

empirically estimated by use of 100,000 signal-present and

100,000 signal-absent images.

When computing the RHO test statistic, the threshold para-

meter λ in Eqn. (5) was swept from 1e − 3 to 1e − 7 and

the corresponding detection performance was estimated based

on a separate validation dataset including 2,000 signal-present

images and 2,000 signal-absent images. The value which led to

the best RHO detection performance was selected. The RHO

with selected parameter was then applied to the testing dataset

described below and the corresponding observer performance

was estimated. The NPWMF template was established by use

of the same training data as employed to establish the RHO.

For computing the CHO test statistic, 2,000 signal-present

and 2,000 signal-absent images were utilized to estimate the

channelized covariance matrix. A set of 10 DOG channels [35]

was employed with channel parameters σ0 = 0.005, α = 1.4,

and Q = 1.67. The internal noise level ǫ was 2.5, which was

the same value employed by Abbey et al. [35].

The performance of the NOs on the original noisy images

was evaluated by use of a testing dataset with 10,000 signal-

present noisy images and 10,000 signal-absent noisy images

that was described above in Sec. III-B4. Subseqently, the per-

formance of the NOs was assessed by use of the denoised

testing images.

IV. RESULTS

A. Propagation of Task-Based Information Through a
Linear Denoising Network

The performance of the RHO acting on the noisy test data

and on data corresponding to the outputs of different interme-

diate layers in the linear denoising network is summarized in

Table I. The covariance matrices needed to compute the RHO

test statistic corresponding to the output of each network layer

were calculated by use of the propagation strategy described

in Sec. 1 of the supplementary file. With the exception of

the network with three layers, the RHO performance on the

denoised images was lower than on the original noisy images,

and the performance decreases more on the image denoised

by deeper networks.

To gain insights into this behavior, the singular value spectra

of the covariance matrices estimated from the original noisy

images and from the images denoised by networks with varied

depths were examined. The results, shown in Fig. 4, reveal that

the spectra corresponding to the denoised images decay more

rapidly than that corresponding to the original noisy image.

Additionally, the spectra corresponding to the denoised images

decayed more rapidly as the denoising network became deeper.

Accordingly, the number of singular values that exceeded

the value of the threshold λσmax that specified the RHO
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TABLE I

RHO SIGNAL DETECTION PERFORMANCE PROPAGATION THROUGH LINEAR CNN-BASED DENOISING NETWORK WITH {3, 5, 7, 9, 11, 13, 15}

LAYERS WERE DEMONSTRATED BY USE OF AUC VALUES. THE STANDARD ERROR OF EACH AUC VALUE WAS THE SAME OF 0.003

Fig. 4. The singular value spectra of the covariance matrices cor-
responding to the original noisy images and the images denoised by
use of the linear denoising networks with depths of {3,7, 11,15} were
demonstrated.

Fig. 5. The singular value spectra of covariance matrices corresponding
to the original noisy images and the outputs of different layers in a linear
CNN denoising network with the depth D = 15 were illustrated.

via Eqn. (5) decreased as the network depth increased. This

resulted in the RHO performance to degrade as the network

depth increased.

The propagation of RHO performance through the networks

is summarized in Table I. It was observed that the RHO

performance on data produced by the intermediate denoising

network layers remained approximately constant until the

last layer, at which point it decreased. It should be noted

that the last layer of the denoising network transforms a

high-dimensional feature tensor to the denoised output image.

Fig. 6. The relationships between AUC (top figure) and detection
efficiency (bottom figure) and the depth (the number of convolutional
layers) of a CNN-based non-linear denoising method when different NOs
are employed were quantified. The two figures share the same legend
that is displayed in the bottom figure. The dashed lines in the upper figure
depict the performances of the NOs on the original noisy images.

This operation possesses a null space and is therefore non-

invertible. The drop in RHO performance at the last layer

suggests that some of the features that were important to

task-performance resided in the null space of the learned

transformation.

