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ABSTRACT

Motivation: Increases in microarray feature density allow the

construction of so-called tiling microarrays. These arrays, or sets

of arrays, contain probes targeting regions of sequenced genomes

at regular genomic intervals. The unbiased nature of this approach

allows for the identification of novel transcribed sequences, the

localization of transcription factor binding sites (ChIP-chip), and high

resolution comparative genomic hybridization, among other uses.

These applications are quickly growing in popularity as tiling

microarrays become more affordable. To reach maximum utility,

the tiling microarray platform needs be developed to the point that

1 nt resolutions are achieved and that we have confidence in

individual measurements taken at this fine of resolution. Any biases

in tiling array signals must be systematically removed to achieve

this goal.

Results: Towards this end, we investigated the importance of probe

sequence composition on the efficacy of tiling microarrays for

identifying novel transcription and transcription factor binding sites.

We found that intensities are highly sequence dependent and can

greatly influence results. We developed three metrics for assessing

this sequence dependence and use them in evaluating existing

sequence-based normalizations from the tiling microarray literature.

In addition, we applied three new techniques for addressing this

problem; one method, adapted from similar work on GeneChip

brand microarrays, is based on modeling array signal as a linear

function of probe sequence, the second method extends this

approach by iterative weighting and re-fitting of the model, and the

third technique extrapolates the popular quantile normalization

algorithm for between-array normalization to probe sequence

space. These three methods perform favorably to existing strategies,

based on the metrics defined here.

Availability: http://tiling.gersteinlab.org/sequence_effects/

Contact: mark.gerstein@yale.edu

Supplementary information: Supplementary data are available at

Bioinformatics online.

1 INTRODUCTION

1.1 Motivation

Following any genome-sequencing project comes the desire

for identifying the functional elements therein (ENCODE

Consortium, 2004). These elements include, but are not limited

to, protein coding regions, regulatory regions and methylation

sites. In addition to defining functional elements, it is also of

great interest to understand variability within the genome

sequence itself. This variability may be present in mutation hot

spots or in single nucleotide and copy number polymorphisms,

for example. Luckily, the DNA microarray technology

(Chee et al., 1996; Schena et al., 1995) has evolved beyond

the targeting of known mRNA transcripts to the unbiased

targeting of any genomic target with the advent of high density

genome tiling microarrays (Selinger et al., 2000). All of the

post-genome investigations listed here are enabled in a high-

throughput fashion by the hybridization of labeled nucleic acids

to this emerging microarray technology.
As reviewed in (Mockler et al., 2005) and (Johnson et al.,

2005), tiling microarrays contain hundreds of thousands to

millions of features, each containing probes that target some

short (�25–1000 nt) genomic region, or tile. Their construction

involves either printing PCR products (Rinn et al., 2003),

oligonucleotide inkjet deposition (Shoemaker et al., 2001),

or photolithographic in situ synthesis on a solid substrate

(Kapranov et al., 2002). This last construction yields the

greatest feature densities and is therefore best suited to tiling

even the very large human genome (Bertone et al., 2004) and is

therefore the focus of our study. A perfect tiling of a target

genome contains one feature representing every m-mer therein

but current large-scale tiling designs typically leave short gaps

(�5–50 nt) between tile start positions to achieve greater

coverage. Nevertheless, feature densities are ever-increasing

(not unlike integrated circuits’ transistor densities) and we

may soon witness the manufacture of a comprehensive 1 nt

resolution human genome tiling microarray. Clearly, under-

standing the tiling microarray technology will become funda-

mental to our understanding of genome biology.
One challenge in developing the microarray platform

to this level is that while genome tiling enables massively

parallel experimentation, each individual experiment is not an

optimized one. To clarify this point, each of these experiments*To whom correspondence should be addressed.
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relies on nucleic acid hybridization and both the sensitivity and

specificity of these hybridizations are highly sequence

dependent. For a given microarray probe, there exists an

ideal set of experimental conditions (determined largely by

its nucleotide sequence) that maximizes its ability to form

a duplex with its intended target relative to that of its non-

targets. Every microarray feature contains probes with a

different nucleic acid sequence, so the hybridization conditions

for a microarray experiment are necessarily a compromise. The

degree to which this compromise is detrimental can be lessened

a great deal in gene-centric microarrays by selecting each genes’

representative probe(s) such that its optimum target hybridiza-

tion condition lies somewhere near the pre-selected conditions

for the microarray experiment. This luxury disappears when we

move to tiling microarrays since probe selection is more limited

and goes to zero as tiling resolution approaches 1 nt with

greater feature densities. Therefore, other solutions are needed.

