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16 Abstract

17 Constructing ecological networks has become an indispensable approach in understanding 

18 how different taxa interact. However, the methods used to generate data in network research varies 

19 widely among studies, potentially limiting our ability to compare results meaningfully. In 

20 particular, methods of classifying nodes vary in their precision, likely altering the architecture of 

21 the network studied. For example, rather than being classified as Linnaean species, taxa are 

22 regularly assigned to morphospecies in observational studies, or to Molecular Operational 

23 Taxonomic Units (MOTUs) in molecular studies, with the latter defined based on an arbitrary 

24 threshold of sequence similarity. Although the use of MOTUs in ecological networks holds great 

25 potential, especially for allowing rapid construction of large datasets of interactions, it is unclear 

26 how the choice of clustering threshold can influence the conclusions obtained. To test the impact 

27 of taxonomic precision on network architecture, we obtained and analyzed 16 datasets of 

28 ecological interactions, inferred from metabarcoding and observations. Our comparisons of 

29 networks constructed under a range of sequence thresholds for assigning taxa demonstrate that 

30 even small changes in node resolution can cause wide variation in almost all key metric values. 

31 Moreover, relative values of commonly used metrics such as robustness were seen to fluctuate 

32 continuously with node resolution, thereby potentially causing error in conclusions drawn when 

33 comparing multiple networks. In observational networks, we found that changing node resolution 

34 could, in some cases, lead to substantial changes to measurements of network topology. Overall, 

35 our findings highlight the importance of classifying nodes to the greatest precision possible, and 

36 demonstrate the need for caution when comparing networks that differ with respect to node 

37 resolution, even where taxonomic groups and interaction types are similar. In such cases, we 
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38 recommend that comparisons of networks should focus on relative differences rather than absolute 

39 values between the networks studied. 

40 Key Words: food webs, metabarcoding, MOTU, network ecology, node resolution, 

41 species interactions

42 Introduction 

43 The construction of ecological networks has become an indispensable approach in 

44 understanding how different taxa interact, as well as how such interactions are affected by biotic 

45 and abiotic factors (Baldock et al. 2015, Orford et al. 2016). It has become routine to generate 

46 networks to study diverse relationships, from mutualism (Jordano et al. 2003) to parasitism 

47 (Lafferty et al. 2006), carnivory (Wirta et al. 2015) and indirect interactions (Melián and 

48 Bascompte 2002). Researchers then typically assess these networks using a suite of metrics that 

49 quantify the diversity or distribution of interactions (Memmott et al. 2004, Kaiser-Bunbury and 

50 Blüthgen 2015).

51 Despite their increasing use, ecological networks frequently include unresolved nodes, 

52 where species identities are not known (Bascompte et al. 2003, Montoya et al. 2006, Pocock et al. 

53 2012). Yet while the impacts of unresolved nodes and thus mixed resolution have been cited as a 

54 fundamental problem in network ecology (Ings et al. 2009), their consequences for the analysis 

55 and interpretation of ecological data have been largely overlooked. Work to date has mostly 

56 concentrated on unipartite networks, generating conflicting findings on the robustness of the 

57 network metrics to taxonomic resolution (Martinez 1993, Thompson and Townsend 2000, 

58 Woodward 2010). Bennett et al (2019) stated that in bipartite networks, various characteristics 

59 such as modularity and nestedness may be incorrectly measured if taxonomic resolution fails to 

60 capture the interactions accurately.
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61 The potential problems surrounding imperfect node resolution are a longstanding issue for 

62 traditional networks that, typically, rely on morphology. In such cases it is frequently impossible 

63 to distinguish among cryptic taxa, especially where expert taxonomic identification is unavailable, 

64 or where morphologically-diverse species may be misidentified as multiple species. As a result, 

65 the ‘true’ nodes existing in nature may be erroneously clumped together or split in the network 

66 dataset analyzed, and networks may contain a mixture where some nodes are classified to species, 

67 and some to a higher taxonomic level or morphospecies. An increasing number of studies have 

68 used molecular methods to identify species interactions as an alternative to morphology generating 

69 greater resolution. For example, DNA barcoding has been shown to reveal more nodes in host-

70 parasitoid networks than could be seen from rearing data alone, with measurable changes in 

71 network structure (Wirta et al. 2014). Despite this, DNA sequences might not always contain 

72 sufficient phylogenetic information for node delimitation, potentially leading to the same mixed 

73 resolution in networks cited as problematic in traditional analyses.

74 The development of high throughput sequencing (HTS) provides new opportunities in 

75 ecology. In particular, network ecologists are now able to screen mixed samples for multiple taxa 

76 and thereby obtain data from often numerous interactions at the same time (Pompanon et al. 2012). 

