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Genomic tiling microarrays have become a popular tool for interrogating the transcriptional activity of large regions
of the genome in an unbiased fashion. There are several key parameters associated with each tiling experiment (e.g.,
experimental protocols and genomic tiling density). Here, we assess the role of these parameters as they are manifest
in different tiling-array platforms used for transcription mapping. First, we analyze how a number of published
tiling-array experiments agree with established gene annotation on human chromosome 22. We observe that the
transcription detected from high-density arrays correlates substantially better with annotation than that from other
array types. Next, we analyze the transcription-mapping performance of the two main high-density oligonucleotide
array platforms in the ENCODE regions of the human genome. We hybridize identical biological samples and
develop several ways of scoring the arrays and segmenting the genome into transcribed and nontranscribed regions,
with the aim of making the platforms most comparable to each other. Finally, we develop a platform comparison
approach based on agreement with known annotation. Overall, we find that the performance improves with more
data points per locus, coupled with statistical scoring approaches that properly take advantage of this, where this
larger number of data points arises from higher genomic tiling density and the use of replicate arrays and
mismatches. While we do find significant differences in the performance of the two high-density platforms, we also
find that they complement each other to some extent. Finally, our experiments reveal a significant amount of novel
transcription outside of known genes, and an appreciable sample of this was validated by independent experiments.

[Supplemental material is available online at www.genome.org.]

Mapping transcribed regions of the human genome in an unbi-
ased fashion is a crucial step toward understanding at a molecular
level the organization of hereditary information and the specific
functions of each human cell or tissue type. To this end, a num-
ber of approaches using genomic tiling microarrays have been
tested and published over the last few years, including key stud-
ies by Kapranov et al. (2002), Rinn et al. (2003), Bertone et al.
(2004), Schadt et al. (2004), and Cheng et al. (2005). While the
strategies differ substantially in most of their details, they all
share a basic array design concept: to construct an array whose
probes (the molecules attached to the microarray at the manu-
facturing) cover all of the nonrepetitive sequence of the genome
or genomic region under investigation.

Kapranov et al. (2002) used a high-density oligonucleotide
array design containing perfect match probes of length 25 bp and
corresponding mismatch probes. The arrays were synthesized in

situ (directly on the supporting array material) using physical
masks (Lipshutz et al. 1999) and covered chromosomes 21 and 22
with probe starting positions spaced every 35 bp (genomic dis-
tance). They were hybridized with samples representing 11 cell
lines. The data was later reanalyzed (Kampa et al. 2004) and a
more sophisticated approach to genomic segmentation was in-
troduced. We refer to this setup as the Affymetrix tiling-array
platform.

Rinn et al. (2003) mapped transcribed regions of chromo-
some 22 with an array of PCR products (amplicons), tiled end-
to-end with a probe size range of 300–1400 bp. This array repre-
sents the PCR tiling-array platform and was hybridized with pla-
centa poly(A)+ RNA (Rinn et al. 2003) and later with RNA from
two cell lines (White et al. 2004).

Schadt et al. (2004) used tiling arrays where the probes were
synthesized on the array using the Agilent ink-jet technology
(Shoemaker et al. 2001). They tiled chromosomes 20 and 22 with
60-mers uniformly spaced every 30 bp. The statistical treatment
of the data was presented in Ying et al. (2003).

Bertone et al. (2004) used oligonucleotide microarrays with
36-bp probes spaced every 46 bp to map transcribed regions of
the entire nonrepetitive portion of the human genome. The ar-
rays are synthesized in situ using maskless technologies devel-
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oped by NimbleGen Systems. We refer to this as the MAS (mask-
less array synthesis) tiling array platform (Singh-Gasson et al.
1999; Nuwaysir et al. 2002).

Cheng et al. (2005) used an updated version of the Af-
fymetrix platform with a tighter spacing of the probes, every 5
bp, and covering 10 chromosomes of the human genome. Tran-
script maps were generated for polyadenylated cytosolic RNA
from eight cell lines (and for one of these cell lines, also non-
polyadenylated RNA).

These different studies produced a wealth of data. However,
the experiments represent very different choices in array design
and manufacturing, RNA extraction and hybridization condi-
tions, and data processing methods. As such, comparing the re-
sults from these studies is not trivial.

Here, we outline some of the key parameters differentiating
the various studies. The array design parameters include the
length and genomic spacing of the probes, the use of mismatch
probes, and whether to cover one or both genomic strands. For
the oligonucleotide tiling experiments referenced above, the
probe length varies between 25 and 70 bases. The genomic spac-
ing of the probes is measured between probe initiation points
and can range from the smallest possible distance of one single
base up to the length of the probe, or even further. At the design
stage it is important to minimize potential cross-hybridization,
self-pairing, and other probe sequence artifacts such as DNA sec-
ondary structure formation (SantaLucia Jr. and Hicks 2004). Ge-
nomic regions considered as repeats (by, e.g., RepeatMasker
[A.F.A. Smit and P. Green, unpubl.]) are usually omitted from the
design due to potential cross-hybridization. If some flexibility is
allowed in the design process, probes may be chosen so as to
achieve better probe thermodynamics. This is possible for arrays
interrogating genes (Mathews et al. 1999; Hughes et al. 2001;
Rouillard et al. 2003), but for tiling arrays with high genomic
density probe optimization options are limited (Bertone et al.
2006).

The experimental protocols for extraction, labeling, and hy-
bridization of the RNA sample to the array vary considerably.
Choosing the type of target RNA (i.e., tissue or cell line, poly(A)+

or total RNA), and the reactions and conditions to use in the
hybridization will affect the results. The number of technical and
biological replicates is an additional crucial parameter, more rep-
licates potentially enables greater certainty and detail in the in-
terpretation of the results.

Once the tiling arrays have been designed, manufactured,
hybridized with labeled RNA, and the hybridization intensities
have been extracted, there are a number of ways to transform the
raw intensities into a score for each probe. This is usually done
using statistical methods such as a sign test or the t-test. Exactly
what methods are available depends on the design features of the
array, such as the presence of mismatch probes. The segmenta-
tion of the genome into transcribed and nontranscribed regions
is then performed based on the scores.

Our goal is to assess different tiling microarrays that are
currently used for transcription mapping, an area where no de-
tailed comparison thus far has been performed, and ultimately to
aid the ENCODE Consortium when choosing strategy for the
multiple tissue whole-genome transcription mapping of the hu-
man genome (The ENCODE Project Consortium 2004). Previous
work on comparing gene-based microarrays include studies by
Tan et al. (2003), Jarvinen et al. (2004), Mah et al. (2004), Park et
al. (2004), and Yauk et al. (2004). Most of these indicate differ-
ences in the gene expression results from different microarray

platforms, which have been attributed to differences in data pro-
cessing or inadequate choice of comparison metrics (Larkin et al.
2005).