In the current work, we investigated the degree to which probe

sequence-based normalization can alleviate this problem.

1.2 Previous work

Affymetrix GeneChip brand microarrays are a popular

platform for studying genes’ mRNA expression levels and are

manufactured analogously to the tiling microarrays studied in

this work (Lipshutz et al., 1999). In the GeneChip platform,

each assayed transcript is targeted by a probeset which consists

of �16–20 unique features. Each of these features contains

probes that target the same transcript but the probes in any

feature are not the same as those in any other feature. It was

noted early on that features targeting the same transcript can

yield signals that vary by orders of magnitude (Li and Wong,

2001). When the arrays’ sequences became publicly available,

it became clear that these differences were chiefly due to

differences in probe nucleotide composition (Naef and

Magnasco, 2003). It is reasonable to expect that similar

sequence effects are present within the results of tiling

microarray hybridizations but the effect’s presence and

prevalence has not yet been measured and documented. It is

furthermore expected that the effects in tiling microarray

experiments will be similar, but not necessarily identical to

those observed in GeneChips. Two reasons for this are that (1)

the majority of tiling microarray features should not exhibit

signal whereas the majority of gene-centric arrays’ features do,

and (2) tiling microarray experiments usually involve hybridi-

zation of labeled cDNA to the microarrays as opposed to

labeled cRNA used in GeneChip experiments.
The methodology initially adopted by Affymetrix for coping

with sequence biases in their GeneChip platform involves

the so-called mismatch probe control. For every feature with

probes perfectly matching (PM) the target, a mismatch (MM)

feature is provided. Each MM feature has probes identical

to its corresponding PM features, save the middle nucleotide.

The idea is that non-targets will bind to the MM features’

probes with affinities similar to those that they have for the

paired PM features’ probes but that the affinity for the PM’s

target is greatly reduced. Thus, subtracting MM signal from

PM signal theoretically yields the amount of observed PM

signal due to target-specific binding.

The details of this solution have proven unsatisfactory
(Irizarry et al., 2003). Therefore, considerable effort has been
put into developing Affymetrix GeneChip analysis methodol-

ogies that do not utilize the MM features (this has the added
benefit of requiring half the number of features to quantify
transcript abundances). One general approach is to model

a feature’s signal as the product of its target’s expression level
and a feature-specific ‘affinity’ (Irizarry et al., 2003; Li and
Wong, 2001). Given a number of independent array hybridiza-

tions and multiple features in a probe set, the probe affinities
and the transcript levels corresponding to each hybridization
can be reliably obtained.
The discovery that features’ affinities for a transcript can be

predicted by their probes’ sequences (Naef and Magnasco,
2003) motivates models in which neither MM features nor
multiple arrays are necessary to estimate target concentrations.

In one model (Zhang et al., 2003), a feature’s signal is
decomposed into specific and non-specific parts, each of
which contains concentration and probe sequence-related

parameters. The transcript concentration is specific to a
probeset but the sequence parameters are universal to the
whole array. Another model (Hekstra et al., 2003) of this type

fits microarray signals to a Langmuir adsorption model that
has parameters estimable from probe sequence.
Practicalities of tiling microarray experiments make applying

many of the aforementioned GeneChip methods difficult,
if not impossible. Using mismatch probes is straightforward
to implement and has been applied to tiling microarrays

(e.g. Kapranov et al., 2002). The downside to this approach is
that tiling density and/or coverage must be sacrificed. Methods
that require hybridizations under multiple cellular conditions

(Irizarry et al., 2003; Li and Wong, 2001; Wu and Irizarry,
2005) are not always practical either. Given the current expense
of conducting whole genome tiling microarray experiments,

typically just a singular condition is analyzed. In addition,
to apply these methods or the method of (Zhang et al., 2003)
would require analyzing multiple neighboring probes in

a sliding window. Sliding windows are currently part of the
standard approach for analyzing tiling arrays, but we would
ideally like to move away from this resolution-decreasing

technique and be able to obtain reliable measurements at the
resolution of a single tile. To this end, analysis techniques which
estimate affinities based solely on sequence composition

(Hekstra et al., 2003) hold promise for tiling microarrays,
but parameters of these models need to be estimated
from spike-in data sets such as the Affymetrix latin square

studies (www.affymetrix.com). Parameters cannot be taken
directly from these GeneChip studies either, since the experi-
ments (1) focus on hybridization within known transcripts

primarily, and (2) utilize cRNA spike-ins whereas most tiling
array experiments make use of cDNA targets. The differences
between cRNA and cDNA hybridization are significant

