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Abstract

Purpose: We review statistical methods for assessing the possible impact of bias due

to unmeasured confounding in real world data analysis and provide detailed recom-

mendations for choosing among the methods.

Methods: By updating an earlier systematic review, we summarize modern statistical

best practices for evaluating and correcting for potential bias due to unmeasured

confounding in estimating causal treatment effect from non-interventional studies.

Results: We suggest a hierarchical structure for assessing unmeasured confounding.

First, for initial sensitivity analyses, we strongly recommend applying a recently

developed method, the E-value, that is straightforward to apply and does not require

prior knowledge or assumptions about the unmeasured confounder(s). When some

such knowledge is available, the E-value could be supplemented by the rule-out or

array method at this step. If these initial analyses suggest results may not be robust

to unmeasured confounding, subsequent analyses could be conducted using more

specialized statistical methods, which we categorize based on whether they require

access to external data on the suspected unmeasured confounder(s), internal data, or

no data. Other factors for choosing the subsequent sensitivity analysis methods are

also introduced and discussed, including the types of unmeasured confounders and

whether the subsequent sensitivity analysis is intended to provide a corrected causal

treatment effect.

Conclusion: Various analytical methods have been proposed to address unmeasured

confounding, but little research has discussed a structured approach to select appro-

priate methods in practice. In providing practical suggestions for choosing appropri-

ate initial and, potentially, more specialized subsequent sensitivity analyses, we hope

to facilitate the widespread reporting of such sensitivity analyses in non-interven-

tional studies. The suggested approach also has the potential to inform pre-specifica-

tion of sensitivity analyses before executing the analysis, and therefore increase the

transparency and limit selective study reporting.
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“Real-world evidence can only correct for biases that

researchers already understand. By randomly assigning

patients to one treatment or another, clinical trials rely

on chance to cancel out any biases, whether

researchers are aware of them or not.”

1 | INTRODUCTION

In July 2019, STAT published an article1 “Attempt to replicate clinical

trials with real-world data generates real-world criticism, too” and the

criticism above generated our immediate attention. Is it a legitmate

criticism? Of course it is. As researchers who are dealing with non-

interventional studies and associated causal inference problems on a

daily basis, we are certainly aware of the challenges caused by the lack

of randomization and among them unmeasured confounding is an

obvious and important one. However, the existence of these chal-

lenges does not necessarily means RWE can only correct for biases

that the researchers already understand. Various methods, both at the

design and analysis stages of non-interventional studies, have been

developed and applied to assess and/or adjust the impact of bias com-

ing from confounders that were not anticipated or not available in the

databases analyzed.