77 These ‘metabarcoding’ techniques overcome the difficulty of observing ecological interactions 

78 (Clare et al. 2009), and/or of inferring interactions where samples, such as stomach contents, 

79 contain no identifiable remains (Piñol et al. 2013). A major challenge in current metabarcoding 

80 research is interpreting the millions of sequences generated, which are frequently not possible to 

81 fully identify due to the lack of reference sequences from known taxa. A common solution is to 

82 augment identifications with sequences classified into Molecular Operational Taxonomic Units 

83 (MOTUs), which are used as taxonomic proxies, including as nodes in interaction networks (Floyd 
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84 et al. 2002, Clare et al. 2016). MOTUs are best thought of as equivalent pools of genetic diversity 

85 partitioned by a uniformly-applied threshold of genetic divergence, but which may not be 

86 equivalent to accepted taxonomic levels (see original definition in Floyd et al. 2002). Previous 

87 results have shown that the generation of MOTUs can be sensitive to the choice of thresholds as 

88 well as to the algorithms used and other parameters; consequently, MOTU counts can vary by 

89 orders of magnitude (Flynn et al. 2015, Clare et al. 2016), with substantial differences in associated 

90 diversity estimates (Bachy et al. 2013, Egge et al. 2013). The MOTU sequence divergence 

91 threshold used can vary dramatically; bacterial studies originally used a 3% threshold as standard, 

92 (Yang et al. 2013) and this threshold has also been adopted by many within the eukaryotic 

93 metabarcoding community (Brown et al. 2015). However there is no special biological meaning 

94 behind this, and it was established for the 16S gene in bacteria rather than commonly used 

95 Eukaryotic loci. More relaxed thresholds have been applied (Salinas‐Ramos et al. 2015) to limit 

96 MOTU inflation, and Amplicon Sequence Variants (ASVs), which rely on sequencing error 

97 profiles have become common in bacterial work, replacing a strict threshold approach (Callahan 

98 et al. 2016). Studies may similarly vary in other aspects that will inform the choice of MOTU 

99 threshold, including type of genetic marker (Wang et al. 2010), genomic region (Huber et al. 2009, 

100 Engelbrektson et al. 2010), target taxa (Pentinsaari et al. 2016), and expected level of sequencing 

101 error (Clare et al. 2016).

102 The impact of altering MOTU threshold (and thus number of nodes) on the results of 

103 metabarcoding studies has rarely been investigated. In a study of dietary overlap, Clare et al. (2016) 

104 found that altering clustering parameters significantly altered MOTU number but had minimal 

105 effect on measures of niche overlap when all samples were treated exactly the same way (thus any 

106 MOTU inflation or clumping was equivalent in all cases). In contrast, networks are likely to be 
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107 more sensitive to such changes, given that topology is critically dependent on the level of 

108 connectance among nodes (Poisot and Gravel 2014), and that the ability of an ecological network 

109 to withstand perturbations (stability) is thought to arise from the buffering effect of weak 

110 interactions (McCann 2000, Kéfi et al. 2019). The unknown effects of node resolution are also 

111 likely to apply to some traditional (observation based) networks, in which nodes may be resolved 

112 to different taxonomic levels within a single network (Ings et al. 2009), for example, in the 

113 presence of cryptic taxa (e.g. (Carvalheiro et al. 2008, Heleno et al. 2010, Pocock et al. 2012)).

114 To establish the impact of node delimitation on network architecture and its consequence 

115 for interpreting differences among networks, we collated multiple datasets of ecological 

116 interactions including both traditional observation-based and metabarcoding based data. For each 

117 dataset we then built networks using varying node resolutions and compared them using some of 

118 the most commonly-used network level metrics (Dormann et al. 2009). We made the following 

119 two predictions. First, we expected that across networks and data types, altering the resolution at 

120 which nodes are delimited would result in similar changes in measured network metrics. For 

121 example, when artificially reducing the number of nodes, the measured connectance of each 

122 network will increase, and no networks would be found to have a decreased connectance value. 

123 Second, we predicted that when comparing multiple ecological networks for a given metric, the 

124 rank order of the measured values will remain the same, such that metric x will always be greater 

125 in network a than in network b, regardless of the resolution of the network. Thus, our interpretation 

126 of how these networks differ from each other would not be affected by the manner of their 

127 generation. Our findings, however, revealed unexpected and inconsistent responses to changing 

128 levels of node delimitation within the molecular and observational datasets, highlighting 

129 potentially serious caveats in comparative studies of network dynamics.
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130 Methods

131 To assess the impact of resolution on network measurements, we compared molecular and 

132 traditional networks. In order to be included, these datasets needed to meet stringent criteria for 

133 both data analysis procedure and resolution. Metabarcoding data is known to be influenced by 

134 factors such as the choice of sequencing locus, PCR primers, DNA extraction method and 

135 sequencer used (Zinger et al. 2019) and even the chemistry of the chosen sequencing protocol. In 

136 addition, many of the bioinformatic choices can influence how taxa are resolved (Deagle et al. 

137 2019). In order to overcome these challenges and provide the most statistically sound analysis, we 

138 restricted the datasets to those generated using identical protocols at a single facility and then 

139 reanalyzed these ourselves using a single analytical pipeline to ensure consistency. This limits the 

140 number of uncontrolled variables introduced during data production. For example, we limited our 

141 choice to insect consuming species where more data was available but did not expand this to other 

142 feeding guilds, such as frugivory, which would require a different locus, primers, bioinformatic 

143 approach to construct a molecular network (e.g. MOTU clustering is not easily applied to plants). 

144 In observational networks similar stringent limitations on data were imposed. To reduce variability, 

145 we restricted the datasets to those of a single interaction type (in this case frugivory do to the 

146 general high resolution of nodes in these datasets), and then only included networks where every 

147 node was assigned to species level with full taxonomy available from the R package “Taxize” 

148 (Chamberlain and Szocs 2013) or a literature search, to avoid taxonomic inconsistencies at interim 

149 taxonomic levels.