We start our microarray comparison by analyzing a set of
already published chromosome 22 transcription experiments.
Overall, this study indicated that high-density oligonucleotide
arrays perform significantly better than amplicon (PCR) arrays.

We then describe a direct comparison of the two in situ-
synthesized oligonucleotide-based platforms MAS (Bertone et al.
2004) and Affymetrix (Affy) (Kapranov et al. 2002) on the manu-
ally picked part of the ENCODE regions of the human genome
(http://www.genome.gov/10005107). We hybridized identical
biological samples to the arrays and developed a unified data-
processing scheme based on statistical treatment of the data. Us-
ing this approach, we compare the results from the two platforms
with each other and with the recently generated GENCODE gene
annotation (Guigo et al. 2003; Ashurst et al. 2005; http://
genome.imim.es/gencode/).

Results and Discussion

Pilot study: Comparison of public chromosome 22 tiling data

We carried out an initial comparison of previously published
transcription maps of chromosome 22 generated from PCR-based
tiling arrays (Rinn et al. 2003; White et al. 2004) and two oligo-
nucleotide tiling-array platforms, MAS and Affymetrix (Kapranov
et al. 2002; Bertone et al. 2004) (Fig. 1). These maps were gener-
ated from 15 separate experiments (tissues or cell lines). We used
the RefSeq annotation (Pruitt et al. 2005) as a benchmark, since
GENCODE annotation is not yet available for the entire chromo-
some 22. For each experiment we measured the consistency be-
tween gene annotation and transcribed regions identified by in-
dividual studies. The transcription data from oligonucleotide ar-
rays agrees better with the RefSeq exon annotation than the data
from PCR arrays, an observation that holds true across all experi-
ments. The results have to be interpreted with some care since
they were not obtained with the same biological samples or scor-
ing schemes. Nonetheless, we conclude that PCR-based arrays are
clearly less useful for a detailed transcription mapping study,
possibly because of their lower genomic resolution. Spotted ar-
rays (e.g., PCR-based) also have a significantly lower feature reso-
lution on the array compared with arrays with in-situ synthe-
sized probes. Therefore, we focus our subsequent experimental
and analysis efforts on the oligonucleotide tiling microarrays.

Approach

Oligonucleotide array designs and hybridizations

An oligonucleotide array containing 36 bp oligonucleotides that
tile both strands of the nonrepetitive sequence of the ENCODE
regions end-to-end (allowing some positional shifts to reduce
self-complementarity) was prepared using maskless photolithog-
raphy, MAS (maskless array synthesis). The MAS arrays cover
both strands of the ENCODE regions ENm001–ENm011 (11.6
Mb). An Affymetrix ENCODE array, which covers one strand of
the entire ENCODE region on one array, tiled with 25-mer oli-
gonucleotides with an average distance between oligonucleotide
starts of 21 bases was obtained from the manufacturer. This array
has both perfect match (PM) and mismatch (MM) probes.

As outlined in Table 1, five different hybridization experi-
ments were carried out: two different RNA targets (placenta
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poly(A)+ RNA and NB4 total RNA) were hybridized to the two
different array types. (We follow the nomenclature of Royce et al.
[2006], i.e., target or sample is the RNA extracted from a biologi-
cal entity [tissue or cell line], which is hybridized to the probes
on the microarray.) The Affymetrix arrays were hybridized ac-
cording to the manufacturer’s recommendation. The MAS arrays
were hybridized using two different experimental protocols,
MAS-B, described in Bertone et al. (2004), and MAS-N, a variant
of the manufacturer’s recommended protocol. The placental
RNA was hybridized using both MAS protocols, the NB4 RNA
only with MAS-N.

Generating comparable maps of transcriptionally active
regions (TARs)

Development of consistent scoring schemes

To bring the outcomes from the two technologies MAS and Af-
fymetrix into a comparable form, we developed ways of scoring
them similarly. For each spot on the microarrays, a hybridization
intensity was collected. For oligonucleo-
tide tiling arrays, it is usually advanta-
geous to aggregate the intensities from
probes that are adjacent to each other in
genomic space (Kampa et al. 2004;
Cheng et al. 2005; Royce et al. 2005).
This is done by applying a sliding ge-
nomic window encompassing multiple
probes and converting the intensities
within the window into a score, which is
assigned to the middle probe. The win-

dowed approach is logical since we are ultimately interested in
obtaining a set of regions whose intensities are significantly
higher than the background, and we expect those regions to be of
the same length as exons (150–200 bp on average, depending on
exon type) rather than of single probes (25–36 bp in this study).

We developed new ways of scoring the MAS arrays and de-
scribe these in terms of three levels of scoring: single probe in-
tensities, robust statistics within a sliding window, and robust
statistics using paired data within a sliding window (Cawley et al.
2004).

Single-probe intensities
Single-probe intensity scoring uses the raw intensities from the
arrays. By wisely choosing methods and parameters to deal with
the genomic segmentation (see below) it is possible to obtain
reasonable results from this approach (Bertone et al. 2004). In
this approach, both intra- and interarray normalization of the
microarray data may be particularly important (Royce et al.
2005).

Robust nonparametric statistics within a sliding window
We used the sign test for scoring MAS array data. The sign test is
attractive since it is statistically robust and does not assume nor-
mally distributed data. Comparing each intensity within a slid-
ing genomic window of a specified size with the array median
yields a measure or a score of the significance of the intensities
(see Methods for details). It is easy to include multiple replicates
in this scheme: Each probe is simply compared with the median
intensity of its own array, and no interarray normalization is
necessary. The number of available score levels is restricted; how-
ever, due to the discrete values introduced by the counting (it is
a binomial), it may not be sufficient in situations in which dis-
cerning the top scores (say, top 5%) from near-top scores is im-
portant. With an average genomic spacing of 36 bp between the
starts of two adjacent probes, the window (160 bp) encompasses
five probes. We also applied the sign test on the Affymetrix data
as a part of our comparison.