(Eklund et al., 2006).
Currently, two methods for estimating sequence effects

have been employed in the tiling array literature, besides the

PM–MM approach. The first divides each feature’s signal by
the median signal of all features having identical GC content on
the same array (Samanta et al., 2006). The second uses control

hybridizations of genomic DNA to estimate relative binding
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strengths. The latter approach is used extensively in ChIP-chip

and aCGH applications and has been recently applied to

transcript identification as well (David et al., 2006; Huber et al.,

2006).
In addition to these two methods, we developed three

sequence normalization techniques for tiling microarrays: one

based on the GeneChip analysis of (Naef and Magnasco, 2003),

another which extends their approach by iterative re-weighting

and re-fitting of their model, and a third technique based

on quantile normalization, which we extended to multivariate

probe sequence space. Overall, we find that these corrections

perform well at removing sequence biases based on metrics that

we have defined. These corrections and metrics are useful tools

for studying and improving the tiling microarray platform.

2 METHODS

2.1 Definitions

Before proceeding, we explicitly define a few commonly used

microarray terms as they are sometimes used differently elsewhere.

We define a microarray, or an array for brevity, as a substrate on which

there are numerous serially addressable features. Each feature contains

many oligonucleotide probes. Within a feature, all these probes have

identical sequence. Hybridization occurs when a labeled nucleic acid

population is introduced to a microarray and allowed to seek and

anneal their reverse-complement probes. Those labeled nucleic acids are

called targets herein.

2.2 Microarray data

We utilized four microarray data sets, each briefly described below.

Within each data set we first applied between-array quantile normali-

zation (Bolstad et al., 2003), removing any possible array-specific

effects. Following normalization, we selected a single array representa-

tive of each data set. To achieve this, we first calculated pairwise

correlation coefficients between all arrays in an experiment and

then selected the array having the highest minimum correlation with

all other arrays.

The first data set (Emanuelsson et al., 2006) we used employs

Affymetrix tiling microarrays hybridized with cDNA reverse

transcribed from total RNA derived from human NB4 cells. This

data set comprises four biological replicates, each replicated once,

yielding eight arrays worth of data. The experiment’s microarray

design calls for features having 25 nt probes representing genomic

sequences that are, on average, twenty-one genomic base pairs apart.

For each PM feature, there is a paired MM control feature. The array

design has 737 680 such feature pairs and incorporates one strand of

non-repetitive sequence from the entire ENCODE region (ENCODE

Consortium, 2004).

Second, we utilized microarray data (Emanuelsson et al., 2006)

generated by hybridizing cDNA obtained via reverse transcribing NB4

total RNA to Nimblegen ENCODE tiling microarrays. These arrays

contain 372 078 perfect-match features, each containing probes 36 nt

long. Their design targets both strands of non-repetitive sequence from

ENCODE regions ENm001 through ENm011 at an average density of

one feature per thirty-six genomic bases. Within this data set are three

biological replicates, each technically replicated once.

The third data set (David et al., 2006) we investigated uses Affymetrix

tiling microarrays targeting the whole of the Saccharomyces cerevisiae

genome. These arrays contain 3 276 800 feature pairs and were also used

for transcript mapping. We focused here on polyadenylated transcripts.

This is also the first transcript mapping experiment to include a control

genomic hybridization.

To investigate our algorithms’ utility in another experimental system,

we applied them to an Affymetrix ChIP-chip data set which investigates

Sp1 binding across human chromosomes 21 and 22 (Cawley et al.,

2004). We used ‘chip C’ which examines binding within chromosome 22

and of which there are six replicates. Importantly, ChIP-chip data

usually comes with a genomic control hybridization (Horak et al.,

2002). This control is present here as well.

2.3 Quantification of position-specific sequence effects

Of practical use is a scalar metric that can quantify any sequence effects

observed in the previously described tiling data sets (Supplemental

Fig. 1). Let m be the size, in nucleotides, of an array’s probes. For each

nucleotide position k¼ 1 . . .m, calculate the Kruskal–Wallis statistic,

Kk ¼
12

P
j2fA,C,G,Tg Cj,kð�rj, k � ðN=2ÞÞ2

NðNþ 1Þ
, ð1Þ

where N is the total number of features on the array, Cj,k is the number

of features having nucleotide j at position k in their probes, and �rj,k
denotes the average rank of intensities from features having nucleotide j

at probe position k. The scalar metric quantifying position-specific

sequence effects, which we denote here by �, is then the average over Kk,

� ¼
1

m

Xm

k¼1

Kk: ð2Þ

2.4 Assessment of tiling array performance

The scalar �, by itself, does not suffice to quantify the quality of a data

set with respect to sequence effects caused by ubiquitous background

hybridization. This is because both data with low ubiquitous

hybridization and randomized data would yield low � values.

