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Abstract

Large changes in biodiversity are expected to occur if climate change continues at its current pace.

Adverse effects include changes in species habitats and compositions, and consequently changes

in ecosystem functioning. We assessed the magnitude of expected changes of biodiversity by

performing a meta-analysis of the responses of species distributions to climate change. We

focused on the proportion of local remaining species and their habitats. We summarized 97

studies and calculated two effect-sizemetrics from their results to quantify changes in biodiversity.

These metrics are the fraction of remaining species (FRS) and the fraction of remaining area

(FRA) with suitable climate for each species. Both metrics calculate deviations from the original

biodiversity state and together they indicate biodiversity intactness.We found an expected gradual

decrease in both FRS and FRAwith significant reductions of 14% and 35% between 1 and 2 °C

increase in global mean temperatures. Strong impacts are projected for both mammals and plants

with FRS reductions of 19%. The climate-change response of biodiversity varies strongly among

taxonomic groups and biomes. For some taxonomic groups the FRA declines strongly beyond

3 °C of temperature increase. Although these estimates are conservative, as we assume that

species are unable to disperse or adapt, we conclude that already at moderate levels (i.e., 1–2 °C)

of temperature increase a significant decrease of original biodiversity is projected. Our research

supports the pledge to limit climate change to 1.5 °C and preferably lower to protect biodiversity.

Climatic Change (2019) 154:351–365
https://doi.org/10.1007/s10584-019-02420-x

Electronic supplementary material The online version of this article (https://doi.org/10.1007/s10584-019-

02420-x) contains supplementary material, which is available to authorized users.

* Sarahi Nunez

sarahi.nunezramos@wur.nl

1 Environmental Systems Analysis Group, Wageningen University and Research, PO Box 47, 6700

AAWageningen, The Netherlands

2 Wageningen Environmental Research, Wageningen University and Research, PO Box 47, 6700

AAWageningen, The Netherlands

3 PBL-Netherlands Environmental Assessment Agency, PO Box 30314, 2500 GH The Hague,

The Netherlands

4 IUCN National Committee of The Netherlands, Plantage Middenlaan 2K, 1018 DD Amsterdam,

The Netherlands

http://crossmark.crossref.org/dialog/?doi=10.1007/s10584-019-02420-x&domain=pdf
http://orcid.org/0000-0003-3558-1768
https://doi.org/10.1007/s10584-019-02420-x
https://doi.org/10.1007/s10584-019-02420-x
mailto:sarahi.nunezramos@wur.nl


1 Introduction

Biodiversity is under increasing threats by many anthropogenic pressures (Alkemade et al.

2009; Leadley et al. 2014; Tittensor et al. 2014; Visconti et al. 2015; Johnson et al. 2017;

Ripple et al. 2017). A major pressure of biodiversity decline in this century is climate change

(Parmesan and Yohe 2003; Thomas et al. 2004; Warren et al. 2011; Bellard et al. 2012; Pacifici

et al. 2015; Urban 2015). Climate change affects biodiversity as climate variables largely

determine the geographical distribution ranges of species (i.e., species’ climate envelopes; Box

1981; Guisan and Zimmermann 2000; Pearson and Dawson 2003). Hence, in areas where

climate is no longer suitable, species shift their geographical ranges and go extinct locally,

depending on their dispersal capacities (Guisan and Zimmermann 2000; Bellard et al. 2012).

Species’ phenology and physiology and community structures and ecosystem functions are

also affected (Bellard et al. 2012). All these negative impacts exacerbate the challenge to

manage and conserve biodiversity (CBD 2019).

The average global temperature has increased by almost 1 °C since 1880, and the adverse

effects of such increase on biodiversity are already witnessed and documented by many studies

(Thomas et al. 2004; Parmesan 2006; Butchart et al. 2010; Cardinale et al. 2012; Cook et al.

2012; IPCC 2013; Peñuelas et al. 2013; sCBD 2014; Pacifici et al. 2017; Pecl et al. 2017).

They all show that the decline of biodiversity continues worldwide as many ecosystems lose

suitable conditions for the survival of a proportion of their species. Some studies project the

already observed negative impacts on species (e.g., Parmesan et al. 2013; Warren et al. 2013),

and their results feed into the ongoing debate of constraining the increase of global temper-

atures (e.g., by the climate-change target to keep global temperature increase well below 2 °C

above pre-industrial levels in the Paris Agreement (UNFCCC 2015; Rogelj et al. 2018)). Yet,

how biodiversity will respond to a global mean temperature increase of 2 °C, or any increase

close to this target, is not yet clear and represents a fundamental research challenge.