Evidence from randomized clinical trials (RCTs) has been consid-

ered the gold standard in assessing causal treatment effects of an

investigational therapy and will probably remain the cornerstone for

that purpose. However, RCTs are not always feasible due to factors such

as ethical concerns. For instance, in life-threatening rare-disease areas

where there is substantial unmet medical need, it may be considered

unethical to randomize patients to a placebo or standard-of-care group,

and investigators may instead allocate the investigational drug to all

enrolled patients and compare them to external, historical controls. On

the other hand, RWE is increasingly becoming a vital component of deci-

sion making in health care for patients, clinicians, sponsors, and even reg-

ulatory agencies. In the past, regulators used RWE primarily to monitor

and evaluate the safety of drug products after they were approved, and

only under limited circumstances have considered RWE to support a

claim of efficacy.2 However, with rising awareness and interest in RWE

worldwide, an important opportunity has emerged to expand the

established paradigm of evidence generation and to harness the poten-

tial of RWE for regulatory decisions more often and more broadly. For

example, the European Medicines Agency (EMA) considered RWE as a

part of adaptive licensing in 20163; The US Food and Drug Administra-

tion (FDA) published its framework for an RWE program in 20184; the

National Medical Products Administration (NMPA) in China published its

draft guidance “Key Considerations in Using Real-World Evidence to

Support Drug Development” in 2019.5 To achieve the ultimate goal of

wider acceptance and more responsible utilization of RWE, we have to

properly address the criticisms similar to these, so that we can build more

credible and reliable RWE. A well-designed non-interventional study

based on high-quality data sources may provide evidence that is as credi-

ble as that provided by a RCT. A well-known example is the use of hor-

mone replacement therapy (HRT) for post-menopausal women. HRT had

previously been supported by positive results from a high-quality and

long-running non-interventional study, which suggested that HRT would

reduce the risk of heart disease.6 However, results from a subsequent

RCT showed increased cardiovascular risks.7 Initially, these differences

were thought to indicate the weakness of non-interventional studies,

but further analyzes determined that both studies had valid results for

their patient populations and that discrepancies were probably due to

the timing of initiation of hormone therapy in relation to the onset of

menopause.8,9 If this is true, then the RCT and non-interventional study

actually showed similar findings. However, because RCT was considered

as the ideal methodology to assess causal inference and non-

interventional studies was considered as weaker evidence due to lack of

randomization, the negative result of this RCT led to widespread aban-

donment of the HRT therapy, which might have been a mistake.

Pharmacoepidemiology is a research field that includes analysis of

routinely collected electronic health data, and has developed good prac-

tices on the conduct and report of RWD-based studies. This field also

provides the use of its research for regulators' decision, for example,

FDA has long performed safety monitoring studies through

pharmocoepidemiological research projects under the Sentinel Initia-

tive.10 Most recently, as part of its RWE program, FDA funded the RCT

DUPLICATE project, which intends to replicate the results of 30 RCTs

using real-world claims databases.11 The project aims to see whether

KEY POINTS

• Real world evidence (RWE) is now widely utilized for

decision-making in routine clinical practice, and regulators

have started to consider evidence from studies based on

real-world data (RWD) for their decisions. However, chal-

lenges remain on the use of RWE, and a critical one is

reducing bias in causal treatment effect estimates when

randomization is not available or feasible.

• Controlling confounding and other biases inherent in

non-interventional RWD-based studies has been an

important task to generate less biased causal evidence

and therefore provide more credible and reliable RWE.

However, bias due to unmeasured confounding still

remains one of the major criticisms of the credibility

of RWE.

• Various analytical methods have been proposed to

address unmeasured confounding, but little research has

discussed a structured approach to select appropriate

methods in practice. In this paper, we will discuss and

provide practical suggestions via a flowchart to illustrate

a decision process that researchers could consider in their

own studies to mitigate the impact of unmeasured con-

founding. The suggested approach has the potential to

help pre-specify the sensitivity analyses in statistical anal-

ysis plans (SAP) for a given non-interventional study.
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the claims databases are able to replicate the trial results, and it will

assist in the FDA's evaluation of the use of RWE to support new indica-

tions for approved drugs or to satisfy post-approval study requirements.

Given the close connection between pharmacoepidemiologic research

and the RWE generation, properly addressing bias due to confounding

in causal inference assessment is an important task for this field. Thus,

evaluating and correcting bias due to unmeasured confounding should

then be an important part of this task.

2 | CONFOUNDING AND THE “NO

UNMEASURED CONFOUNDING”

ASSUMPTION

So what is a confounder? Under the potential outcomes framework,

the individual-level causal treatment effect is:

Y T =1ð Þ−Y T =0ð Þ

where T = 1 and T = 0 represent the two treatments being compared

and Y(T = 1) and Y(T = 0) represent the potential outcomes of a subject

had he/she received the corresponding treatment. Because an

individual can never simultaneously receive T = 0 and T = 1, these individ-

ual-level potential outcomes cannot be observed simultaneously. Accord-

ingly, the potential outcome of the unrealized treatment is often referred

to as the “counterfactual” outcome. A key goal of causal inference is to

estimate the average treatment effect. In a randomized trial, subjects'