Robust nonparametric statistics using paired data within a sliding window
When paired data is available, such as the PM and MM probe
intensities on Affymetrix arrays, the paired Wilcoxon signed rank
test is a more powerful option than the standard sign test. It was
first used with tiling microarrays by Cawley et al. (2004) to score
ChIP-chip data (Horak and Snyder 2002), and it is also immedi-
ately applicable to transcription data as is shown in Kampa et al.
(2004) and Cheng et al. (2005). All pairwise PM–MM differences
within the window are calculated and a P-value, which essen-
tially measures how significantly the distribution of PM–MM dif-
ferences is skewed to either side around zero, is calculated, along
with the corresponding point estimate (the pseudomedian).

Figure 1. Comparing human chromosome 22 transcription data sets
with gene annotation. Transcription data sets were derived from previ-
ously published studies. They were generated from three different micro-
array platforms: PCR (red squares), MAS (blue diamond), and Affymetrix
(green circles); in a total of 15 separate experiments (tissues or cell lines),
each represented by a point in the figure . We used the RefSeq annotation
as a benchmark to assess the quality of the data from each experiment.
(x-axis) The fraction of exonic probes that were identified to be tran-
scribed in individual experiments (sensitivity). (y-axis) The fraction of
transcribed probes overlapping with an exon (PPV). The PCR tiling-array
data were from placenta, fibroblast, and B-cells (Rinn et al. 2003; White
et al. 2004), the MAS data from liver (Bertone et al. 2004), and the
Affymetrix sets were collected from Kapranov et al. (2002) representing
11 different cell lines. (Arrow) The Affymetrix data from the U87 cell line
is not representative since a long section of chromosome 22 is identified
as transcriptionally silent, suggesting that this particular experiment
probably did not work or something is unusual about U87.

Table 1. Outline of hybridization experiments

Experiment ID Sample

Number of technical
replicates batch1 +

batch2 + batch3
Hybridization

protocol

Placenta MAS-B Poly(A)+ 3 + 2 + 2 Bertone et al. (2004)
Placenta MAS-N Poly(A)+ 3 + 2 + 2 Derived from manufacturer’s
Placenta Affy Poly(A)+ 3 + 2 + 2 Manufacturer’s
NB4 MAS-N Total RNA 2 + 2 + 2 Derived from manufacturer’s
NB4 Affy Total RNA 2 + 2 + 2 Manufacturer’s
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While this approach is analogous to the standard sign test, it has
considerably greater statistical power.

The MAS arrays did not contain proper mismatch probes.
Instead, we tried to simulate these using the complementary
strand oligonucleotide of the MAS arrays as the “mismatch”
probe. We call this approach the Fwd-Rev scoring, and it is jus-
tified on the MAS-B (placenta) data, since the correlation be-
tween forward and reverse-strand probes is close to the correla-
tion between PM and MM probes for the Affy placenta data
(Table 2).

Segmentation of genomic regions

After obtaining one score value per oligonucleotide probe, the
next step is to construct a transcription map based on these
scores, i.e., to segment the genomic regions into transcribed and
nontranscribed regions. We call the transcribed regions TARs
(Transcriptionally Active Regions) (Rinn et al. 2003), regardless of
overlap with genes, exons, or other genomic features. (Note, an
alternate term, transfrag [Transcriptional Fragment], was intro-
duced by Kampa et al. [2004]).

Maxgap/minrun segmentation
In Bertone et al. (2004), TARs were generated by requiring at least
five adjacent probes with a raw intensity in the top 10% of all
intensities of that slide. Thus, the threshold above which to con-
sider a probe “positive” was the intensity value corresponding to
the 90th percentile, and any probe that was below the threshold
immediately terminated the transcribed region. In the Af-
fymetrix series of publications (Kapranov et al. 2002; Cheng et al.
2005), the threshold for generating TARs was based on setting a
maximum false-positive rate of the hybridization levels of nega-
tive bacterial controls, thus enabling an optimized percentile cut-
off for each array set and biological sample. Furthermore, gaps
were allowed, such that a maximum stretch of a certain number
of nucleotides (called maximal gap, or maxgap for short) with a
score below the threshold was allowed between probes whose
scores were above the cutoff. Typically, the maxgap parameter
allows one or two probes to be below the cutoff while still being
incorporated into the TAR. The total length of a TAR is then
required to be of at least a certain length (a minimal run, or
minrun), usually corresponding to at least two probes.

HMM segmentation
As an alternative to the maxgap/minrun segmentation, a hidden
Markov model (HMM) (Rabiner 1989; Ji and Wong 2005; Li et al.

2005) was used to predict TARs, given the derived probe scores
(above). Each probe can be in one of four HMM states (TAR,
non-TAR, and two intermediate transition states), emitting the
assigned score (i.e., the emission spectrum is continuous). The
parameters of the HMM can be estimated by learning from the
sequences of probes that fall into regions with known transcrip-
tion characteristics (e.g., according to gene annotation). The
HMM can then be applied to sequences of probes bearing the
same scoring protocol to determine the most likely correspond-
ing state sequence, in order to identify TARs (Viterbi decoding).

Platform comparison

We have analyzed the five microarray tiling experiments, repre-
senting the MAS and Affymetrix platforms, introduced in Table 1
at multiple stages throughout the data processing.

1. First, we calculate a correlation coefficient between the raw
hybridization intensities of technical replicates within each
platform to assess the level of basic experimental reproduc-
ibility. We also assess the overlap of preliminary TAR sets gen-
erated from technical replicates using single-probe intensities.

2. Before proceeding to the next level, the TAR sets to be com-
pared must be determined. This includes decisions about what
scoring algorithm, what segmentation method, and what cor-
responding parameter settings to use for each of the five ex-
perimental data sets. In summary, the input data type (e.g.,
PM only or PM–MM), the number of replicates, the scoring
algorithm and, if applicable, its corresponding genomic win-
dow size define the scoring scheme, which together with the
segmentation algorithm and its parameters specify a particu-
lar TAR set.

3. The resulting sets of transcribed regions are compared with
each other, both within and across microarray platforms
and biological samples, and the degree of overlap between
detected transcription and gene annotation is measured.
For the annotation comparison, we have chosen to use the
GENCODE annotation, which aims at finding and verifying
all protein-coding genes in the ENCODE regions. There are
two main measurements: how much of the known annotated
exons are covered by a detected transcribed region (sensitiv-
ity) and the degree to which the detected transcription falls
within known exons (positive predictive value [PPV]). The
PPV is defined as the number of nucleotides in TARs that
overlap with exonic regions, divided by the total number of
nucleotides in the TAR set (this is sometimes referred to as
“specificity” [Burge and Karlin 1997]). The sensitivity is de-
fined as the number of nucleotides in annotated exons that
overlap with TARs divided by the total number of nucleotides
in annotated exons. We do not expect a sensitivity of 100%
since in any given tissue or cell line at any given time point,
far from all annotated genes will be expressed. Also, we do not
expect a PPV of 100% since GENCODE, although arguably the
most comprehensive and accurate gene annotation available,
is incomplete.