The primary objective of this study is to quantify the response of terrestrial biodiversity to

climate change covering global mean temperature increase up to 6 °C in 2100 (and implicitly

considering associated climate variables, such as precipitation change) above the pre-industrial

level. For this purpose, we performed a meta-analysis of studies that used bioclimatic models

and climate-change scenarios. These studies reported climate-change effects on contemporary

ecosystems and different taxonomic groups around the world. The climate-change level in these

studies was indicated by their scenario’s global mean temperature increase. Most climate-

change scenarios project that global mean temperature continues to increase to between 2 and

over 5 °C in 2100 (Kintisch 2009; Moss et al. 2010; IPCC 2013; Rogelj et al. 2018). Similar to

previous modeling studies that assessed the overall decline of biodiversity (e.g., Alkemade et al.

2009), we focused on the proportion of remaining biodiversity. We calculated two effect

metrics: the fraction of remaining (i.e., persisting) species (FRS) at a location and the fraction

of remaining area (FRA) with suitable climate for species. These metrics assess the changes of

species richness over a region compared to the original situation in the selected study. Both

metrics indicate a deviation from the original biodiversity state and indicate biodiversity

intactness (Scholes and Biggs 2005; Alkemade et al. 2009). FRS indicates a decrease of species

within the study region. FRA indicates a suitable climate-area (e.g., habitat) contraction within

the study region. A potential increase of species or extending its geographical range is excluded

from these metrics. As a result, FRS and FRA generally indicate a decline regardless of the

global temperature interval. The changes in species composition can also indicate consequences

for ecosystem’s functioning, but we do not address this. The results of our meta-analysis allow
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to generalize projected trends and to assess effects across a broad range of climate-change

projections. The established meta-regression models can be used in models, such as the

GLOBIO model (Alkemade et al. 2009; Alkemade et al. 2011), to assess biodiversity change

in scenario studies in combination with other pressures of global biodiversity loss.

2 Methods and materials

2.1 Systematic literature review

In June 2016, we queried the ISI Web-of-Science database to identify bioclimatic modeling

studies that assess the effects of global mean temperature increase on terrestrial biodiversity.

We reviewed all studies following the guidelines provided by the Collaboration for Environ-

mental Evidence (CEE) (CEE 2013) (see Online Resource 1 for a detailed description of the

process). The guidelines indicate the stages for conducting a systematic research in environ-

mental science, and these stages were combined into three main steps.

Firstly, we defined several search terms and classified them into four main search strings to

conduct the review: (i) Climate change elements: (climat* SAME change*) OR (temperature

SAME change*) OR (temperature SAME increase) OR (global SAME warming) OR (climat*

SAME warming); (ii) biodiversity elements: (biodiversity) OR (diversity SAME species) OR

(species SAME richness*) OR (species SAME distribution*) OR (species SAME abundance*)

OR (species SAME occurrence*) OR (species SAME turnover) OR (species SAME loss*) OR

(species SAME gain*) OR (species SAME composition) OR (species SAME assemblage*); (iii)

bioclimatic modeling elements: (bioclimat* model*) OR (niche* model*) OR (climat* model*)

OR (distribution model*) OR (habitat model*) OR (ecologic* model*) OR (occurrence model*)

OR (species distribution model*) OR (model* distribution*) OR (model* range*) OR (climat*

envelope*) OR (envelope* model*); and (iv) modeling projection elements: (future SAME

distribution*) OR (climat* SAME scenario*) OR (climat* SAME projection) OR (climat*

SAME prediction) OR (climat* SAME pathway*). Additionally, we defined seven inclusion

criteria to determine the pertinence of the studies (see criteria in Online Resource 1). These

criteria allowed to further restrict the selection by rejecting those studies that did not support our

objective. All studies were screened by title for their relevance to the purpose of our study. Those

studies selected were then screened by abstract and, when providing limited information in their

abstracts, were fully screened, both in content and supporting material. Secondly, the potentially

relevant studies were critically revised to select those fulfilling the inclusion criteria. Finally, the

relevant data were extracted from all selected studies and synthesized in a biodiversity-impact

database. These data included number of species and their area with suitable climate in the

original and the projected climate situations, taxonomic group, study location, spatial resolution,

and the used global mean temperature increase. Many studies that reported climate effects on

single species or exotic species (particularly weeds and insect pests, and aquatic species) were

excluded from the database. These studies do not provide data on the original species compo-

sition or do not consider terrestrial species.