potential outcomes are independent of the treatments they actually

received, which essentially means that the subjects in each treatment

group are comparable to one another, and this “exchangeability” means

that the average treatment effect can be estimated without bias. In con-

trast, in an observational study, subjects in each treatment group may not

be comparable if there are variables that affect subjects' probability of

receiving the treatment and also independently affect their probability of

experiencing the outcome. These variables are called “confounders”. If all

confounders are measured and adjusted in analysis (eg, via multivariable

regression), then the potential outcomes of the subjects in each treatment

group (conditional on the confounders) are once again exchangeable, all-

owing unbiased estimation of the treatment effect. The assumption that

all confounders have been measured and adjusted in analysis is some-

times called the “no unmeasured confounding assumption” (NUCA).12,13

However, in pharmacoepidemiologic research, it is rarely the case

that every possible confounder has been measured and adjusted in the

analysis. For instance, RWD are always collected for reasons other than

research and they may have missing or limited information on potential

confounders such as smoking, body mass index, and disease severity

measurements. When estimating a causal treatment effect, ignoring the

influence of unmeasured confounders could lead to substantial bias -

potentially even reversing the estimated effect. Such reversal can occur,

for example, when there is “confounding by indication”, in which the

medical indication to receive a given treatment is itself a confounder. For

example, subjects with greater disease severity may be medically indi-

cated to receive a particular drug, but may also have a greater risk of

negative health outcomes, creating confounding that could weaken or

even reverse a potentially beneficial effect of the drug.14 Another com-

mon unmeasured confounder in epidemiological studies is healthy user

bias. As pointed out by Shrank et al,15 the healthy user effect is best

described as the tendency of patients who receive a preventive therapy

to also seek other preventive services or partake in other healthy behav-

iors. Patients who choose to receive preventive therapy might exercise

more, eat a healthier diet, and avoid unhealthy behaviors such as

smoking and alcohol use. As a result, a non-interventional study evaluat-

ing the effect of a preventive therapy (eg, statin therapy) on a related

outcome (eg, myocardial infarction) without adjusting for other related

preventive behaviors (eg, healthy diet or exercise) will tend to overstate

the effect of the preventive therapy under study.16

We refer to such confounders that are not measured for all sub-

jects in the study as “unmeasured confounders” (though, as noted

below, they may be measured for a subset of subjects). Given the

ubiquity of unmeasured confounding in analyses of RWD, we recom-

mend always conducting sensitivity analyses to assess and/or adjust

for its potential impact on estimates of causal effects. Sensitivity ana-

lyses assess the extent to which the results of an analysis (eg, the esti-

mated average treatment effect) might change if NUCA does not hold

exactly due to the presence of unmeasured confounding. This is criti-

cal because, except in the context of a large randomized trial, one can

never be certain that NUCA holds. That is, when analyzing RWD, one

typically conducts analyses that inherently assume that NUCA holds,

and sensitivity analyses can help characterize how much the results

might change if NUCA is violated to a greater or lesser extent.

In Schenessweiss's 2006 paper,17 he categorized the unmeasured

confounders into two types: one type is “measurable”, which means we

know those factors are confounding variables but the database we intend

to use does not collect the variables or does not completely collect the

variables. Another type is variables that are not “measurable” even in

principle or at least are measurable only by proxy, and one popular exam-

ple of this type is the healthy user bias that we mentioned before.

In a particular study utilizing real world data, we distinguish three

possible scenarios regarding available information on unmeasured

confounders. Firstly, there may be no additional data available, which

means the researchers do not know any extra information about the

unmeasured confounder. Secondly, there may be internal data avail-

able, which means the database does not have the information of con-

founders on every subject but does for a subsampling of the study

population. Thirdly, there may be external data available, which means

the database does not have the information of the confounders on

any subject but such information are available in patient-level data or

summary data external to the study database.

3 | A FRAMEWORK FOR CHOOSING

SENSITIVITY ANALYSES FOR UNMEASURED

CONFOUNDING ASSESSMENT

In Pharmacoepidemiology, Lash and his colleagues published exten-

sively on quantitative bias analysis.18,19 The quantitative bias analysis
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they discussed targets not only the issue of unmeasured confounding

but also other forms of internal bias, such as selection bias or mis-

classification of a covariate in a database. For unmeasured con-

founding specifically, an early review paper by McMahon20 discussed

the approaches to combat confounding by indication in observational

studies, including design approaches such as restriction of study subjects.

Later, Schneeweiss outlined strategies to mitigate bias due to

unmeasured confounding in general.17 Because pharmacoepidemiological

studies using administrative data are often criticized for their limited abil-

ity to collect clinically important confounders, he proposed a framework

to adjust residual bias due to unmeasured confounders in those studies.