4. The transcription status is assessed for all 1342 annotated
splice variants of all 264 known genes in the GENCODE an-
notation of regions ENm001–ENm01. For each splice variant,
the scores of all exon overlapping probes are collected and the
transcription status assessed using the sign test (by comparing
each individual score with the median score) (Bertone et al.
2004). A gene is considered transcribed if at least one of its
splice variants is deemed transcribed at the chosen signifi-

Table 2. Correlation of hybridization intensities

Experiment ID

Between arrays Within arrays

Techn.
repl.

Biol.
repl.

PM vs.
MM

Fwd vs.
rev

Placenta MAS-B 0.829 0.820 — 0.627
Placenta MAS-N 0.955 0.953 — 0.046
Placenta Affy 0.961 0.937 0.774 —
NB4 MAS-N 0.959 0.957 — 0.045
NB4 Affy 0.981 0.983 0.917 —

Average of absolute values of Pearson correlation coefficients (R), calcu-
lated from unprocessed hybridization intensities (excluding internal stan-
dards and grid alignment probes). Between arrays: between technical
and between biological replicates. Within arrays: for Affymetrix arrays,
between corresponding perfect match (PM) and mismatch (MM) values;
for MAS arrays, between probes representing forward/leading (Fwd) and
reverse/lagging (Rev) strands of the same genomic location.
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cance level. We also assess for each transcript (with at least
two exons) how many of its exons are considered transcribed
based on the median intensity score of each exon within the
transcript. Ideally, either all exons or no exons should be tran-
scribed. We call this concept the multi-exon coherence, and a
suitable quantitative measure is the percentage of transcribed
transcripts that display all of their exons as “on.”

5. Finally, we perform experimental validation of the results in
placenta (MAS-B and Affy), using RT–PCR on a subset of the
novel TARs (including both TARs unique to a platform and
TARs present in both). We also perform experimental valida-
tion of a number of genes with differing transcription status in
the two platforms including, as a negative control, a set of
genes that are considered off in both platforms.

The results are available at http://tiling.gersteinlab.org/
platformcmp.

Outcomes

Conclusions about optimal scoring and segmentation systems

We first examined the effect of the segmentation threshold on
the size of the resulting TAR sets. The results are in Figure 2A and
Supplemental Figure S1, and, as expected, the lower the segmen-
tation threshold the greater the size of the TAR sets. The step-like
pattern in these figures is because of the finite number of avail-
able scores. For the minrun/maxgap segmentation, the maxgap
parameter was set to 50 for the Affymetrix data and 80 for the
MAS data, thus including in a TAR a probe whose score is below
the score threshold if it is flanked on both sides by probes with
scores above the threshold. Other maxgap settings were tested,
but the results did not improve in terms of gene annotation
agreement (data not shown). The minrun parameter was set to 50
bp, i.e., the minimum length of a TAR is 50 bp. Thus, at least four
probes have to be included in an Affymetrix TAR and three for
the MAS array TARs.

Different scoring schemes give different results and also dif-
fer from the results obtained using single-probe intensity scores
when comparing to the gene annotation. As is clear from Figure
2B (and Supplemental Fig. S2a), the standard sign test provides

the best performance for MAS-B (placenta) if a sensitivity at or
above 25% is required, but its improvement in terms of PPV
when increasing the segmentation threshold is modest. The Fwd-
Rev scoring is more sensitive to the choice of threshold, and it
performs better than the sign test scoring for segmentation
thresholds above the 94th percentile. For the standard sign test,
we also tried applying different weights to the probes within a
window, e.g., multiplying each score with a discretized Gaussian,
but no improvement in performance was recorded (Supplemen-
tal Fig. S2).

For the Affymetrix data, Figure 2C (placenta) and Supple-
mental Figure S3 (NB4) reveal that the use of mismatch probes
improves performance, in particular for the NB4 total RNA ex-
periment, and that the Wilcoxon scoring performs very well.
Figure 2C shows that for sensitivities up to 35%, using mismatch
probes is a better strategy than doubling the genomic density of
the probes, and also that it is better to use a single array with a
PM–MM setup than two replicates with PM probes only.

Figure 2D and Supplemental Figure S3 show that the more
elaborate scoring models using replicates outperform the single-
probe intensity scoring in terms of sensitivity and PPV for both
MAS and Affy.

These two points (elaborate scoring with replicates and the
advantage of using mismatches) are further illustrated in Figure
2E, where the PPV of the TAR sets when choosing a segmentation
threshold that corresponds to a sensitivity of 30% have been
plotted.

The analysis of different segmentation algorithms reveals
that the TAR sets generated by the nonparametric HMM segmen-
tation (Viterbi decoding) are biased toward a high sensitivity (Fig.
2B; Supplemental Fig. S2) where it performs on par with the
minrun/maxgap algorithm.

Results from comparison pipeline

Replicate comparison of unprocessed hybridization intensities

As is shown in Table 2, we obtained Pearson correlation coeffi-
cients of 0.83 and 0.96 for placenta MAS-B and MAS-N data,
respectively, measured on pairwise comparison of the raw hy-

Figure 2. (Continued on next page)
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bridization intensities of the arrays. The figure for Affymetrix was
0.96 and NB4 results were similar. We also note that the corre-
lation of PM and MM probes for Affy placenta is close to the
correlation of Fwd and Rev probes for MAS-B. Comparing the
preliminary TAR sets, generated from single arrays, across tech-
nical replicates (Supplemental Table S1) again indicates that the
MAS-B data is the most variable.