2.2 Calculation of effect sizes

We calculated the effect sizes, which are measures commonly used in meta-analyses, for each

selected study. For studies that assessed the number of species affected by increasing
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temperatures, we used the fraction of species remaining at a location (fraction remaining

species (FRS) as the effect size; for studies assessing the loss of area with suitable climate for a

species, we used the fraction of remaining area with suitable climate (fraction remaining area

(FRA)) under a projected increase of global mean temperature (Fig. 1). Both FRS and FRA are

effect sizes compared to the original situation in the selected study. The original situation refers

to the ecosystem’s condition before its climate changed (i.e., original area with suitable

climate). Results from multiple climate-change scenarios and time periods, or different

bioclimatic modeling algorithms (e.g., generalized linear model, generalized additive model,

maximum entropy modeling) that are reported in a study, were all included as separate effect

sizes in our database.

We specifically estimated the proportion of remaining biodiversity (i.e., a conservative

option assuming that species are unable to disperse or adapt) for three main reasons: (i) on

average, the projected climate distributions of species are closer to projections without

dispersal than projections with full dispersal (Midgley et al. 2006; Hellmann et al. 2016);

(ii) uncertainty associated to the capacity of species to disperse (Pearson and Dawson 2003;

Pearson et al. 2006) or adapt (Berry et al. 2013) under climate change is reduced; and (iii) FRS

and FRA fit into the domain of the GLOBIO model, more specifically, they relate to the

relative Mean Species Abundance (MSA) indicator from GLOBIO (Alkemade et al. 2009) and

the Biodiversity Intactness Index (BII) (Scholes and Biggs 2005; Newbold et al. 2016) of the

local remaining biodiversity.

FRS is calculated as average of ratios between the remaining number of species and the

original number of species within each locality (e.g., a grid cell) of the study area’s map after

projected climate change:

FRS ¼
1

n
∙ ∑

n

i¼1

Sdi

Soi
ð1Þ

where Sdi is the expected number of remaining species in grid cell i after climate change as

characterized by global mean temperature increase (°C) and Soi is the number of species in

grid cell i in the original situation. n is the total number of grid cells. FRS is a relative

index between 0 (no original species present) and 1 (all original species present). FRS

decreases if the climate is not suitable anymore for a species at one of the grid cells within

the study area. FRS represents the local response of species to climate change (e.g., in a

specific grid cell).

FRA is calculated per species as the ratio between the original suitable climate area and the

remaining suitable climate area:

FRA ¼
1

S
∙ ∑

S

j¼1

Adj

Aoj

ð2Þ

where Adj is the remaining suitable climate area for species j after climate change, Aoj is the

suitable climate area for species j in original situation without climate change, and S is the

number of species. FRA is also a relative index between 0 (no original suitable climate area)

and 1 (suitable climate area unchanged).

We estimated sampling variances for both effect sizes FRS and FRA to determine the

weight to be assigned during the meta-analysis. The calculation of sampling variances is

provided in the Online Resource 1.
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2.3 Harmonization of climate-change effects

All studies reported their baseline and projected climate conditions. Following Warren et al.

(2011), we converted projected temperatures from the climate-change scenarios for each study

to a common pre-industrial reference (approximately 1880) (Eq. 3). To this end, the assumed

temperature increase between pre-industrial and the 1961–1990 climatic normal was 0.3 °C,

between pre-industrial and 1981–1990 was 0.5 °C, and between pre-industrial and 1990 was

0.6 °C. These are the baseline conditions often reported by the selected studies (see

Online Resource 2).

GMTIn ¼ T scen þ ∆T pre−ref ð3Þ

where GMTIn is global mean temperature increase converted to a common pre-industrial

reference point for study n, Tscen is the projected temperature, and ∆Tpre-ref is the assumed

temperature increase between the pre-industrial and the baseline conditions, which are both

driven by (or based on) climate-change scenarios. We defined four intervals of temperature

increase for the meta-analysis: 1–2 °C, 2–3 °C, 3–4 °C, and ≥ 4 °C. Temperature increases

between 0 and 1 °C usually correspond to short-term climate-change scenarios depicting low

carbon emissions and/or stringent mitigation policies.

2.4 Meta-analysis

We conducted a meta-analysis to derive the pooled effect for all effect sizes as a response to

global mean temperature increase. We used the package “Metafor” in the R-3.2.2 software

(Viechtbauer 2010) and the rma.mv() function assuming independence between the effect size

and sampling variance. The included studies are a selection from a larger population of

bioclimatic modeling studies (see Online Resource 2).