150 Metabarcoding-based networks
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151 Seven molecular datasets met the criteria for inclusion. These included guano samples 

152 collected from bats surveyed as part of studies conducted at sites in the USA (Gordon et al. 2018), 

153 Jamaica, Costa Rica and Malaysia (authors’ unpublished data). All bats were captured under 

154 permit in either mist-nets or harp traps. For details of sites and trapping methods see Appendix S1: 

155 Table S1. To generate predator-prey datasets, we undertook metabarcoding of guano from 

156 individual insectivorous bats. Molecular procedures have been published elsewhere and PCR 

157 details are described in Appendix S1: Section S1. In brief, DNA was extracted using the QIAamp 

158 Stool Mini Kit (Qiagen, UK) with protocol modifications from Zeale et al. (2011) and Clare et al. 

159 (2014). Amplification, gel electrophoresis, amplicon size selection, clean up and sequencing were 

160 conducted at the Biodiversity Institute of Ontario, University of Guelph (Canada) using COI 

161 primers ZBJ-ArtF1c and ZBJ-ArtR2c (Zeale et al. 2011) modified with the dual adaptor system 

162 (Clare et al. 2014). Sequencing was performed on the Ion Torrent (Life Technologies) sequencing 

163 platform following Clare et al., (2014) with 192 samples (2 x 96 well plates) in a run using a 316 

164 chip and following the manufacturer’s guidelines but with a 2x dilution.

165 Sequences were de-multiplexed according to forward and reverse MIDs (allowing two 

166 mismatches and two indels). MIDs, primers and adapters were then removed 

167 (http://hannonlab.cshl.edu/fastx_toolkit). Amplicons of 147-167 bp were retained (target amplicon 

168 length = 157bp) and collapsed into unique haplotypes (http://hannonlab.cshl.edu/fastx_toolkit). 

169 All of these steps were performed in Galaxy (Afgan et al. 2016). We then removed singletons 

170 using a custom-written script.

171 For each dataset, we generated MOTUs using the Uclust algorithm (Edgar 2010) in QIIME 

172 (Caporaso et al. 2010) at 35 clustering similarity thresholds, from 0.91 to 0.98 with increments of 

173 0.002. Sequence files were then converted into binary interaction matrices where nodes at the top 

Page 8 of 44Ecology



9

174 level were bat species and nodes at the bottom level were MOTU, where a value of 1 for aij denotes 

175 a positive interaction, of predator i consuming prey item j. To generate networks, the resulting 

176 interaction matrices were simplified by combining columns containing bats of the same species 

177 (e.g. if two individuals of species i consumed prey item j, aij = 2). As metabarcoding data is known 

178 to be subject to biases caused by choices such as the reagents, locus, PCR primers, DNA extraction 

179 method, and sequencer used (Zinger et al. 2019), we restricted the datasets in this analysis to ones 

180 generated identically at a single facility, and only using guano samples from insectivorous bats. 

181 This limits the number of uncontrolled variables involved in analysis (e.g. the inclusion of 

182 frugivory would require a different locus and different bioinformatics processing, and as clustering 

183 is not optimal for plant DNA, data produced this way could not be included here). 

184 For each of the 245 networks generated (35 clustering thresholds x seven datasets) we 

185 calculated each of the metrics under the function networklevel in the ‘Bipartite’ R package 

186 (Dormann et al. 2008) using a custom wrapper script that is available as the package ‘LOTUS’ 

187 (https://github.com/hemprichbennett/LOTUS, DOI: 10.5281/zenodo.1297081), compiled for R (R 

188 Core Team 2019). All metrics were either classified as qualitative or quantitative, based on whether 

189 they are binary or incorporate information on interaction strength (see Appendix S1: Table S2).

190 Using these data, two sets of comparisons were made (see Appendix S1: Table S1). In the 

191 most severe scenario, seven datasets from diverse groups of bats in multiple continents, climatic 

192 conditions and habitat types are compared, referred to as the ‘Global molecular dataset’. We also 

193 compared a subset of two of these bat-arthropod datasets, which were sampled at the same location 

194 in Guanacaste, Costa Rica, in two consecutive seasons (wet and dry), referred to as the ‘Guanacaste 

195 molecular dataset (subset of two networks)’. This subset was collected for use in a separate 

196 ecological comparison study (currently in prep), and here serves as an example of how 
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197 comparisons of different treatments in a single ecological study can vary when network resolution 

198 is altered.

199 To assess the effect sizes of the clustering threshold, individual dataset, and the interaction 

200 between these terms, we used a linear mixed effects model in the R package ‘lme4’ (Bates et al. 

201 2015) with the measured metric value fitted as the response variable, and dataset (e.g. dataset A 

202 from the USA, or dataset B from Malaysia), clustering threshold, and the interaction between 

203 dataset and clustering threshold as fixed effects, and allowed a random intercept for each dataset. 