The framework includes several types of methods to address residual

bias due to unmeasured confounders: two-stage sampling, external

adjustments, design methods such as cross-over designs and active com-

parator and analysis methods such as instrumental variables or other sen-

sitivity analysis.

Despite the availability of various methods21-23 and the nice

framework laid out by Schnessweiss,17 in practice it is still difficult

to choose the appropriate methods for each individual study, given

the huge range of possible confounding factors. In addition, little

discussion has been offered on the general problem of data-dredg-

ing24 with respect to those methods for mitigating residual bias due

to unmeasured confounding. The International Council for Harmoni-

zation of Technical Requirements for Pharmaceuticals for Human

Use (ICH) issued guidance on the statistical principles that need to

be implemented in clinical trials25 and pre-specification of the analy-

sis is part of those important principles, to prevent the potential bias

due to data dredging. However, the principle of pre-specifying anal-

ysis has not been widely adopted in observational studies utilizing

real world data. The lack of adoption of this principle does not mean

that data-dredging is not a concern in observational studies, actually

the widespread perception “observational studies propose, RCTs

dispose” could partially attribute to the data dredging. For instance,

in an observational study using a large real-world database, a large

number of associations could be found, when in reality only a few

are true associations. Those false positive associations are likely the

products of data dredging. Like randomized clinical trials, the validity

of conclusions of observational studies is likely to improve by use of

a pre-specified analysis plan, so that the pre-planned analyses are

distinguished from ad-hoc, data-driven analyses, and journals now

encourage researchers to preregister observational studies' proto-

cols and statistical analysis plans.26,27 Therefore, we would like to

provide some suggestions to tackle the practical challenge in

assessing the impact of unmeasured confounders. In particular, we

think these suggestions could be of great help in statistical analysis

pre-specification, thereby improving the transparency and repro-

ducibility of the study results, and ultimately improving the credibil-

ity of the RWE.

We summarize those recommendations in the flowchart

(Figure 1) below as one possible structured approach to assess/adjust

and report the impact of unmeasured confounders on the observed

treatment-outcome relationship. This flowchart is an updated version

from a previous review paper23 written by some of the current

authors; the updated flowchart additionally incorporates some newly

developed methods (eg, E-value28) and feedback received from other

researchers in the relevant fields.

First, some methods based on quasi-experiments, such as instru-

mental variables and regression discontinuity designs, do not require

the NUCA with respect to the confounders between the treatment

and outcome. Critically, though, these quasi-experimental methods do

require other assumptions as alternatives to NUCA (such as the avail-

ability of an exogeneous instrumental variable), and sometimes along

with additional alternative assumptions. Thus, it is important to care-

fully assess potential violations of these alternative assumptions. For

details about how to use Instrumental variables/regression disconti-

nuity for causal inference, please refer to Angrist et al,29 Baiocchi

et al,30,31 Brookhart et al,32 Mckenzie et al,33 Cook,34 Imbens and

Lemieux,35 and the references therein.

If researchers instead apply methods that do need NUCA for the

treatment-outcome relationship (eg, regression, propensity score

methods, G-estimation, etc.), but are concerned that the assumption

may be violated (as is essentially always the case with RWD, as

described above), then we suggest conducting sensitivity analyses to

quantitatively assess the robustness of the treatment-outcome associ-

ation to potential unmeasured confounding. Depending on the com-

plexity of the implementation and the assumptions needed, we

further categorize sensitivity analyses as “initial” or “subsequent” sen-

sitivity analyses. The main purpose of these initial sensitivity analyses

is to test the robustness of the study findings to potential unmeasured

confounding in a straightforward manner that requires few assump-

tions, is applicable for both “measurable” and “unmeasurable” types of

unmeasured confounders, and is easy to interpret. Given those con-

siderations, the E-value,28 the array approach,17 or the rule-out

method17 are the ones we propose as “initial” sensitivity analysis.