Projected area with 

suitable climate

Original area with 

suitable climate

Fr of 

remaining area with 

suitable climate

Poten ta Poten spersal

Global mean temperature increase

Fig. 1 Schematic illustration to indicate the FRA under projected global mean temperature increase
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We ran mixed-effect models with random-effect structures (see Online Resource 1). We

compared them using the Bayesian information criterion (BIC). We then fitted random-effect

meta-models with restricted maximum likelihood (REML) to different taxa subsets. These are

“all species,” “plants,” “vertebrates,” “birds,” “mammals,” “herptiles,” and “insects,” for the

effect sizes FRS and FRA, and for all four intervals of global mean temperature increase. We

introduced the variable “biomes” as a moderator to determine sources of heterogeneity (see

Moderator Variable and Table OR1.1 in Online Resource 1).

For the meta-analyses and the meta-regression analyses ratios are often transformed using

logit or log transformations to reach normality assumption for the effect sizes (Urban 2015;

Benítez-López et al. 2017). We ran the mixed-effect models separately for the untransformed

effect sizes FRS and FRA, the logit-transformed and the log10-transformed FRS and FRA, and

checked the results for robustness (see Mixed-effect models in Online Resource 1). In addition,

meta-regression analyses were used to relate pooled effect sizes FRS and FRA to global mean

temperature increase.

We visually inspected the funnel plots of asymmetry to explore the possibility of publica-

tion bias (Viechtbauer 2010; Kuiper et al. 2014). We assessed heterogeneity by the formal test

of heterogeneity “Q” (Borenstein et al. 2009; Viechtbauer 2010). Variability among the effect

sizes was expected due to differential characteristics of the studies (e.g., different taxonomic

groups, biomes, and temperature-change intervals).

3 Results

The systematic literature search yielded 302 relevant studies after the title screening. These

studies were screened by abstract, out of which 138 fulfilled the criteria for full text screening.

We finally selected 97 studies that assessed species composition of the originally occurring

species at a location spanning publication dates between 1992 and 2015. Figure 2 shows the

results from the systematic literature review. The selected studies allowed the calculation of

370 effect sizes for FRS (data from 60 studies) and 146 for FRA (data from 50 studies). The

1

10

3

1

3

2

4

37

18

4

10

4
Canada

USA

Mexico

Central

America

Western 

Hemisphere

Brazil

Neo-tropics

Europe

Africa

World

China

Oceania

Fig. 2 Locations and number of selected bioclimatic studies
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studies and the relevant information extracted are provided in the Online Resource 2. The

types of bioclimatic models in the selected studies cover, in some cases, the entire distribution

of each species studied. For instance, these models were derived for a continental species

distribution or for endemic species. In other studies the models do not cover the entire range of

all species and this likely slightly overestimates the effects of climate change.

The meta-analyses show similar results for untransformed, logit-transformed, and log-

transformed effect sizes, suggesting robustness of these results. Here we present the results

of log10-tranformed FRS and FRA, which is the most commonly used transformation. Results

for untransformed effect sizes and logit-transformed FRS and FRA are provided in

Tables OR3.5–OR3.8 in the Online Resource 3. We retained the random-effect structures (1

| Study ID + 1 | Extent) for the meta-analysis of FRS (BIC = − 502.4888) and (1 | Extent) for

the meta-analysis of FRA (BIC = 14.8613) (see Table OR3.1 in Online Resource 3 for results

of all random-effect structures).

Results from the meta-regressions to estimate the response changes of FRS and FRA to

global mean temperature increase are shown in Fig. 3. The effect sizes decrease with

increasing climate change—the rate of decrease is generally larger for FRA than for FRS.

Table 1 provides the results of the random-effect meta-models for FRS and FRA for all

species. FRS and FRAwere significantly lower under each global mean temperature increase

interval. Overall, the FRS and FRAwere reduced by 19% (95% confidence interval: 14–23%)

and 47% (95% confidence interval: 37–55%), respectively (see Fig. OR3.1 Forest plots in

Online Resource 3).