204 In this, the effect strength of dataset or clustering on the response variable are of little interest: we 

205 expect datasets to have different structures and that using different clustering thresholds will affect 

206 the values of the metrics. That is, we expect the measured (absolute) values to change, but that the 

207 relative values will be similar (dataset a is always measured as providing a far greater value than 

208 dataset b). Of interest here is the interaction term, since a significant dataset*clustering threshold 

209 interaction suggests that the slopes of the datasets (judged by the metric in question) vary as a 

210 consequence of changing clustering threshold. While we expect that for a given metric the slopes 

211 will go in the same direction (i.e. all slopes will either be positive or negative), if the angle of the 

212 slopes vary substantially between datasets it shows that conclusions drawn when comparing 

213 networks can vary depending on the clustering threshold used when generating them. Thus, the F 

214 values of the interaction – the amount of variance in the model attributable to the interaction – is 

215 used as a measure of the extent to which the datasets respond differently to changes in threshold 

216 (strictly, whether the slopes of the relationship between clustering threshold and metric vary 

217 between networks). Of special interest was the ability to compare these interaction terms between 

218 multiple metrics, to see which metrics are most strongly affected by altered clustering thresholds. 

219 To create a measurement for this for each mixed effects model, the F values of the effect size of 
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220 the network’s identity were then divided by the F values for effect size of the interaction between 

221 network identity and clustering level.

222 From this same analysis, we also looked at the ranges over which the rank order of the 

223 different datasets was unchanged: i.e. where changing a threshold of dataset generation does not 

224 stop dataset a returning a greater value of a metric than dataset b. This is of interest as the clustering 

225 thresholds which most accurately represent the underlying taxonomic diversity are unknown, 

226 however if there are ranges of clustering thresholds within which network topology are relatively 

227 unchanged, they may represent a range which is relatively reliable for network metabarcoding. We 

228 did not include compartment diversity or number of species on the higher network level in this 

229 analysis, as these values were unchanged. All molecular analyses are available in the GitHub 

230 repository https://github.com/hemprichbennett/network_otus.

231 Observational Networks

232 A total of nine published datasets were compiled of interactions between plants and 

233 vertebrate frugivores from the Galapagos and the Canary Islands (Nogales et al. 2016), and 

234 interactions between plants and frugivorous birds in Brazil (Galetti and Pizo 1996), Japan (Noma 

235 1996), Malaysia (Lambert 1989), Mexico (Kantak 1979) and Spain (Jordano 1985, Rezende et al. 

236 2007). These datasets were unique in that all nodes of both network levels were resolved at species-

237 level. We then retrieved the corresponding order, family and genus level data from online 

238 databases using the package ‘Taxize’ (Chamberlain and Szocs 2013). The resulting dataset is 

239 referred to as the ‘Global observational dataset’.

240 To determine the impact of incomplete node resolution on network architecture for each 

241 of these datasets, we reanalyzed the interactions by relabelling a given proportion of randomly 

242 selected nodes so as to reduce the taxonomic resolution; for example, species names were replaced 
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243 with the corresponding genus. If two nodes then had the same identity, they were collapsed 

244 together to become a single node with the sum of its parent nodes’ interactions. Thus if Solanum 

245 lycopersicum and S. vespertilio were both simplified to become Solanum, there would now be a 

246 single Solanum node containing the sum of their interactions. For a given proportion of randomly 

247 selected nodes, re-labelling was then performed for increasing proportions at increments of 0.1, 

248 until all nodes were relabelled (i.e. 0.1 to 1.0). Because of the random nature of the re-labelling, 

249 this was repeated 100 times for each network level, taxonomic level (Genus, Family and Order), 

250 and proportion of nodes. As the datasets from Nogales et al (2016) were binary (noting only the 

251 presence or absence of an interaction), the subsequent networks made by relabelling these two 

252 networks were also constrained to be binary and they were not included in the analyses of any 

253 quantitative metrics. 

254 We then measured each available network-level metric using the ‘Bipartite’ package 

255 (Dormann et al. 2008) to summarize the structure of each of the simplified networks. To determine 

256 the impact of imperfect node resolution on network structure, we ran mixed effects models using 

257 the R package ‘lme4’ (Bates et al. 2015). In our models the metric value was the response variable, 

258 the proportion of nodes relabelled, the network level (plant or seed consumer) being relabelled, 

259 and the taxonomic level being relabelled to were fitted as fixed effects, and the dataset being 

260 relabelled was fitted as a random effect with a random intercept. To visualize the changes occurring 

261 to the network metric measurements with node relabelling, we made pairwise comparisons 

262 between each of the simplified networks. To aid interpretation, these comparisons were restricted 

263 to iterations where the same network level was being relabelled and to the same taxonomic level 

264 (e.g. only comparing iterations where the frugivores were relabelled, and only being relabelled to 

265 Order level). We then plotted the percentage of these pairwise comparisons in which at least one 
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266 combination of iterations gave an erroneous rank order: e.g. if for each of the 36 pairs of networks, 

267 there was a combination of the relabelling events where relabelling 10% of nodes from network a 

268 and 20% of nodes from network b gave a rank order differing from that of the original networks, 

269 this location would receive a value of 100%. All observational analyses are available in the GitHub 

270 repository https://github.com/hemprichbennett/network_clustering_observations.