Choosing TAR sets to include in comparison

For each of the five experiments, the best-performing scoring and
segmentation algorithm was chosen, and the segmentation

threshold was tuned to generate TAR sets of roughly equal size, as
measured in number of bases. The chosen sets are presented in
Table 3 (and its extended version, Supplemental Table S2) and
the points corresponding to these sets in Figure 2A and Supple-
mental Figure S1 have been circled. To enable a comparison of
the TAR sets, MAS array TARs on the two strands were merged
into one set of unstranded TARs for each biological sample (Af-
fymetrix TARs do not have strand information). For MAS, the
standard sign test scoring was chosen, and for Affymetrix, the
Wilcoxon signed rank test (pseudo-median). The segmentation
thresholds range from the 87th to the 93rd percentiles for the
various sets. The resulting sizes of the sets included in the sub-

Figure 2. (A) Number of nucleotides in placental TARs as a function of segmentation threshold (percentiles). TARs were generated with the
maxgap/minrun algorithm based on the scored hybridization intensity data using a genomic window and technical replicates: MAS-B scored with the
standard sign test (green); MAS Fwd-Rev scoring using reverse strand as “mismatch” (orange), pseudomedian; Affymetrix scored using pseudomedian
from PM-MM (blue). The data points corresponding to the data sets used in the Comparison section are circled: Thresholds are 90th percentile for Affy
and 91st percentile for MAS-B (sign test scoring). (x-axis) The percentile score threshold for calling a probe “positive.” (y-axis) The number of nucleotides
in TARs (in megabase pairs). The dashed line corresponds to the number of nucleotides in exons in the analyzed region (1,001,238 nt). (B) Positive
predictive value (PPV) versus sensitivity for three different ways of scoring and segmenting the MAS-B data, varying the segmentation threshold from
70th percentile (to the right in the figure) to 99th percentile (to the left) for the MAS-B set scored with the standard sign test (green); scored using reverse
strand as “mismatch” (Fwd-Rev scoring, orange); and the result from HMM segmentation (Viterbi decoding) of sign test-scored data (gray triangle).
Sensitivity (x-axis), defined as the percentage of bases in GENCODE exonic regions that are covered by a TAR. PPV (y-axis), defined as the percentage
of bases in the TARs that overlap with a GENCODE exonic region. (C) PPV versus sensitivity for two different ways of scoring the placenta Affy data, using
three replicates (six array features) unless otherwise stated: Wilcoxon signed rank test (blue circles), and standard sign test (using PM–MM values: cyan
triangles; using PM-only values: yellow squares). The result from reducing the genomic density of the Affy array to 50% (i.e., removing the data from
every second probe) is also shown using PM–MM values (three replicates: cyan triangles, dashed line; single replicate only: gray triangles, dashed line).
(D) PPV versus sensitivity for MAS-B and Affy placenta data, varying the segmentation threshold from the 70th percentile (right) to the 99th percentile
(left). The average results of TARs generated from raw intensities from single arrays for Affy (PM only [blue squares], and PM–MM [blue triangles; solid
line actual genomic density, dashed line 50% genomic density]) and MAS-B (green squares) are plotted, as well as scored results for Affy (blue circles)
and MAS-B (green circles). Sensitivity (x-axis), and PPV (y-axis), defined as above. The data points corresponding to the data sets used in the Comparison
section are circled. The hatched area marks where a sensitivity of 30% is achieved for the various sets. (E) PPV for placental TAR sets when choosing a
segmentation threshold that yields ∼30% sensitivity (hatched area in B). Note that the actual sensitivity varies slightly between the sets.
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sequent comparison range from 629 to 701 kb (between 2545
and 4674 TARs). The total number of bases in exons in the ana-
lyzed regions (ENm001–ENm011) is 1001 kb, which means that
the chosen sets can reach a sensitivity of 63%–70% at most (as
discussed above). The length distributions of all five TAR sets are
unimodal and decay roughly exponentially (Supplemental Fig. S6).

Compare TAR sets with each other and to GENCODE annotation
and conserved regions
Figure 2D and Supplemental Figure S3 reveal that the agreement
with annotation is better for the Affy sets than for the MAS sets,
both placenta and NB4. While similar sensitivity levels are
achievable, the Affy TAR sets reach sig-
nificantly higher PPVs. Likewise, the
agreement is larger for the placenta sets
(MAS-B, MAS-N, and Affy) than for the
NB4 sets (MAS-N and Affy). This is also
summarized in Table 3.

Figure 3A shows the overlap be-
tween the placenta and NB4 TAR sets
from the different experiments. As a
measure of the overlap between the sets,
we calculate a ratio R = |∩|/|U| for each
pairwise comparison, where the nu-
merator represents the size of the inter-
section and the denominator represents
the size of the union of the two sets un-
der comparison. For two sets that agree
completely, R = 1. We find that the
MAS-B placenta TAR set agrees better
with the Affy placenta TAR set (R = 0.22)
than the MAS-N TAR sets do with Affy (R
is 0.16–0.17). Between 62% and 72% of
the nucleotides in the placenta sets are
exclusive to a particular experiment
(pairwise comparison MAS-B vs. Affy
and MAS-N vs. Affy). For the NB4 total
RNA TAR sets (MAS-N and Affy), more
than 70% of the nucleotides in either
TAR set are exclusive to that set.

As shown in Figure 3B, the overlap
across the different biological samples
within each experimental technology is
larger than the overlap within the same
biological sample between the two ex-
perimental technologies. An extreme ex-
ample is the MAS-N placenta and NB4
sets which agree much better (dashed-

dotted brown line; R = 0.67) than NB4 MAS-N and Affy (solid
black line; R = 0.16). Restricting the overlap calculations to the
subset of TARs that overlap conserved or exonic regions, or both
(i.e., moving to the right in Fig. 3B; Supplemental Fig. S8) yields
higher values of R for the within-biological sets comparisons
(black) and for the within-Affy comparisons (solid brown), but
not for the within-MAS comparisons (nonsolid brown). Conse-
quently, there is no enrichment for conserved regions or known
genes within the common parts of the MAS TAR sets.

The bimodal distribution in Figure 4 shows that most
GENCODE unique exons are either fully covered by a TAR (>90%
of exon nucleotides overlap with a TAR) or not covered at all

Figure 3. TAR set agreement. (A) Overlap of TAR sets, measured in number of overlapping nucleo-
tides (kilobases). All three placenta TAR sets (MAS-B, MAS-N, Affy) and both NB4 TAR sets (MAS-N and
Affy). R is a measure of the size of the overlap. R = |∩|/|U| (calculated pairwise for the three placenta TAR
sets). (B) Size of TAR set overlap, expressed in R, for comparisons within biological samples but across
different array platforms (black lines), and comparisons within array platforms but across the biological
samples (brown lines). Values in the leftmost column of the graph are calculated with no further con-
straints. Second column, only TARs overlapping with conserved regions are included. Third column,
only TARs overlapping with GENCODE exons are included. Fourth column, only TARs overlapping with
both conserved and exon regions are included.