The E-value is a recently proposed approach28 that is fairly easy

to apply in practice and makes minimal assumptions regarding the

structure of unmeasured confounding, as described below. The E-

value is defined as the minimum strength of association on the risk

ratio scale that unmeasured confounder(s) would need to have with

both the treatment and the outcome, conditional on the measured

covariates, to fully “explain away” the observed treatment-outcome

association in the sense that the observed association is compatible

with a truly null causal effect (or, alternatively, is compatible with a

causal effect of a specific value). A large E-value indicates that the

observed association is relatively robust to unmeasured confounding,

because it would take considerable unmeasured confounding to

explain away the observed association. In contrast, a small E-value

indicates that the observed association is relatively sensitive to

unmeasured confounding, because relatively weak unmeasured con-

founding could potentially explain away the effect. In practice, the E-

value can be calculated as a simple non-linear transformation of the

observed relative risk, RR, and is given by E-value = RR+
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

RR RR−1ð Þ
p

.

The same formula can be applied to effect measures other than rela-

tive risks by using various effect-size transformations.28 A website

(evalue-calculator.com) and R package (EValue) are available to calcu-

late E-values for a variety of effect measures.36
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A strength of the E-value approach is that it makes minimal

assumptions regarding the structure of unmeasured confounding (eg,

it does not assume the unmeasured confounder is binary), nor does it

assume that there is a single unmeasured confounder. When there are

multiple unmeasured confounders, the minimum strengths of associa-

tions between the unmeasured confounders and the treatment

(or outcome) are interpreted in terms of the strongest association that

is produced by comparing any two categories of the entire vector of

unmeasured confounders.37 The E-value also does not require

assumptions regarding the prevalence or distribution of the

unmeasured confounder(s), which is both a strength and a limitation.

That is, it is possible that if there existed unmeasured confounder(s)

with confounding strengths at least as large as the E-value, such con-

founder(s) could potentially explain away the effect, but not all con-

founders with confounding strengths at least as large as the E-value

are capable of explaining away the effect.28

Like all sensitivity analyses, the E-value should be reported and

interpreted thoughtfully.38 In particular, its interpretation depends on

context, particularly on the measured confounders that have been

adjusted in analysis.28 Suppose two studies both had an E-value of

2.5, but one study controlled for a broad range of potential con-

founders while the other did not control for any confounders. Then

the first study could be considered more robust to unmeasured con-

founding because in that study, unmeasured confounder(s) would

F IGURE 1 Suggested steps to evaulate the impact of unmeasured confounders. “NUCA” = “no unmeasured confounding assumption”
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have to be associated with both the treatment and the outcome by