271 Focal metrics

272 For analyses of both metabarcoding and observation-based networks, we focus in 

273 particular on the metrics functional complementarity (Blüthgen and Klein 2011), H2’ (Blüthgen 

274 et al. 2007), modularity (Newman and Girvan 2004, Dormann and Strauss 2014), nestedness 

275 temperature (Atmar and Patterson 1993), NODF (Almeida‐Neto et al. 2008), and robustness 

276 (Memmott et al. 2004). Functional complementarity (Blüthgen and Klein 2011, Devoto et al. 2012, 

277 Peralta et al. 2014), calculates the level to which nodes in a network level have complementary 

278 non-overlapping interactions, through measuring the branch lengths of a functional dendrogram of 

279 their interaction dissimilarity with values between 0 (no complementarity), and 1 (perfect 

280 complementarity). H2’ is a measure of the specialization of both levels of a bipartite network, 

281 (Blüthgen et al. 2006), designed for comparing the specialization between multiple networks. 

282 Modularity measures the level to which species interactions form discrete clusters of dense 

283 interactions, with values between 0 (no modularity) and 1 (perfectly modular structure) (Newman 

284 and Girvan 2004, Dormann and Strauss 2014). Nested temperature (Atmar and Patterson 1993) 

285 and NODF (Almeida‐Neto et al. 2008) are two metrics describing the ‘nestedness’ of a network: 

286 the level to which the interactions of the specialists in a network are a subset of the interactions of 

287 the generalists. ‘Robustness’ is a measure of how tolerant a system is to extinction cascades, 

288 measuring the area underneath the curve of a plotted secondary extinction simulation (Memmott 
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289 et al. 2004). These metrics were chosen as they are among the most commonly used metrics in 

290 network ecology, and are relatively independent of sampling effects (Fründ et al. 2016). As such 

291 they are felt to be of especial interest to the ecological community, and able to give more reliable 

292 conclusions for this study than other metrics. Results and plots from the analyses of all other 

293 network-level metrics can be found in Appendix S1.

294

295 Results

296 Metabarcoding-based networks

297 Our analyses of the Global molecular dataset (seven networks) revealed that the absolute 

298 values of most metrics were sensitive to the MOTU clustering threshold applied (Figure 1 and 2), 

299 reflecting changes in underlying network structure. Trends in summary metrics with MOTU 

300 threshold were seen to differ in both the magnitude and/or the direction. For example, the metric 

301 ‘functional complementarity’ for the higher network level (i.e. bats) showed an increase with 

302 threshold for some datasets, but a decrease for others, with a high F value associated with the 

303 interaction term (Figure 2). In contrast, the metric ‘NODF’ showed relatively consistent directional 

304 responses to threshold, as seen by an intermediate F value (Figure 2).

305 Due to this variation in the behavior of metrics with changes in threshold, the resulting 

306 final rank order to the datasets was also seen to vary depending on the metric used for a given 

307 MOTU threshold. For example, while we observed no change in the rank order of the datasets 

308 based on ‘nestedness’, the rank order based on ‘robustness’ switched almost continuously 

309 throughout all thresholds used (Figures 1 and 3). Thus, we found that in our largest comparisons 
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310 between all molecular networks the outcome was critically dependent on the precise choice of 

311 threshold.

312 Our more restricted comparison of the Guanacaste molecular dataset (subset of two 

313 networks) was generated from data collected during separate seasons (wet and dry). The two 

314 networks in this dataset were thus predicted to be relatively similar, and yielded considerably more 

315 consistent conclusions than the Global molecular dataset (seven networks) (Figures 3 and 4). 

316 Although absolute values of metrics typically varied in response to threshold, the rank order of 

317 metrics derived for the two datasets was more stable than that recorded in the case of the Global 

318 molecular dataset. For example, the metric ‘robustness’ was always higher for the wet season than 

319 the dry season, thereby preserving the rank order of this pair of datasets (Figure 4), compared to 

320 the former comparison of seven datasets in which the rank order of this metric varied considerably. 

321 Observational networks

322 Our analyses of the Global observational dataset showed that, for the majority of metrics, 

323 conclusions based on the rank order were sensitive to the proportion of nodes being relabelled. In 

324 pairwise comparisons of each dataset, at various combinations of proportions of nodes relabelled 

325 (Figure 5), it was possible to create an erroneous rank order for each of the focal metrics when 

326 coarsely identifying nodes. We found that the focal metrics appeared to differ in their sensitively 

327 to node relabelling, showing a pattern of erroneous findings being more likely when identifying 

328 the higher network level (seed consumers) coarsely than for the lower network level (plants). The 

329 changes in conclusions were most marked when identifying nodes to Order level, with increasing 

330 reliability when identifying to Family and Genus. Such changes were possible when coarsely 

331 identifying a low proportion of nodes (0.1-0.25). For every focal metric, it was possible to alter 
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332 the rank order by coarsely identifying some nodes, but the identity of the dataset (used as a random 

333 effect in the model) was still the most important in predicting the metric value (Table 1).

334 Discussion 

335 Our analyses of observational and molecular datasets reveal that node resolution critically 

336 impacts the structure of ecological networks, and that this can lead to wide variation in the 

337 magnitude and behavior of commonly reported metric values. We further show that inherent 

338 variation in measured values can lead to erroneous conclusions in comparisons of networks, 

339 although these problems appear less evident in comparisons of ecologically-matched datasets. 

340 These findings therefore have important implications for the issue of node resolution, a long-

341 standing challenge in network ecology that has become a topic of increasing interest in light of the 

342 proliferation of sequence data.