Table 3. Characteristics of TAR sets used in comparison (data for ENCODE regions ENm001–ENm011)

Experiment ID

Scoring method and
segmentation parameters
threshold/minrun/maxgap

Number of TARs and nucleotides

Mean/median length

GENCODE cmp.Stranded Unstranded

#TARs #bases #TAR #bases Sens(%) PPV(%)

Placenta MAS-B Sign test win.160 91/50/80 4079 955k 2545 684k 269/180 24.6 35.9
MAS-N Sign test win.160 92/50/80 3853 768k 3248 701k 216/144 22.3 31.7
Affy PM-MM P-median 90/50/50 — — 3694 629k 170/105 37.0 58.6

NB4 MAS-N Sign test win.160 93/50/80 3520 697k 2936 632k 216/144 19.1 30.2
Affy PM-MM P-median 87/50/50 — — 4674 629k 135/91 26.5 41.8

GENCODE exon regions — 2563 1018k 2482 1001k 403 — —
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(<10%). This is true for all TAR sets (Supplemental Fig. S9). We
notice a slight 3� bias for the Affymetrix poly(A)+ data (but not for
the MAS data), detecting 32% of the 3� exons and 25% of the 5�

exons entirely.
Table 4 and Supplemental Figure S10 show a comparison of

each of the five TAR sets to a set of conserved elements, generated
from the union of conserved regions called by the Threader
Blockset Aligner (TBA) (Blanchette et al. 2004) and MLagan
(Brudno et al. 2003). The union set of conserved elements covers
∼10% of the ENCODE regions. We find that most of the novel
(intergenic) TARs do not overlap with conserved regions. Only
7%–8% of Affymetrix novel TARs and 1%–2% of MAS novel TARs
overlap fully (>90%) with conserved regions.

Transcription status of known genes and exons

The transcription status of all known splice variants (transcripts)
of the 264 GENCODE genes in the regions ENm001–ENm011 was
assessed, and the results are shown in Table 5. A gene is consid-
ered as “transcribed” if at least one of its transcripts is detected at
significance level P < 0.001. If a transcript has <10 probes, it will
be unable to reach a P-value below 0.001, and if this is true for all
splice variants of a gene, that gene is in the “Too few probes”
category. In total, 158 (69.3%) genes are considered transcribed
according to both platforms and 221 (83.7%) according to at
least one platform (similar percentages on the transcript level). In
Table 6, the multi-exon coherence (either all exons on or all
exons off) is assessed and found to be higher for Affy. For both
placenta and NB4 there is an enrichment of multi-exon coher-
ence in transcripts that are considered as transcribed in both
platforms. One example is the Affy NB4 set, for which, in total,
15.5% of all transcripts have all their exons transcribed, while
26.9% of the transcripts that are on in both NB4 sets have all
their exons transcribed. The difference in score distribution be-
tween exons and introns is assessed (Supplemental Fig. S7) and
for all five sets exons are indeed overrepresented at the high end
of the score spectrum, but also many introns have high scores.

Experimental validation of novel TARs and known genes

Experimental validation of the microarray transcription data is
crucial to the interpretation of the results. Table 7 shows that we
used RT–PCR to assess, in total, 144 regions experimentally in
placenta. Of these, 98 were novel TARs (no overlap with known
genes). The experiments verified the presence of 56.4% (22/39) of
the assayed novel TARs that were exclusively found on the MAS
platform (MAS-B), 66.7% (26/39) of the novel TARs that were
exclusively found on the Affymetrix platform, and 85% (17/20)
of the assessed novel TARs that were common to both. In total,
66.3% of all assessed novel TARs were verified.

Forty-three known genes were also validated. Genes that
were completely off (i.e., none of their splice variants were con-
sidered transcribed) according to one of the platforms, but not
the other, were assessed. In total, 58.8% (10/17) of the MAS-B
exclusive genes were verified and 87.5% (7/8) of the Affymetrix
exclusive genes were verified. For genes that were considered
“off” in both platforms, 33.3% (6/18) were found in our experi-
mental validation.

Discussion

In this work we have attempted to assess the suitability of two
oligonucleotide tiling microarray strategies for transcription
mapping in human. We tried to overcome the inherent differ-
ences between the approaches through using the same biological
samples and a unified scoring and TAR generation procedure,
and we have produced, compared, and validated several sets of
transcribed regions. We conclude that many factors are signifi-
cant for the outcome of the experiments. Here, we elaborate on
some key findings.

Arrays are noisy

In the comparison between the two microarray tiling platforms,
the Affymetrix platform yielded TARs that better agreed with the
GENCODE annotation (Figs. 2D,E, 4; Supplemental Fig. S3). A
simple explanation for this would be a higher noise level for
MAS arrays. Moreover, given that the Pearson’s correlation co-
efficients between raw intensities of technical replicates of
MAS-N and Affymetrix arrays (Table 2; see also Supplemental
Table S1) are similar, it is likely that the MAS-N noise was rather
systematic than random, while the MAS-B data seem to have a
larger component of random noise. The systematic noise hy-
pothesis is further supported by the observation that the overlap
of TARs is larger within platform than within biological sample

Figure 4. Distribution of GENCODE exon coverage by placenta TARs:
all exons (MAS-B, green squares, and Affy, blue squares); 5� exons (Affy,
blue circles); 3� exons (Affy, blue triangles). (x-axis) The fraction to which
an exon is covered by a TAR; 0.0–1.0 split up in 10 bins. (y-axis) The
percentage of exons covered by a TAR to the fraction represented on the
x-axis.

Table 4. Percentage of genic and intergenic TARs that overlap
with conserved regions (>90% of TAR length within conserved
region) or that do not overlap with conserved regions (<10% of
TAR length within conserved region)

Intergenic TARs Genic TARs

Overlap conserved
region

Overlap conserved
region

Experiment ID No Yes No Yes

Placenta MAS-B 84% 2% 50% 8%
Placenta Affy 77% 8% 41% 24%
NB4 MAS-N 85% 1% 54% 8%
NB4 Affy 79% 7% 49% 19%
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(Fig. 3). The noise could result, e.g., from probe sequence arti-
facts, sample contamination (after it was split into different ali-
quots for the experiments), suboptimal hybridization param-
eters, or protocol-dependent labeling artifacts (Nazarenko et al.
2002). A related issue is the cross-hybridization. For a transcrip-
tion experiment, the amount of different RNA species present in
the sample is large. Since the target RNA is derived from the
entire genome, cross-hybridization is potentially present at high
levels. Longer probes can be hybridized at higher temperatures
and are thus less sensitive to cross-hybridization, but at a given
temperature, these probes are more susceptible to nonspecific
binding.