The first interval 1–2 °C for the all species group results in a FRS of 86% (95% confidence

interval: 79–93%) and a FRA of 65% (95% confidence interval: 56–75%). These estimates

Fig. 3 Meta-regressions on global

mean temperature increase for

log10 effect sizes. a Fraction of

remaining species and b fraction of

remaining area with suitable

climate. Confidence intervals (CI

95%) are shown by the shadowed

line. Each effect size is represented

by a circle, and the size of the

circle indicates the number of

species in the original study
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imply that under a global mean temperature increase of up to 2 °C, terrestrial ecosystems could

lose on average 14% of their current local species and that species could lose on average 35%

of their suitable climate area. The intervals 2–3 °C and 3–4 °C result in larger reductions of

FRS and FRA compared to the first interval: FRS is projected to reduce to 83% (95%

confidence interval: 78–88%) and 78% (95% confidence interval: 72–86%), and FRA to

50% (95% confidence interval: 39–64%) and 46% (95% confidence interval: 34–63%),

respectively. However, the largest reductions occur under a global mean temperature increase

beyond 4 °C: only 68% of the local current species are projected to remain on average across

the Earth’s terrestrial ecosystems (95% confidence interval: 57–80%) and their suitable climate

area will likely be reduced to less than 46% (95% confidence interval: 25–85%). These

responses are based on a wide range of climate projections with up to 6 °C increase in

bioclimatic studies assessing distributions for birds and plants species (e.g., Shoo et al. 2005;

Sekercioglu et al. 2008; Meyer et al. 2016).

FRS and FRA responses differ among taxonomic groups. The responses of the taxonomic group

plants are lower than for vertebrates in all temperature-increase intervals (Fig. 4; see Table OR3.2 in

Fig. 4 Mixed-effect model results per taxonomic group plants and vertebrates for a fraction of remaining species

and b fraction of remaining area with suitable climate. Whiskers indicate confidence intervals (CI 95%) and

boxes demarcate standard errors. Top numbers indicate the number of studies (k) providing data for each group
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Online Resource 3). In the interval of 1–2 °C, the fraction of local originally occurring plant species

is reduced by 18%, whereas the vertebrate species fraction is reduced by 10%. Under a more

extreme temperature-increase interval (e.g., 3–4 °C), the suitable climate area for plant species is

reduced by 53% and for vertebrate species by 50%. These results differ significantly from the

original situation (see values in Table 1). The visual inspection of the funnel plots of asymmetry for

FRS and FRA (Fig. OR3.2 and Fig. OR.3.3 in Online Resource 3) indicates that a bias is absent.

We found that mammals show the largest reduction in FRS, which quickly declines beyond

2 °C. Contrary to this FRS case, FRA for birds reduces to a larger extent under all intervals

(Fig. OR3.4 and Table OR3.3 in Online Resource 3).

Estimates of FRS and FRA can also be used to rank biomes to indicate sensitivities to

climate change. The resulting effect-size estimates from our mixed-effect models were used to

run meta-regressions to assess the response of biomes to global mean temperature increase

(Fig. 5 and Fig. OR3.5 in Online Resource 3 for the FRA results). We found that deserts,

temperate forests, and shrublands experience the largest reductions in FRS and tropical and

boreal forests in FRA. These are thus likely the most sensitive biomes to increasing global

temperatures.

Fig. 5 Mixed-effect model—meta-regressions on global mean temperature increase for different terrestrial

biomes. Circles indicate the log10 effect size fraction of remaining species, and the size of the circles corresponds

to the number of species in the original study. Results obtained with meta-regression and 95% confidence
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4 Discussion and conclusions

The projections of both the FRS and the FRA overall show continuous decreases. This

indicates losses of local species richness (on average by 14% at 2 °C of global mean

temperature increase) and losses of suitable climate area of many species (on average by

35% at 2 °C of global mean temperature increase). These results indicate that many species

will be extirpated locally and disappear from areas where they now occur. This finding is

supported by other studies (e.g., Wiens 2016) and will certainly challenge species conservation

in many places (Johnson et al. 2017; Warren et al. 2018). However, this does not mean that

total species richness will necessary decrease as new species can potentially expand their

ranges and establish, depending on their ability to disperse (Hellmann et al. 2016), but such

emerging species are logically ignored in our effect sizes.

We estimated that reductions exacerbate as global mean temperature goes beyond 2 °C. For

example, at 3 °C of global mean temperature increase the local species richness decreased on

average by 17% and the suitable climate area of species by 50%. In addition, these effects are

expected not only to increase biodiversity losses but also to accelerate for every degree rise in

global mean temperature. As a result, all the local decreases will likely lead to global extinctions.