Therefore, in addition to � and in transcript detection experiments,

we investigated the enrichment of features targeting known genes

relative to features having identical GC content.

Specifically, each data set’s probe sequences were compared against

the latest version of Refseq (using BLAT (Kent, 2002)) to identify those

features perfectly targeting a known transcript. These features’ GC

content were computed and used to select a set of non-Refseq ‘control’

features having probe-wise GC content identical to the Refseq features

(Supplemental Fig. 2). The enrichment of both the Refseq and control

features’ signals in the top of the entire signal distributions was

investigated by simply computing the percentage of features observed

above the entire distribution’s median intensity. Values greater than

50% indicated enrichment. In the yeast transcription data set, we first

identified those features outside of known open reading fromes (ORFs)

and then sampled ORF-specific features with identical GC content.

This modification was necessary due to the high percentage of coding

DNA in the yeast genome.

To understand performance of ChIP-chip at the individual feature

level, we followed an analogous strategy. We first identified those

features whose probes target known promoter sequences (500 bp

upstream of Refseq annotated transcription start site). We also

identified those features having probes with identical GC content as

the promoter-targeting features. Enrichment in the ChIP-chip signal

was then computed similarly as enrichment of known genes in the

transcription experiments. We note that within-promoter binding is

a weak indicator of performance. This is required due to the paucity of

known binding sites for any given transcription factor.

Theoretically, different tiling microarray platforms targeting the

same regions should yield similar results. This is not always the case

(Emanuelsson et al., 2006; Johnson et al., 2005). So, we decided to use

platform concordance between the Affymetrix and Nimblegen NB4

data sets as an additional tiling microarray quality metric. To do this,

T.E.Royce et al.
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we used BLAT (Kent, 2002) to identify those features from the

Affymetrix design having probe sequences that lie completely within a

features probe sequences from the Nimblegen design (Supplemental

Fig. 3). We isolated 40 729 such feature pairs between the two designs.

We used the Spearman correlation coefficient of these feature pairs’

signals to assess platform concordance at the feature level. Note that

correlation is not an absolute indicator of concordance for tiling

microarrays because the majority of the features are merely generating

noise. Therefore, correlations will always be fairly low. However, an

increase in platform correlation following a normalization step would

still represent an increase in concordance because, presumably, at least

one source of error has been removed.

To assess agreement at the gene level, we first identified those

Refseq genes represented by both platforms. Then, the features

from the Affymetrix design were isolated along with their signal

intensities. The signals were summarized for each gene with the

pseudomedian, a commonly used summary statistic in the tiling array

literature (Kampa et al., 2004). Each gene’s pseudomedian was

computed from the Nimblegen data as well and the correlation of

these pseudomedians was assessed with the Spearman correlation

coefficient.

We realized that high correlation coefficients could be a GC content-

related effect. If high GC content leads to high intensities in

both experiments (sequence-specific ubiquitous hybridization is

present in both), then we might expect significant correlations

simply due to the fact that feature pairs have similar GC content.

Therefore, we performed the above concordance studies with

feature pairs having the same GC content, as the previously identified

feature pairs but that do not necessarily overlap with one another

or with known genes.

3 RESULTS

3.1 Ubiquitous hybridization on tiling arrays

It is known that microarray features targeting the same

transcript can yield significant intensity differences in

GeneChip experiments (Li and Wong, 2001). This

phenomenon has been identified in tiling microarrays as

well (Royce et al., 2005) and would prevent accurate

estimation of nucleic acid abundance at the desired single

feature resolution. One hypothesis is that the differences are at

least partly due to differences in features’ affinities for their

bound target. It is widely believed that these affinities

are sequence dependent. To investigate the sequence depen-

dence of feature intensities, we constructed position-specific

quantile plots (Fig. 1).
The plots’ motivation came from previous work where linear

models are fit to measured intensities with position-specific

nucleotide content as regressors (Naef and Magnasco, 2003).