relative risks of 2.5 each, above and beyond all of the confounders

that have already been measured and adjusted in the analysis. Further

guidance and recommendations on the practical interpretation of the

E-value, and discussion of its limitations, is provided elsewhere.38

We suggest reporting the E-value for all non-interventional

studies in which the objective is causal inference and in which the

proposed methods to control confounding bias rely on NUCA. As

described above, the E-value is a conservative measure in that,

rather than making assumptions about the distribution or type of

unmeasured confounder(s), it considers the hypothetical worst-case

effects of unmeasured confounder(s) with specific strengths of asso-

ciation with the treatment and outcome.28 This is a strength of the

measure, in that it can be applied even when no information is avail-

able about the unmeasured confounder(s), but is also a limitation, in

that when some information is indeed available, the E-value may be

quite conservative.28 In cases in which researchers have substantive

knowledge that there is a specific unmeasured confounder, and its

prevalence is known to be quite low or quite high, the array

approach and rule-out methods, described below, may be less con-

servative than the E-value because they incorporate these assump-

tions regarding the prevalence. For instance, if a binary unmeasured

confounder is strongly associated with the treatment and outcome

but its prevalence is very low, then the confounder may produce

only relatively little confounding bias in practice, but the E-value

may be very small. Thus, if investigators have confident substantive

knowledge regarding which specific unmeasured confounder(s) are

of concern and of their prevalence, other approaches to sensitivity

analysis incorporating these additional assumptions, such as the

rule-out and array methods described below, may be preferable,

especially if the E-value method results in a small E-value. The array

approach17 is applicable if there is a single binary unmeasured con-

founder. It expresses the true relative risk (RR) as a function of

observed relative risk (ARR), the prevalence of the binary con-

founder in the treatment (Pc1) and comparison group (Pc0), and the

strength of association between the binary confounder and the out-

come (RRCD). If plausible value combinations of (Pc1, Pc0, RRCD) were

able to move ARR to 1, then the impact of the unmeasured con-

founder is not ignorable and subsequent sensitivity analysis is

needed. The rule-out method17 also applies to the scenario when a

single, binary unmeasured confounder is present. Under the hypoth-

esis that there is no treatment-outcome relationship, ARR could be

written as a function of the prevalence of the binary confounder in

overall population (Pc) and treated subjects (Pc1), the prevalence of

the treated subjects (PE), and the strength of association between

the binary confounder and the outcome (RRCD). Given ARR, Pc, and

PE, if plausible value combinations of (Pc1, RRCD) were able to move

the ARR to 1, then the impact of unmeasured confounders is not

ignorable and subsequent sensitivity analysis is needed. Back to the

example above, while the E-value may be small, the array approach

and/or rule-out method could suggest that such an unmeasured con-

founder would not greatly influence the estimated treatment effect,

given its low prevalence.

If these initial sensitivity analyses using the E-value, the rule-out

method, and/or the array method suggest that implausibly strong

unmeasured confounding would be required to explain away or mean-

ingfully reduce the observed treatment-outcome association, we rec-

ommend reporting these sensitivity analysis results, and subsequent

sensitivity analyses may not be needed. On the other hand, if these

initial sensitivity analyses suggest that relatively weak unmeasured

confounding might be able to explain away or meaningfully reduce

the observed association, then we would suggest applying subse-

quent, more detailed sensitivity analyses and reporting these results

along with the results of initial sensitivity analyses. To date, various

analytical methods could be used for such subsequent sensitivity anal-

ysis. These methods include, but are not limited to: Bayesian twin

regression modeling,39,40 difference in difference,41,42 empirical distri-

bution calibration,43,44 high-dimensional propensity score,45 Manski's

partial identification,46 martingale residual-based method,47,48 missing

cause approach,49 multiple imputation,50,51 negative control,52,53 per-

turbation variable,54 propensity score calibration,55,56 pseudo

treatment,57 Rosenbaum sensitivity analysis,58,59 Rosenbaum-Rubin

sensitivity analysis,60,61 and the trend-in-trend method.62,63 However,

these methods are more complicated in implementing, and require

additional assumptions. Therefore, they may not be applicable for cer-

tain research scenarios. In addition, no single method would provide

the best performance for each individual study. Thus, we discuss

some factors that could help select appropriate methods in practice.

Previously we introduced the three possible scenarios concerning

the availability of extra information on unmeasured confounders,

which could be the first factor to consider when we plan the subse-

quent sensitivity analysis. The researchers should thoroughly think

about the confounding factors and their availability in the databases

and other sources (data, literatures, etc) before finalizing the analysis

plan. Such information should drive the selection of available

methods. Based on this factor, we categorized these analytical

methods into three different categories, as shown at the last step of

the flowchart.

The second factor is the type of unmeasured confounders. As dis-

cussed earlier, there are measurable confounders and unmeasurable

confounders, and some analytical methods are only able to address

measurable confounders but not unmeasurable ones. Multiple imputa-

tions, propensity score calibration, martingale residual-based method

and Bayesian twin regression modeling are applicable when the

unmeasured confounder is not available in the database butis measur-

able. Other methods could be implemented whether or not the

unmeasured confounders is measurable.

The third factor is whether the subsequent sensitivity analysis

is intended to provide an approximation of the causal treatment

effect or rather to assess sensitivity to unmeasured confounding in

a different manner. The former methods, which we term “direct

adjustment methods”, approximate causal effect estimates generally

by incorporating internal or external data or by invoking more statis-

tical assumptions than used in the initial sensitivity analysis

methods. Not exhaustively, some examples of direct adjustment

methods are as follows. First, if internal data on the unmeasured
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confounder(s) are available for some subjects, multiple imputation

can be used to impute values of unmeasured confounders for the

remaining subjects, and the causal treatment effect can be esti-

mated using the imputed data. Second, propensity score calibration

estimates the treatment effect using estimated propensity scores

from the entire sample given the measured confounders only and

also using estimated propensity scores from a random subset of

subjects for whom the unmeasured confounders are in fact avail-

able. Third, Bayesian twin regression can potentially leverage infor-

mation from internal or external data on unmeasured confounders

to elicit prior information in order to adjust the posterior for

unmeasured confounding.