343 Resolution and ecological network analysis

344 Newly available DNA metabarcoding approaches are expected to be transformative in 

345 ecological network research by allowing large volumes of data to be generated rapidly (Kaartinen 

346 et al. 2010, Wirta et al. 2014, Evans et al. 2016). Unlike traditional approaches to network 

347 construction, in which interacting taxa are commonly identified based on observations, these 

348 methods rely on the concept of MOTUs. Despite these differences in methodology, our comparison 

349 revealed that both types of method are prone to related issues.

350 A key result was that in both observation-based and metabarcoding-based networks, 

351 altering taxonomic resolution led to often dramatic changes in the numbers of nodes, which in the 

352 latter case varied by several orders of magnitude. This is worrying because the number of nodes, 

353 and their consequence for connectance, are widely considered strong determinants of many 
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354 frequently-measured characteristics of network structure (Poisot and Gravel 2014, Chagnon 2015). 

355 For example, higher numbers of nodes will increase the proportion of weak links in networks, 

356 whereas reducing the number of nodes may cause networks to appear more generalized. Such 

357 trends also have broad implications for theoretical interpretations, with the distribution of link 

358 strength seen to play a pivotal role in the stability of ecosystems (McCann 2000, Solé and Montoya 

359 2001).

360 Other key network metrics that showed strong responses to node resolution included those 

361 based on interaction distribution. In some cases, such as robustness, this led to widespread 

362 variation in the rank order of networks. Robustness for the higher network level showed a rapid 

363 increase with an increasing number of nodes on the lower network level, showing that an inflated 

364 estimation of the dietary richness available to a consumer reduces the perceived likelihood of 

365 extinction of higher node species. Robustness is commonly used in forecasting ecosystem 

366 resilience to species loss, and has been linked to ecological restoration (Pocock et al. 2012). When 

367 numbers of nodes increased, this was associated with increases in metrics of specialization, such 

368 as H2’. However, as the magnitude of this effect varied between datasets it frequently caused 

369 switches in their rank order (Figures 2 and 3). Interestingly, altering node resolution had a large 

370 effect on network specialization as measured by H2’ for molecular datasets (Figures 1-3), but not 

371 for the observational datasets (Figures 5 and 6). The molecular datasets may be more susceptible 

372 to node resolution inducing changes in measures of specialization, as few bat nodes are interacting 

373 with a high number of MOTU nodes. Molecular networks typically have more nodes than networks 

374 built upon observations (Wirta et al. 2014, Macgregor et al. 2019) and so although bats have 

375 especially diverse diets, it is reasonable to expect such datasets to be typified by high number of 

376 nodes and a skewed degree distribution. We also found that descriptors of ecological interactions 
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377 among taxa at the same network level were highly labile. For example, some metrics related to 

378 niche-use, such as niche overlap (Rudolf and Lafferty 2011) and C-score (Stone and Roberts 1990), 

379 varied widely, possibly due to inflated resource partitioning arising from the over-splitting of 

380 MOTUs (Clare 2014). On the other hand, we found that functional complementarity – an 

381 alternative measure of niche differentiation based on distance matrices (Devoto et al. 2012, Peralta 

382 et al. 2014) – was less sensitive to threshold used, giving fewer alterations in rank order in the 

383 molecular dataset. Nestedness describes the extent to which interactions involving specialists 

384 comprise subsets of those involving generalists, and is a pattern seen across diverse networks in 

385 nature (Nielsen and Bascompte 2007). Our analyses show that with an increasing clustering 

386 threshold, both nestedness metrics used here decreased with node resolution (Almeida‐Neto et al. 

387 2008, Atmar and Patterson 1993). The network level being clustered in the observational analysis 

388 frequently had an effect on any pairwise comparisons being made between networks (Figure 5), 

389 although for each focal metric the effect size of the network level being clustered was smaller than 

390 that of the dataset being clustered (Table 1). Pairwise comparisons were generally most-affected 

391 by clustering the seed consumers, possibly because there were typically a lower number of 

392 taxonomic Families and Orders of seed consumers than plants in each network.

393 Our findings on the impact of node resolution complement previous assertions that 

394 network dimension and sampling intensity may affect multiple network metrics (Dormann et al. 

395 2009). Fründ et al. (2016) demonstrated that qualitative metrics summarizing ecological 

396 specialization (e.g. generality) are especially sensitive to sample size, but argued that where such 

397 biases were predictable, these metrics still hold value provided that interpretations are restricted to 

398 relative values. On the other hand, quantitative analogues that take account of interaction strength 

399 were reported to be more robust to sample sizes (Fründ et al. 2016), a result also supported by our 
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400 own observations from node resolution (Figure 2). Weighted networks and metrics contain far 

401 more information than their binary counterparts, and so even when multiple nodes are collapsed 

402 into a single node, the information loss is minimal compared to that retained by the rest of the 

403 network.

404 There is significant debate about the extent to which metabarcoding-based research can 

405 be quantitative (Lamb et al. 2019). Arguments have been made for incorporating the number of 

406 sequences obtained per MOTU in a sample as a proxy for the biomass consumed (Deagle et al. 

407 2019), or instead simply using the presence or absence of a MOTU in a sample (Clare 2014, 

408 Andriollo et al. 2019). In the metabarcoding-based component of this study we used the presence 

409 or absence of a prey item in an individual bat, and then summed the interactions of all bats of a 

410 given species. Whilst this should not be interpreted as providing information on the biomass in a 

411 given ecological interaction, it is generally felt to be the most reliable approach for the study of 

412 generalist consumers (Andriollo et al. 2019).