Instead of fitting a regression explicitly, we calculated the qth

percentile of signal intensities for features having an A, C, G or

a T at position k in their probes. This was done for each

nucleotide position k¼ 1, . . .,m where m is the nucleotide length

of each probe. These plots primarily show that sequence effects

are present in both of the tiling microarray platforms

investigated. Such effects are known to occur in GeneChips

where cRNA constitutes the labeled target. Here, we have

demonstrated that such effects are also present when cDNA is

used in place of cRNA. Interestingly, the effects are markedly

different for the Affymetrix and Nimblegen experiments we

studied. Specifically, cytosines appear to lend the largest

contributions to signal in the Nimblegen experiment whereas

guanines have this role in the Affymetrix experiment. Most

importantly, these plots demonstrate that the effects are present

for the lowest intensity features on these arrays. The implica-

tion of sequence effects being present at low intensities in

Homo sapiens transcriptional tiling array data is that non-

specific, ubiquitous binding is present at every feature since we

do not expect specific binding (due to transcription) to be

present for the entirety of the human genome (Harrow et al.,

2006). One strategy that we investigated for removal of these

biases is to perform a control hybridization of genomic DNA

and use this data to normalize the signal of interest. This is the

common practice in ChIP-chip investigations and was recently

applied in an S.cerevisiae transcript mapping experiment

(David et al., 2006). As we demonstrate in Figure 2, this

approach may need some additional consideration, at least in

ChIP-chip experiments.

3.2 Consequences of ubiquitous hybridization

Ubiquitous hybridization influences intensity distributions such

that features with GC rich probes tend to have higher

intensities than those with AT rich probes. When we compared

Refseq targeting features’ intensities to their array’s median

intensity, we found that 79% (Binomial test, P510�15) and

68% (P510�15) are greater than the median intensity

for the Affymetrix and Nimblegen experiments, respectively

(Table 1). By themselves, these numbers are reassuring.

However, when we did the same computation for

control features, we still found significant enrichment,

albeit a bit less. Sixty-eight percent of the Affymetrix GC

control probes and 64% of the Nimblegen control probes

exhibited intensities above their slide median. Clearly,

GC content is a main determinant of signal intensity; much

more so than the targeting of known genes. This point is

illustrated in Figure 3.

3.3 Corrective algorithms

In this subsection, we present algorithms for removing the

sequence effects identified above. Following the algorithms’

descriptions, we will report their performance with respect to

metrics defined in Methods section.
One approach (Samanta et al., 2006) for dealing with these

issues is to scale all of a microarray’s intensities by each

feature’s GC content. To do this, all features must first be

binned by their probes’ GC content. Then, the median intensity

is calculated within each GC bin. Finally, the features’

intensities can be divided by the median intensity of features

having identical GC content.

While the GC scaling approach may remove some of the

problematic sequence biases observed in tiling array data,

it only uses a summary of sequence content (%GC) and does

not incorporate position-specific effects. To incorporate

more sequence information, and to utilize knowledge of

positional effects, we next adopted a model of background

hybridization from the GeneChip literature in an attempt

to more greatly reduce the observed sequence biases.
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This model is due to (Naef and Magnasco, 2003) and can be

summarized as

Ŝi ¼
Xm

k¼1

�Si, k þ �S ð3Þ

where Ŝi indicates feature i’s predicted log intensity due to

ubiquitous hybridization, �Si,k denotes the mean logged intensity

of features having the same nucleotide as feature i’s probes at

nucleotide index k, and S� is the overall average logged feature

intensities. This model has been suggested for tiling array

analysis independently in (Munch et al., 2006).
Another model for background hybridization on GeneChips

(Zhang et al., 2003) could have been applied here. However,

this model is much more difficult to fit, would require sliding

window estimation, and has been shown to less accurately

predict non-specific hybridization in Affymetrix GeneChips

(Wu and Irizarry, 2005).

We extended the algorithm for computing Naef’s affinities by

fitting the same multiple linear regression to probe sequence

in a more robust way. Following the initial fit (Equation (3),

we downweighted those features disagreeing with the model

(e.g. exhibit large residuals) and re-fit the regression. This

process of fitting and downweighting was iterated until

convergence as in the standard robust least squares regression

model (Beaton and Tukey, 1974).