To understand why NO performance remained constant

until the last layer, the singular value spectra of the covari-

ance matrices estimated from the original noisy images and

the feature tensors corresponding to intermediate layers of the

denoising network were further analyzed for the case of the

network of depth D = 15. The results, shown in Fig. 5, reveal
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TABLE II

THE RMSE AND SSIM VALUES ASSOCIATED WITH NOISY IMAGES

AND THE OUTPUT IMAGES OF TWO DIFFERENT NONLINEAR

DENOISING NETWORKS WERE COMPARED

Fig. 7. The relationship between NO performance and the depth
(the number of convolutional layers) of the ResNet-based non-linear
denoising networks was quantified. The two figures on each panel share
the same legend. The dashed lines in the upper figure represent the
performance of the NOs on the noisy images.

that the spectra corresponding to the intermediate layers were

similar to that corresponding to the original noisy images.

Accordingly, the number of singular values that exceeded

the value of the threshold λσmax that specified the RHO via

Eqn. (5) at different intermediate network layers remained

constant as the network depth increased. This resulted in

the RHO performance remaining fixed as the network depth

increased, until the last layer was reached as discussed above.

B. Impact of Denoising Network Depth

1) Performance Changes: The impact of depth of the

non-linear CNN and ResNet networks on the NO performance

Fig. 8. The singular values of the covariance matrices from noisy images
and images denoised by CNN-based non-linear denoising networks with
{3, 5,7, 9,11, 13} convolutional layers were compared, respectively. The
denoising operation changes the structure of data covariance matrix. The
changes are more obvious for deeper networks.

Fig. 9. The relationships between signal size and RHO detection
efficiency were quantified. Here, the CNN-based denoising method
was employed with an MSE loss and the network depth was varied:
D = {3, 5,7, 9,11, 13}. Detection efficiency reduced more rapidly as a
function of network depth when the signal size was reduced.

as measured by AUC and detection efficiency is shown in

Fig. 6 and Fig. 7. For all cases, it was observed that the

performance of the NOs on the original noisy images was

higher than on the denoised images. The performance of the

CNN-IO, HO and RHO on the denoised images decreased

as the depth of the denoising networks increased. Contrarily,

the performance of CHO and NPWMF on the denoised

images was relatively insensitive to the depth of the denoising

networks. These observations suggest that the second- and

potentially higher-order statistical properties of the images

were degraded by the denoising networks; this is confirmed

below in Fig. 8. The quality of the denoised images as

measured by RMSE and SSIM values for the networks of

varying depth are shown in Table II. As expected, these metrics

improved as the depth of the denoising networks increased.

These results confirm that objective measures of IQ based

on signal detection performance can show conflicting trends

as compared to traditional metrics when comparing different

denoising networks.
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2) Changes in Covariance Matrix Induced by Denoising:

The degradation of HO performance was further analyzed by

computing the SVD of the covariance matrices corresponding

to the images denoised by use of the CNN-based method.

The results, shown in Fig. 8, reveal that the covariance matrix

corresponding to the denoised images was ill-conditioned,

while that corresponding to the original noisy images was

well-conditions. Moreover, the singular value spectra tended

to decrease more rapidly as the depth of the denoising net-

work was increased. Although not shown, similar observa-

tions were made in the case of the ResNet-based denoising

method. These results confirm that the denoising networks

changed the second-order statistical properties of the denoised

images. As mentioned above, the performance of the NPWMF

observer, which uses only first-order statistical information,

was not strongly degraded by denoising. Together, these obser-

vations support the assertion that the reduction in performance

of the NOs that were sensitive to second- and higher-order

image statistics was caused by the the changes in these

properties induced by the denoising operation.

C. Detection Efficiency vs. Signal Size

The impact of signal size on RHO detection efficiency

is shown in Fig. 9. Here, the width ws of the Gaussian

signal in Eqn. (13) took on the values: {1,
√

2, 2, 2.5, 3}. It

was observed that, for each signal size, the detection effi-

ciency was reduced as the denoising network depth increased.

Additionally, the detection efficiency reduced more rapidly

as a function of network depth for smaller signal sizes as

compared to larger ones. Specifically, for ws = 3, there was no

statistically significant decrease in detection efficiency as the

denoising network depth increased. Moreover, the detection

efficiency was close to one. This is due to the relatively large

size of the signal and use of an MSE loss function to train the

denoising network. An MSE loss function treats every pixel

in an image equally and therefore a large signal contributes

more than a small one during the network training (i.e., more

task-specific information is potentially preserved).