A comparison of the NB4 total RNA and placenta poly(A)+
TAR sets within the two platforms (Tables 2–4, 6; Fig. 3) revealed
that the agreement between the platforms, and between the re-
sults of each platform and annotation, is larger for the poly(A)+

sets. One possible reason is that for total RNA introns may be
labeled. This would explain the worse performance of the NB4
sets compared with placenta, but not the differences in perfor-
mance between MAS and Affy arrays. The exon and intron score
distributions (Supplemental Fig. S7) show that for both placenta
poly(A)+ and NB4 total RNA, exons in general have higher scores
than introns. For both MAS and Affy experiments there is a slight
shift of the total RNA intron score distribution toward higher
scores, as compared with poly(A)+ distribution, indicating the
presence of intron labeling.

Counteract the noise: More data, appropriate scoring

Figure 2D,E show that using more replicates enables TAR sets that
better agree with annotation. Figure 2C shows that the genomic
probe density also is important—reducing the genomic density
of the Affy array to 50% (excluding every other probe on the
arrays) worsens the performance, specifically for sensitivities be-
low 40%–45%. Furthermore, the density determines how well
the endpoints of the TARs can be defined. The theoretical uncer-
tainty of where a transcribed region starts and ends has an upper
limit in the genomic distance between two adjacent probes. It
also influences the results through the scoring procedure, where
often a genomic window is used for the statistical calculations. A
window that is significantly larger than the average size of an
exon is not desired, since it would likely contain both probes that
represent actual transcription (exons) and probes that belong to
truly nontranscribed regions (introns). Taken together, we con-
clude that the number of recorded data points per genomic unit
is a crucial parameter for tiling microarray transcription map-
ping—the more data the better results.

To take advantage of the data, appropriate probe scoring
procedures are needed. We tried several scoring schemes for our
array data and found, in Figure 2D,E, that statistically based scor-
ing using replicates and a genomic window can significantly im-
prove the results compared with using single-probe intensities.
Using the standard sign test scoring was ultimately deemed the
best way to score the MAS data (in particular the more noisy
MAS-B data), while the best way to score the Affy data was to use
the pseudomedian from the Wilcoxon signed rank test. For
MAS-B data, using a Fwd-Rev scoring algorithm as a surrogate for
a true PM–MM scoring improved agreement with annotation for
high-segmentation thresholds in the maxgap/minrun algorithm
(Fig. 2B). Exploring the Affy data showed that the sign test did
not perform particularly well using PM-only data as input, but
quite well using PM–MM (Fig. 2C). In fact, the PM-only Affy data
scored with the standard sign test (i.e., identical scoring as the
MAS sign test) resulted in a sensitivity/PPV behavior very similar
to that of MAS—a relatively low agreement with annotation, and
reduced impact of increasing the segmentation threshold (PPV
insensitive to threshold increases). These results indicate that
mismatches can be very useful. Altogether, we conclude that re-
gardless of array design, statistically based scoring, taking into
account the available data in an appropriate way, is indispens-
able in the analysis of tiling microarray data.

In Figure 2D we also analyzed the trade-off between increas-
ing the genomic density of probes versus using the array space for
MM probes. We found that in the investigated genomic density
and sensitivity ranges, it is better to use half of the array features for
MM probes (one PM/MM probe pair every 42 nt) than to double the
genomic density (to 21 nt) and use PM probes only. This is true for
both scored (sign test) (Fig. 2C) and unscored (Fig. 2D) data. From
Figure 2C we also observe that using a single-array PM–MM setup is
actually preferable to using technical replicates of PM-only data for
sensitivities up to 40% (retaining the genomic density and using
sign test scoring). These findings suggest that true mismatch probes
is a straightforward way to significantly improving the signal-to-
noise ratio of oligonucleotide tiling arrays.

Conclusions from the array platform comparison

According to our study, the current form of the Affymetrix tiling
microarray platform is better suited than the MAS platform for

Table 5. Transcribed placental genes (and in parentheses:
transcripts) in MAS-B and Affy experiments

Affy

Yes No Too few probes

Yes 158 (871) 37 (155) 15 (58)
MAS-B No 9 (13) 24 (61) 7 (13)

Too few probes 2 (51) 7 (36) 5 (44)

A gene is considered as transcribed if at least one of its transcripts (splice
variants) is transcribed at significance level P < 0.001 using the sign test
to score all transcripts. Probes that to at least 50% are within an exon of
the transcript are considered. If a transcript/gene has <10 probes, it will
be unable to reach a P-value below 0.001 and is in the “Too few probes”
category. Total number of genes (transcript) is 264 (1342).

Table 6. Multi-exon coherence of transcripts with more than
one exon

Experiment ID All exons Some exons No exons

All transcripts (1298 transcripts):
Placenta MAS-B 6.3% 60.7% 33.0%
Placenta MAS-N 3.4% 56.8% 39.8%
Placenta Affy 36.8% 47.6% 15.6%
NB4 MAS-N 1.9% 51.7% 46.4%
NB4 Affy 15.5% 60.9% 23.7%
Intersection of placenta MAS-B and Affy transcribed transcripts (869):
Placenta MAS-B 7.8% 68.9% 23.2%
Placenta Affy 50.1% 48.3% 1.6%
Intersection of NB4 MAS-N and Affy transcribed transcripts (543):
NB4 MAS-N 2.9% 72.9% 24.1%
NB4 Affy 26.9% 61.9% 10.7%

Percentage of transcripts where all, some, or no exons are considered
transcribed according to median intensity of each exon. Exons were
called on/off based on their median intensity compared with the experi-
ment-specific score thresholds used for TAR generation (segmentation),
specified in Table 3. The transcription status of entire transcripts was
generated as in Table 5.

Emanuelsson et al.

894 Genome Research
www.genome.org



detailed transcription mapping of the human genome. This is
true in the sense that the agreement of the TARs with known
annotation is larger (Fig. 2), and also in the sense that the exons
in multiple-exon transcripts are more coherently transcribed
(Table 6). From our study, we attribute this foremost to the
higher genomic density of the probes and the presence of mis-
match probes and how these can be used to reduce the impact of
nonspecific hybridization. However, we cannot entirely exclude
the effects of the differing labeling and hybridization protocols.
On the other hand, the two technologies are almost equal in
their ability to detect novel transcription, as indicated by our
experimental validation of novel TARs: In total 66.1% of the
novel MAS-B and 72.9% of the novel Affymetrix placenta TARs
are validated using RT–PCR (Table 7). TARs supported by both
platforms are even more reliable and 85% of these are validated.
The overlap of genes that are considered transcribed by the dif-
ferent platforms is substantial. Experimental validation of a sub-
set of the genes considered transcribed by only one of the two
platforms indicated that the Affymetrix setup is ahead of MAS in
this respect as well, although the sample sizes are relatively small.
It is also clear that if a gene is not detected by either platform, it
is less likely to actually be transcribed. Our validation study
shows that the two technologies are complementary, since much
transcription detected by only one array platform is in fact veri-
fied as transcribed. They also reinforce each other, in the sense
that array-based transcriptional evidence (or lack thereof) from
both platforms yields more reliable results.