Formally, the procedure was to first predict logged signal

intensity as a function of its m nucleotides following

Equation (3). Once the predictions were computed, they were

used to compute residuals,

"̂i ¼ Si � Ŝi ð4Þ

where Si is the ith feature’s logged intensity. The residuals were

used to compute feature-specific weights such that features with

high residuals receive low weight,

wi ¼ 1� x2i
� �2

, for xj j51
¼ 0, for xj j �1

ð5Þ

where

xi ¼
"̂i
C
: ð6Þ

C is a constant which controls the balance between iterations

until convergence and overfitting. We set C to be six times

the median of the residuals, following (Cleveland, 1979).
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Once weights were computed, the above steps were iterated

until the Ŝi converged. Residuals from the final fit were taken to

be the procedure’s normalized values, ~Si.
A non-parametric between-array normalization technique

for Affymetrix GeneChip data is the so-called quantile

normalization (Bolstad et al., 2003). Briefly, this algorithm

first computes a ‘meta-array’ by calculating either the mean or

median signal for each feature across all microarrays being

normalized. The meta-array’s signal distribution is then used

as the distribution for each array being normalized. This is

achieved by replacing the signal of each feature having signal

rank r with the signal having rank r within the meta-array. This

non-parametric approach performs between-array normaliza-

tion very well. In fact, non-parametric methods, in general,

have been useful for microarray data analysis due to micro-

array data’s lack of reproducible distributional form and their

abundant outliers. For these reasons, we sought to apply the

concept of quantile normalization to probe sequence space

(Supplemental Fig. 4).
However, to apply this technique to our task is non-trivial

as our problem is a multivariate regression whereas the

algorithm’s original domain is inherently univariate. Our

approach was to first force the four distributions of signals

coming from features having either an A, C, G or a T at

nucleotide position 1 to be the same. Without loss of generality,

we forced a uniform distribution between zero and one for

each nucleotide group. The resulting normalized signals were

stored as Ŝi,1 where i indexes the ith array feature. The same

computation was applied to each of the m positions, recording

each Ŝi,k, for k¼ 1, . . .,m. The element-wise mean over all m Ŝ
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Fig. 2. Position-specific quantile plots for Affymetrix ChIP-chip data.

Table 1. � was calculated for array data following each of the

normalization methods employed. The PM–MM correction is not

applicable for Nimblegen data as this platform provides no MM probes

Affymetrix NB4 Nimblegen NB4

No correction 33465.07 14959.68

PM–MM 469.81 NA

GC scaling 73230.20 9319.38

Robust least squares 880.08 301.82

Naef and Magnasco, Munch 595.10 44.63

Quantile normalization 50.00 50.00
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vectors was then taken to be the normalized signal, ~Si. This

procedure did not explicitly normalize for nucleotide composi-

tion over all positions simultaneously since the sequence

bias is more or less severe for different positions (Fig. 1) and

we had simply taken the feature-wise mean of the m individual

corrections. Therefore, we iterated the previous procedure until

convergence, setting the signals Si ¼ ~Si after each iteration.

The effect is that at each iteration, the position with the

strongest biases influenced the averaging more than the other

positions. That is, the worst offending position will have the

greatest influence on any iteration.
Formally stating the above procedure, we began by counting

the number of probes Cj,k having nucleotide j¼ {A,C,G,T} at

position k. This quantity was then used in computing the

normalized rank intensities relative to position k,

Ŝi, k ¼
ri, j, k
Cj, k

, ð7Þ

where j is the nucleotide at position k within feature i’s probes,

and ri,j,k is the magnitude rank of Si relative to all other features

having nucleotide j at position k. The normalized intensity, ~Si,

was then computed as the average of over all positions k:

~Si ¼
1

m

Xm

k¼1

Ŝi, k: ð8Þ

This procedure was iterated until convergence.

3.4 Position-specific effects

We quantified position-specific sequence effects following

Equation (2). The results of these calculations are summarized

in Table 1 for the Affymetrix and Nimblegen NB4 transcrip-

tional data. For both data sets, multivariate quantile normali-

zation completely removed sequence biases as defined by

Equation (2). Its performance was followed by corrections that

used Naef’s affinities, robust least squares, and finally by GC

scaling. Out of these corrections, and for theAffymetrix data, the

quantile normalization was the only method that outperformed

the standard PM–MMapproach.We found similar results in the

ChIP-chip and yeast transcriptional data (data not shown).

3.5 Enrichment of Refseq genes

As noted earlier, Equation (2) cannot be used as the sole

determinant of tiling microarray performance with respect to

their sequence biases. It is also important to demonstrate

biological significance. To do this for transcriptional data, we

computed the percentage of Refseq-targeting features’ signals

appearing in the top half of their signal distributions. Since

gene annotations can have their own sequence biases which can

confound this analysis, we also computed enrichment of

features having identical GC content as the Refseq features.