The results of FRS and FRA vary among taxonomic groups and biomes. This means that

the species responses are closely related to their individual sensitivities and exposures to

changes in temperature (Urban et al. 2016). For example, the response of vertebrate species to

increases in global mean temperature was a decrease in both FRS (on average 10% at 2 °C of

global mean temperature increase) and FRA (on average 47% at 2 °C of global mean

temperature increase). We found that within the vertebrate group, mammals are projected to

undergo the largest local species reduction (i.e., overall FRS reduced by 22%). Our finding is

consistent with previous studies (Pacifici et al. 2017), which conclude that many threatened

mammals are also negatively affected by climate change. For plant species, the projected FRS

and FRA decreased by 18% and 34%, respectively, at 2 °C of global mean temperature

increase. The lower plant species’ FRS response probably resulted from a higher variability

among effect sizes (Q test for heterogeneity in Table OR3.2 and funnel plots of asymmetry in

Fig. OR3.1 in Online Resource 3) than the variability for vertebrate species’ FRS. This high

variability likely relates to methodological issues (e.g., different modeling algorithms) that are

inherent to bioclimatic modeling and that affect species-range shifts and abundances. Although

exotic and aquatic species were excluded from our study, the different climate-change re-

sponses of these groups (e.g., Schnitzler et al. 2007; Kalwij et al. 2015) contribute to the

challenge of setting a climate-protection target. Our analysis with the mixed-effect model with

biomes as a moderator resulted in a lower heterogeneity in effect sizes compared to plants and

vertebrate species. This indicates that biomes is an important explanatory variable when

assessing the projected effect of global mean temperature increase on biodiversity.

FRS and FRA focus on assessing the remaining proportion of biodiversity under the

conservative assumption of no dispersal. On average, no dispersal is close to reality for most

species (Midgley et al. 2006; Hellmann et al. 2016). This implies that FRS and FRA generally

indicate decreases. FRS is consistent with indices that estimate the naturalness or intactness,

such as the BII (Scholes and Biggs 2005) or the MSA (Alkemade et al. 2009; Alkemade et al.

2011). As these indices are officially accepted by the Convention on Biologically Diversity to

indicate the expected responses of original occurring species, our outcomes can also be used in
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international assessments of biodiversity change, such as the Global Biodiversity Outlook

(sCBD 2014) and other global studies (e.g., PBL 2012; Kok et al. 2018). FRS, however, differs

from other biodiversity indices, such as the Species Richness Index (Newbold et al. 2014),

because FRS ignores new species for which the future climate becomes suitable. FRA

accounts for suitable climate-area reduction of local species. Previous studies that analyzed

suitable habitat of species to estimate global species richness patterns (e.g., Visconti et al.

2015) and/or the average proportional change in species distributions to estimate species

extinction risks (e.g., Thomas et al. 2004) used similar approaches as our FRA. These studies

inform developing goals for local biodiversity conservation and designing protected areas

(Newbold et al. 2014; Virkkala et al. 2014). However, such studies also ignore reductions in

areas with suitable climate of the originally occurring local species and the local community

compositions.

Contrary to the instant loss of biodiversity caused by some non-climatic anthropogenic

pressures, climate change triggers more gradual and long-term effects on species (Bertrand

et al. 2011) and such temporal dynamics must be considered to interpret the FRS and FRA

results. In this study, we estimated the effects of global mean temperature increase assuming

that any increase materializes simultaneously, but in reality higher increases in temperature are

projected to occur at the end of this century, whereas increases of 2 °C are possible already in

2050 (van Vuuren et al. 2011; IPCC 2013). Although our results support the notion that higher

impacts of climate change will occur with higher temperatures, our results do not provide

evidence that a climate target of keeping global temperature well below 2 °C protects

biodiversity. Therefore, we support the pledge to keep climate change below 1.5 °C and

preferably lower, as this helps to maintain the composition of local communities and their

climatically suitable areas.

Understanding the climate-change impacts on biodiversity helps to prioritize biodiversity

conservation strategies (Gärdenfors 2001; Broennimann et al. 2006). Our results generically

relate climate change and biodiversity loss. This relationship is useful to assess relative adverse

effects of different climate-change scenarios and to stress the importance of holding climate

change well below 2 °C. Furthermore, our results can be used to explore interactions between

climate change and other biodiversity-loss pressures, and estimate interactive effects. This

implies that reducing the rate of biodiversity loss is critical and only possible if all pressures are

reduced or eliminated (sCBD 2014). This means that it would be helpful if the UN Conven-

tions on Biological Diversity and Climate Change closely collaborate to address multiple

urgent environmental challenges.
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