Other methods, while not able to estimate an adjusted treatment

effect estimate directly, could provide other evidence on the influence

of unmeasured confounders. We term these “indirect methods”.

Examples of such methods are as follows. First, Manski's partial identi-

fication provides bounds on the treatment effect estimate such that

any causal effect size inside the bounds cannot be ruled out. Second,

negative control methods involve pre-specifying “negative control

outcomes” that are thought to be unaffected by the treatment or,

alternatively, “negative control exposures” interventions that are

thought to have minimum impact on the outcome of interest. If, con-

trary to expectation, there is a non-negligible association between the

treatment and negative control outcomes or between the negative

control exposures and the outcome while adjusting for measured con-

founders, this would suggest the existence of unmeasured con-

founders. Third, if there are multiple control groups that differ

systematically with respect to the outcome distribution after control-

ling for all measured confounders, this suggests the presence of resid-

ual unmeasured confounding.

The three factors we have discussed aim to provide general con-

siderations for researchers when they design their studies and, ideally,

pre-specify the analysis plan. Furthermore, each method listed at the

last stage of the flowchart may have additional assumptions that

needs to be satisfied for its validity. We have summarized some of

these additional assumptions in Zhang et al23, which we hope could

further help exclude some methods when researchers pre-specify

their analysis plans with regard to unmeasured confounding. Of

course, there is probably no single method that always works better

than other available ones as a subsequent sensitivity analysis. Thus, if

multiple analytical methods are applicable given, for example, the

nature of any substantive knowledge on unmeasured confounding

and the availability of internal or external data, then it may be infor-

mative to apply more than one method (as subsequent sensitivity ana-

lyses) and report results from all conducted methods. Reporting of

study conclusions should also then consider results from all those con-

ducted sensitivity analyses.

So far, we have discussed the importance of controlling unmeasured

confounder(s) in assessing causal inference from RWD. We also pro-

posed a flowchart and some practical recommendations to conduct

quantitative evaluation of the impact of unmeasured confounding on

estimated treatment effect. The flowchart illustrates one possible struc-

tured approach, in the authors' opinions, to quantify and perhaps further

adjust for the impact of unmeasured confounding. More importantly, it

provides a tool to pre-specify the sensitivity analysis plan for

unmeasured confounding when researchers are developing the protocol

and statistical analysis plan for their own studies. Transparent, pre-

specified and well-documented statistical conduct is essential to the

credibility of scientific evidence because it ensures the methods can be

analytically reproduced to confirm the findings, and it limits selective

reporting and publication bias. These principles have been applied to ran-

domized clinical trials for a long time, and are equally important for non-

interventional studies in order to generate more credible and reliable

RWE. Good procedural practices to enhance transparency and reproduc-

ibility for treatment effectiveness studies has been endorsed by relevant

research societies,64,65 and the FDA will consider those recommenda-

tions when issuing guidance about RWE from non-interventional studies

to support product effectiveness in regulatory decision-making.2 In our

opinion, the proposed flowchart here also has the potential to contribute

to such efforts to further improve the quality of RWE. Our approach will

perhaps not be the only (or even the best) one to address this concern,

but it certainly provides a practically useable tool regarding the analysis

plan pre-specification. On the other end, while we feel our approach is

reasonable and easy to implement in practice, we do acknowledge there

is a great need for further systematic simulation-based analyzes of vali-

dation studies/real world studies and comparing those novel methods

(and even comparing different “flowcharts”) to generate more evidence

for an improved systematic approach.

As a closing note, pharmacoepidemiologists, statisticians, and data

scientists will continue to find ways to reduce confounding and other

biases inherent in non-interventional RWD-based studies, including

unmeasured confounding. Unmeasured confounding remains an

important challenge for causal inference in non-randomized studies.

Nevertheless, with improved statistical methods, more complete

RWD (via linkage and novel data collection approach), and improved

study designs (eg, self-controlled designs, positive/negative controls),

our understanding regarding the impact of unmeasured confounding

will continue to improve. Addressing unmeasured confounding to the

fullest extent possible is critical to improving the quality of RWE for

regulatory decisions by obtaining more reliable RWE from the explo-

sion of RWD.
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