413 Our results show that resolution is a problem common to networks based on both DNA 

414 barcoding and observations. In observation-based networks we found that low levels of relabelling, 

415 representing a coarse identification of only a low proportion of nodes, was frequently enough to 

416 change the rank order of network comparisons. Given that the difficulty of identifying all nodes to 

417 species level means many published networks include a mix of species-level and more coarsely 

418 identified nodes, this challenges the reliability of such studies’ findings (e.g. Rezende et al. 2009, 

419 Pocock et al. 2012, Baldock et al. 2015, Kantsa et al. 2018). The effects of relabelling on network 

420 measurements appears to have been more severe when used on the observational dataset (Figures 

421 5 and 6), which is problematic as in such networks it is typically more difficult to identify nodes 

422 by visual than molecular means. Such issues will continue to be present in studies that either 
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423 incorporate novel technologies such as cameras (Gray et al. 2018, Sritongchuay et al. 2019a, 

424 2019b), or avoid classifying nodes to species level and instead opt to classify them to non-

425 taxonomic levels, such as functional groups. These results highlight the need for network 

426 ecologists to identify all nodes to uniform resolution with the greatest level of precision possible 

427 and importantly, to use identical methods and resolution for the comparisons of any networks. 

428 Moreover, when taxa are common to multiple networks in a study, it is crucial for them to be 

429 identified to the same taxonomic resolution within each treatment. When nodes in networks are 

430 unresolved, they can either represent cases where species are erroneously clumped together into 

431 single nodes, or single species may be erroneously used as multiple nodes. These two phenomena 

432 are represented here by the observational (erroneous clumping) and MOTU (presumed erroneous 

433 splitting) analyses.

434 In the context of metabarcoding, which looks set to become an important tool in network 

435 ecology, the assigning of sequences to species is highly challenging, especially where sequences 

436 are short and contain limited information. Steps towards achieving a solution might involve 

437 combining data from multiple loci, or, where samples contain sufficiently intact DNA, generating 

438 longer sequences. Regardless, it is important to recognize that one or few loci will rarely resolve 

439 all species in a complex data set, and network ecologists will thus continue to rely on MOTUs at 

440 least in part. While most programs to date classify MOTUs by splitting genetic diversity according 

441 to a single threshold, it is well known that interspecific divergence will vary widely across both 

442 loci and taxonomic groups (Johns and Avise 1998, Pentinsaari et al. 2016). Emerging approaches 

443 offer the means to balance over-splitting of MOTUs against retaining sequencing errors (Frøslev 

444 et al. 2017), however, ultimately an adaptive approach- in which specific thresholds can be fitted 

445 to different taxonomic groups- might further aid taxonomic precision. Molecular analyses are also 
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446 generally unable to detect cannibalism in taxonomic groups where it is likely to occur (Berry et al. 

447 2015) and in some scenarios can be prone to false positives due to secondary ingestion; where an 

448 item ingested by prey is detected as secondary predation (Toju and Baba 2018). As in traditional 

449 networks, it is vital that the exact same molecular and bioinformatics procedures be used in the 

450 comparison of any two networks, and to aid future comparisons all code should be made openly 

451 available for transparency. It is encouraging that in the subset of our metabarcoding data collected 

452 using a paired protocol and designed specifically for comparative study, findings were much less 

453 vulnerable to showing changes in conclusions based on network resolution (Figures 3 and 4). To 

454 reduce potential uncontrolled variation caused by comparing networks with multiple interaction 

455 types, the analyses reported here are restricted to those of bat-insect networks and observational 

456 networks of frugivory. For the metabarcoding networks it was necessary to restrict our analysis to 

457 data generated using a single laboratory protocol and sequencing technology (Ion-Torrent), to 

458 control for multiple factors known to influence metabarcoding studies (Zinger et al. 2019). 

459 Analysis protocols are often specific to the primer used, the error profile of the sequencing platform, 

460 and clustering protocols such as the MOTU approach used here are not appropriate for some 

461 taxonomic approaches. For just one example, different primers will generate amplicons of different 

462 lengths. Sequence data of different lengths clustered at the same percentage cut off point would 

463 generate different estimates of node resolution (1% of 100bp is different than 1% of 200bp) 

464 introducing an uncontrolled factor in statistical analysis. As a consequence, we have limited our 

465 inclusion of data to a strict criteria to control these variables. Our analysis of observational 

466 networks of frugivory required us to only use datasets in which each node was identified to species 

467 level, however this also restricted the data available to us in a similar way. While we expect our 
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468 findings to be broadly generalizable, we note that extrapolations from this relatively small number 

469 of networks should be made with caution.

470 Finally, we conclude that our ability to make meaningful interpretations regarding 

471 ecological networks critically depends on the nature of the underlying data and its processing. We 

472 further show that precise metric values can be arbitrary, and while relative values in comparative 

473 studies may be more reliable, effect sizes are likely to be the most important criteria when deciding 

474 if these values are biologically meaningful. Regardless of the technique used to generate network 

475 data, issues are likely to persist in the delimitation of nodes and therefore any conclusions drawn 

476 from study of the network as a whole. As such, we recommend that researchers identify network 

477 nodes to the greatest precision possible, and acknowledge the limitations of their datasets. Overall, 

478 we suggest that caution must be taken when comparing values from multiple networks, especially 

479 where node resolution differs.
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744 Tables

745 Table 1a-f: Summary statistics of the mixed effects models used on the Global observational dataset. Note that the lower network 

746 level, and the taxonomic level of ‘species’ are here used as the baseline values.