We provide these percentages in Table 2 for the Affymetrix and

Nimblegen NB4 data sets. A generalization of this analysis

is illustrated in Figure 4 where the percentages are plotted for

one hundred different evenly spaced thresholds. In this figure,

we have defined known positive features as those whose probes

exactly match a Refseq gene and known negatives as features

whose probes do not match any of Refseq but have the same

GC content as the known positives.
The GC-richness of Refseq is immediately apparent in the

first line of Table 2. Seventy-eight and seventy-three percent of
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Fig. 3. Probes targeting Refseq genes were binned by their GC content. The log of the median signal intensity was computed for each GC bin and
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the Refseq probes while the series labeled with Cs represents control probes. Results for Affymetrix and Nimblegen NB4 transcription experiments

are plotted.
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Refseq targeting features are above slide median intensities in

the Affymetrix and Nimblegen experiments, respectively.

However, the control features show very high enrichment as

well. Clearly, corrections are needed and the ones we described

here all performed roughly equivalently at reducing the

enrichment of control features while retaining enrichment of

Refseq features. Interestingly, applying any of these corrections

to yeast transcriptional data resulted in just minimal improve-

ments over raw data and performed similarly to using a

genomic DNA control hybridization as described in (Huber

et al., 2006) (Supplemental Fig. 5).
We found that sequence normalizations do have an effect

on selective enrichment of promoter-targeting features in

ChIP-chip data, however. Table 3 indicates that Naef affinities,

robust least squares and multivariate quantile normalizations

perform roughly equivalently at enriching for known promoters

while diminishing enrichment of our computed control features.

This table also demonstrates that utilizing the genomic control
is important for ChIP-chip data and that its importance is

enhanced by sequence normalizations.

3.6 Platform concordance

In performing the described sequence normalizations, it is
important to achieve biological relevance but it also important

to achieve platform concordance. Without platform concor-
dance, it can become very difficult to reproduce other labs’

results and skepticism about the technology can justifiably arise
(Johnson et al., 2005). We therefore performed two platform

concordance analyses and summarized the results in Table 4.
Probe-wise correlation between the two platforms’ raw data
was very low relative to GC content controls. The agreement

appeared even worse when we compared Affymetrix PM–MM
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Fig. 4. Sensitivity versus specificity plots for Affymetrix and Nimblegen tiling array data at the probe level. Known positives are taken to be features

whose probes exactly match a Refseq sequence. Known negatives are features with the same GC content as the known positives but do not match a

Refseq gene. For each normalization method, positives and negatives are obtained by simple thresholding. Sensitivity is the number of known

positives with signals above a set threshold divided by the total number of known positives. Specificity is the number of known negatives below the

threshold divided by the total number of known negatives.

Table 2. Percentage of features exhibiting signals greater than their distributions’ median signal. PM–MM is not applicable for Nimblegen data

because no MM probes are present in the array design

Affymetrix Nimblegen

Refseq Control Refseq Control

No correction 78.0% 68.4% 72.9% 64.8%

PM–MM 64.1% 51.0% NA NA

GC scaling 61.7% 48.4% 59.9% 49.4%

Robust least squares 66.0% 53.2% 56.9% 50.9%

Naef and Magnasco, Munch 63.4% 49.7% 56.5% 50.6%

Quantile normalization 63.2% 49.8% 56.4% 50.3%
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to Nimblegen’s raw data. The disagreement is at least in part

due to the low number of features exhibiting biological signal

in these experiments. The degree to which this is causative of

the low correlations is as yet unclear.

When using Naef’s affinities to correct for sequence biases,

we achieved the best results with respect to platform

concordance at both the probe and gene levels. Robust least

squares and multivariate quantile normalization performed

nearly as well, with robust least squares apparently leaving

more residual correlation in the gene-wise control. This residual

correlation was also seen when we applied Naef ’s affinities or

multivariate quantile normalization.
A final observation is that gene-wise correlations are always

better than their probe-wise counterparts. This implicates the

practical benefit of utilizing robust statistics within moving

windows when scoring tiling array data (Kampa et al., 2004),

although this technique reduces our effective resolution.

4 DISCUSSION AND CONCLUSIONS

We have introduced here the problem of sequence biases caused

by ubiquitous non-specific hybridization in tiling microarray

experiments. The effects were found to be strong and were

much larger than the differences in intensity observed between

Refseq targeting features’ and non-Refseq targeting features’

signals in H.sapiens transcript mapping experiments (Fig. 3).