D. Situations Where Denoising Improved Detection
Performance

CNN-based observers of varying depths were employed

to demonstrate conditions under which the CNN- and

ResNet-based denoising methods could improve signal detec-

tion performance. Detection performance was assessed on the

original noisy images and the outputs of the two denoising

networks with the depth of {3, 9, 11}, respectively. The eval-

uated CNN-based observers for this study were set with {1,

2, 4, 6, 8, 10} convolutional layers, respectively. It should be

noted that the CNN-based observer with 10 layers coincided

with the CNN-IO, and therefore approximated the IO for this

task.

The results shown in Fig. 10 reveal, as expected, that

the performance of the CNN-based observer increases with

observer network depth. More interestingly, the detection

performance of the shallow CNN-based observer with 3 layers

on the original noisy images was worse than that on the images

Fig. 10. The performance of the CNN-based observers with different
number of convolutional layers acting on the original noisy image and
the outputs of two non-linear denoising networks were compared. The
upper panel shows the results on the CNN-based nonlinear denoising
networks; The lower panel shows the results on the ResNet-based
nonlinear denoising networks. Note that the y-axis range is clipped for
display purposes.

denoised by a non-linear denoising network that also had

3 convolutional layers. This represented a situation in which

the denoising operation resulted in improved signal detection

performance.

As observed and discussed above in Section IV-A, the use of

deeper denoising networks resulted in a stronger degradation in

signal detection performance as compared to use of shallower

networks for the NOs considered. Additionally, according to

data processing inequality [30], it is known that the perfor-

mance of an IO cannot be increased via image processing

operations such as denoising. As such, it is to be expected that

the performance of the CNN-IO on the original noisy image

data will not be improved by use of any denoising operation.

These factors suggest that the extent to which a denoising

operation will improve signal detection performance depends,

in a complicated way on (at least) the following: 1) the extent

to which the denoising operation degrades the image statistics

that are employed by a given NO for a specified inference;

and 2) the extent to which the NO approximates the IO.

V. SUMMARY AND DISCUSSION

In this work, the performance of DNN-based denoising

methods was evaluated by use of task-based IQ measures.

Specifically, binary signal detection tasks under SKE/BKS

conditions were considered. The performance of the IO and

common linear NOs were quantified to assess the impact of

the denoising operation on task performance. This study was



2304 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 40, NO. 9, SEPTEMBER 2021

motivated by the scarcity of works that have evaluated such

modern denoising methods by use of objective methods.

The numerical results showed that, in the cases considered,

the denoising operation can result in a loss of task-relevant

information. Moreover, it was observed that while increasing

the depth of the denoising network improved RMSE and

SSIM, it resulted in a decrease in NO performance. This is

consistent with the well-known fact that physical IQ measures

may not always correlate with task-based ones [26]. This

result also suggests that the mantra “deep is better” should

be qualified and may not always hold true for objective IQ

measures. The considered networks were analyzed to gain

insights into the observed behavior and it was found that

the denoising operation resulted in ill-conditioned covariance

matrices. As such, denoising networks, while seeking to min-

imize a traditional (non-task-based) loss function, have the

potential to degrade the image statistics that are important for

signal detection.

Conditions under which the considered denoising operations

could improve NO performance were also investigated. In

the presented studies, it was observed that a shallow denois-

ing network could improve the performance of a shallow

CNN-based observer. When the depth of either the denoising

or observer networks increased, the benefit of denoising was

lost and NO performance was degraded. This suggests that the

impact of denoising on signal detection performance depends,

in a complicated way, on the specification of the denoising

network, task, and the NO. As such, there is an urgent need

to objectively evaluate new DNN-based denoising methods.

There remain numerous important topics for future investi-

gation. The binary SKE detection task considered in this study

is simplistic relative to many real-word clinical tasks. It will

be important to consider more complicated tasks that involve

signal variability and hybrid tasks that involve detection and

estimation [48]. The study design presented can also readily

be applied to assess alternative DNN-based denoising methods

that use varying network architectures and loss functions.

Ultimately, it will be critical to conduct human reader studies

to assess the utility of new DNN-based denoising methods for

specific clinical tasks.

Finally, the presented results will motivate the develop-

ment of new approaches to establishing DNN-based denoising

methods that mitigate the loss of task-relevant information

by incorporating task-relevant information in the training

strategy.
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