Functional complementarity, higher level
Effect Term Estimate Std error Statistic P. value
Fixed Clustering threshold 42.19 7.64 5.52 <0.001
Fixed Network level (upper) 177.42 4.38 40.51 <0.001
Fixed Taxonomic level: genus 13.29 5.35 2.48 0.01
Fixed Taxonomic level: order 45.97 5.37 8.56 <0.001
Random Random effect: dataset 1625.26
Random Residual 507.86

747

H2’
Effect Term Estimate Std. error Statistic P. value
Fixed Clustering threshold -0.03 <0.001 -41.19 <0.001
Fixed Network level (upper) -0.01 <0.001 -28.69 <0.001
Fixed Taxonomic level: genus <0.001 <0.001 7.22 <0.001
Fixed Taxonomic level: order -0.01 <0.001 -25.67 <0.001
Random Random effect: dataset 0.16
Random Residual 0.05

748

Page 35 of 44 Ecology



2

749

Modularity
Effect Term Estimate Std. error Statistic P. value
Fixed Clustering threshold -0.02 <0.001 -33.76 <0.001
Fixed Network level (upper) -0.02 <0.001 -43.25 <0.001
Fixed Taxonomic level: genus 0.01 <0.001 14.56 <0.001
Fixed Taxonomic level: order -0.01 <0.001 -25.3 <0.001
Random Random effect: dataset 0.09
Random Residual 0.04

750

Nestedness
Effect Term Estimate Std. error Statistic P. value
Fixed Clustering threshold -1.21 0.05 -24.63 <0.001
Fixed Network level (upper) 0.13 0.03 4.66 <0.001
Fixed Taxonomic level: genus 0.28 0.03 8.08 <0.001
Fixed Taxonomic level: order -0.28 0.03 -8.04 <0.001
Random Random effect: dataset 6.43
Random Residual 3.25

751
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752

NODF
Effect Term Estimate Std. error Statistic P. value
Fixed Clustering threshold 7.99 0.07 107.51 <0.001
Fixed Network level (upper) 0.17 0.04 3.96 <0.001
Fixed Taxonomic level: genus -2.36 0.05 -45.61 <0.001
Fixed Taxonomic level: order 0.63 0.05 12.21 <0.001
Random Random effect: dataset 12.84
Random Residual 4.9

753

754

Robustness, higher level
Effect Term Estimate Std. error Statistic P. value
Fixed Clustering threshold -0.06 <0.001 -46.22 <0.001
Fixed Network level (upper) -0.02 <0.001 -22.12 <0.001
Fixed Taxonomic level: genus <0.001 <0.001 1.03 0.3
Fixed Taxonomic level: order -0.02 <0.001 -20.61 <0.001
Random Random effect: dataset 0.09
Random Residual 0.08
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756 Figure captions

757 Figure 1. Changes in selected metrics in the Global molecular dataset (seven networks). 

758 The X-axis shows the clustering threshold to generate an individual network, the Y-axis shows the 

759 changes in individual network calculations. Lines at 93% and 97% denote the most commonly-

760 used range of clustering thresholds.

761

762 Figure 2. Metric reliability when analyzing the Global molecular dataset (seven networks), 

763 as described by the F value of the network divided by the F value of the interaction term between 

764 network and clustering threshold used. A high value indicates all slopes covarying, whilst a low 

765 value indicates greatly varying gradients, showing potentially poor reliability in inter-network 

766 comparisons.

767

768 Figure 3. Differences in network rankings as a function of clustering threshold for different 

769 metrics for the Global molecular dataset (seven networks) and Guanacaste molecular dataset 

770 (subset of two networks). The Global molecular dataset comprises a range of datasets of 

771 insectivorous bats and their prey from around the world, whereas the Guanacaste molecular dataset 

772 is from bats and their prey studied at a single location in two consecutive seasons. Continuous lines 

773 show ranges over which the rank order of the networks analyzed remains unchanged; in each row, 

774 each line or dot shows a rank order that differs from those immediately to its left or right. So, for 

775 example in the comparison between seven networks, ‘togetherness, lower’ is unchanged across the 

776 entire range of thresholds, while Shannon diversity is consistent from 91-93.5% and again (with a 

777 different rank order) from 94.5-97.5%. Lines at 93% and 97% denote the most commonly-used 

778 range of clustering thresholds.
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779

780 Figure 4. Changes in selected metrics in the Guanacaste molecular dataset (subset of two 

781 networks). The X-axis shows the clustering threshold to generate an individual network, the Y-

782 axis shows the changes in individual network calculations. Lines at 93% and 97% denote the most 

783 commonly-used range of clustering thresholds.

784

785 Figure 5. The percent of pairwise comparisons of networks in the Global observational 

786 dataset in which a given combination of node simplification could create an erroneous conclusion 

787 (i.e. those that different from the conclusion drawn with no relabelling) for the focal network 

788 metrics.
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The percent of pairwise comparisons of networks in the Global observational dataset in which a given 
combination of node simplification could create an erroneous conclusion (i.e. those that different from the 

conclusion drawn with no relabelling) for the focal network metrics. 
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