Furthermore, the effects are different for different platforms

and can confound the study of platform concordance—a

serious problem if results between experiments are to be

integrated in downstream analyses. If the tiling microarray

technology is to eventually reach its goal of 1 nt resolution,

these are issues that need to be resolved.

To this end, we investigated a number of approaches for

mitigating the observed sequence biases. We found that these

biases can be lessened by any of the methods employed. One

method in particular, the multivariate quantile normalization,

completely removed sequence effects present in tiling micro-

array data. Most importantly, the removal of these sequence

biases did not come at the cost of removing biological realities

from the data. In particular, in the Affymetrix system, we found

that using approaches such as those presented here can allow

for the removal of mismatch probes from the experimental

design. In tiling microarrays, improvements in efficiency

such as these allow for greater regions of DNA sequence to

be interrogated. Benefits were found when we applied the

algorithms to both transcript mapping and ChIP-chip data.

The one surprise was that the algorithms provided little

benefit to a recently published S.cerevisiae transcript mapping

experiment. This is possibly due to the lessened complexity of

the system being studied. With a much smaller transcriptome,

Table 4. Correlation coefficients were computed between signals from features targeting identical sequences (first column) and between signals from

feature pairs having identical GC content as the original pairs but otherwise having no significant sequence similarity (second column)

Probe-wise Gene-wise

Matching Control Matching Control

No correction 0.49 0.42 0.69 0.74

PM–MM 0.07 0.03 0.39 0.08

GC scaling 0.11 �0.01 0.46 0.03

Robust least squares 0.22 0.01 0.64 0.19

Naef and Magnasco, Munch 0.22 0.01 0.64 0.11

Quantile normalization 0.19 �0.01 0.64 0.10

The pseudomedian of signals from features targeting the same gene were computed for each platform and presented under the gene-wise column header. Specifically, a

correlation coefficient was calculated between genes’ pseudomedians for genes represented in both array designs (third column). Features with identical GC content to

these were then substituted into the pseudomedian calculation and correlation coefficients were again computed (fourth column). All coefficients are Spearman’s �.

Table 3. Percentage of features exhibiting signals greater than their distributions’ median log ratio

Sp1 Channel Log(Sp1/Genomic)

Promoters Control Promoters Control

No correction 73.0% 67.8% 73.4% 56.7%

PM–MM 61.5% 53.8% 67.8% 50.6%

GC scaling 59.6% 54.2% 66.2% 47.5%

Robust least squares 53.7% 48.7% 72.9% 56.0%

Naef and Magnasco, Munch 54.4% 48.8% 71.9% 53.9%

Quantile normalization 54.8% 49.4% 72.2% 53.0%

The two left-hand columns refer to Sp1 ChIP data. The right-hand columns are with respect to logged Sp1/genomic ratios. For the ratios, PM–MM includes only those

features for which PM–MM is positive in both channels and is applied to the signals before taking the log ratio. All other normalizations are performed on the log ratio

directly.
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there are fewer sequences able to bind to every probe.
Therefore, the fraction of bound-specific targets to bound
off-targets at each feature is expected to be much higher than
in the human transcript mapping experiments.

One of the goals here was to improve the platform
concordance between the Affymetrix and Nimblegen tiling
microarray platforms. We have achieved this to some degree.

After applying sequence normalizations described here, signal
correlations within known genes can achieve Spearman’s � of
0.64. However, correlations at the probe level remain very low

(Spearman’s �¼ 0.22) albeit much higher than the correlation
observed without any corrections (�¼ 0.07). One possible
source for this remaining disagreement, which has not been

resolved, is the use of different probe lengths (Affymetrix’ 25 nt
versus Nimblegen’s 36 nt probes in this study). An experiment
in which 25mers are synthesized with the Nimblegen technology
might be able to address this question. One other possibility

is differences in hybridization protocols which again could
be targeted by a Nimblegen experiment which exactly mimics
an Affymetrix study, using 25 mers and following Affymetrix

hybridization protocols. These studies require additional
experimentation. However, we have addressed here the role
that sequence effects can have on platform concordance—one

of several factors that must be systematically studied.
The tiling microarray promises a wide spectrum of genome-

scale experiments. For these experiments to be as useful as the
genome sequences that enabled them, a deeper understanding

of the technology itself is needed. One aspect of this under-
standing is the behavior of ubiquitous hybridization which
we have begun to address here. Moving forward, the

algorithms we provide should help researchers in recovering
biologically useful information from tiling microarrays—both
from transcript mapping experiments, and from ChIP-chip

experiments.
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