While the results obtained from the Affy arrays agree better
with the annotation and the validation results, the advantage of
the MAS technology is that it allows for rapid manufacturing of
customized designs and cost-effective production of small array
series. Using true mismatches in the MAS design may improve
the results for MAS arrays as well, but there are currently no
results publicly available. We conclude that oligonucleotide til-
ing microarrays are suitable to detect novel transcribed regions,
and that the use of replicates and statistically based scoring
schemes significantly improves the performance for all investi-
gated oligonucleotide-tiling microarray-based transcription-
mapping experiments

Methods

Array designs

Affymetrix arrays
Arrays were designed and manufactured by Affymetrix, Inc., us-
ing a physical mask. Probes are 25-bp long with an average ge-

nomic spacing of 21 bp, and they cover one genomic strand, with
the exception of repeat regions, as defined by RepeatMasker
(A.F.A. Smit and P. Green, unpubl.). Each probe is present in a
“perfect match” and a “mismatch” version. The mismatch probe
contains a single substitution at the middle probe position (A→T,
T→A, C→G, G→C). Each array contains in total ∼1,400,000 fea-
tures.

MAS arrays
Arrays were designed by us and manufactured by NASA using a
NimbleGen maskless array synthesizer. Probes are 36-bp long
with an average genomic spacing of 36 bp. Positional shifts were
allowed to avoid self-complementarity at the probe ends (defined
as at least four consecutive complementary nucleotides within
the six 5�/3� nucleotides). The probes cover both genomic
strands, with the exception of repeat regions. The design was
done on the NCBI v34 of the human genome build, and each
array contains almost 390,000 features.

RNA extraction and array hybridization

Cell culture
The human NB4 cells were cultured in RPMI medium containing
20 mM L-glutamine (Media Tech) and supplemented with 10%
fetal bovine serum (Invitrogen), 100 IU/mL penicillin (Media
Tech) and 100 µg/mL streptomycin (Media Tech). Cells were
maintained at 37°C under 5% CO2/95% air in a humidified in-
cubator.

RNA samples
Total RNA from the human NB4 cells was extracted using a Qia-
gen RNA extraction kit according to the manufacturer’s instruc-
tions. Human placental poly(A)+ mRNA (obtained from total
RNA) was purchased from Ambion.

Protocols
The Supplemental material contains a detailed description of all
three experimental protocols (MAS-B, MAS-N, Affy). The MAS-N
protocol yields in-vitro transcribed, biotin-labeled, single-
stranded cRNA (Van Gelder et al. 1990), fragmented to an aver-
age size of 50–200 bp before hybridization. The MAS-B protocol
yields Cy3-aminoallyl-labeled unfragmented single-stranded
cDNA. The Affymetrix protocol yields end-labeled (bio-ddATP)
double-stranded cDNA, fragmented to an average size of 50–100
bp before hybridization.

Scoring schemes
To obtain the desired statistical resolution, MAS array scoring was
done pooling the data from all three biological samples (for both
placenta and NB4). For placenta, this corresponds to seven mea-
surements for each probe and six for NB4. For Affymetrix, three
technical replicates were used, corresponding to six measure-
ments for each probe (three PM and three MM probes).

Sign test using array median intensity
The intensity of every probe within the window is compared
with the median intensity of the slide and assigned a “1” if it is
above and “0” otherwise. The number of ones within the window
is counted and the probability P of finding at least this number of
1’s under the null hypothesis that half of the probes should be
above the median is calculated. The score assigned to the probe
in the middle of the window is then defined as score = �log(P).
Window sizes of 90–240 bp were tried, choosing 160 (five probes)
for the MAS data in this study. No inter-array normalization is

Table 7. Results of experimental validation (reverse transcriptase
PCR) in placenta of 144 regions: 98 novel TARs, 43 exons from
known genes, 3 negative controls

Set

Transcription status Overlap
with known

exon?
Number
assessed

Number
positiveMAS-B Affy

TAR on off no 39 22 (56.4%)
TAR off on no 39 26 (66.7%)
TAR on on no 20 17 (85%)
Exons on off yes 17 10 (58.8%)
Exons off on yes 8 7 (87.5%)
Exons off off yes 18 6 (33.3%)
Neg ctrl off off no 3 1 (33.3%)
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Genome Research 895
www.genome.org



performed, since each intensity is compared with the median
intensity on its own array only. A variant of this scoring ap-
proach is to weight the probes within the window differently,
such that the central probe(s) becomes more important. For in-
stance, the intensities within the window can be multiplied with
a discretized Gaussian envelope. Several parameter settings were
tried (Supplemental Figs. S2–S5).

Paired Wilcoxon signed rank sum test
Inter-array normalization is undertaken through dividing each
intensity with the array median (median normalization). Within
a window, all pairwise differences between the intensities of a
perfect match probe and its corresponding mismatch probe are
calculated and ranked. A sign is assigned to each rank number
depending on whether the PM or the MM intensity was greater,
and a P-value is calculated from the sum of this signed ranking
(keeping track of the rank sum of all negative ranks and the rank
sum of all positive ranks). The P-value, which is a measure of how
significantly the distribution of PM–MM differences is skewed to
either side around zero, can then be used to compute the final
score for the probe in the middle of the window (Kampa et al.
2004; Royce et al. 2005). The corresponding point estimate, the
pseudomedian, is obtained by taking the median value of all the
pairwise averages of PM–MM values within the window. The Af-
fymetrix scores used in this study were calculated by Affymetrix
using a window size of 101 nt, corresponding to on average five
probes in the window. For MAS arrays, the paired Wilcoxon
signed rank test was applied using the probe corresponding to
the reverse strand of the exact same genomic locus as mismatch
probe (instead of a designed mismatch probe).

Segmentation of genomic regions

Maxgap/minrun segmentation
The transcribed regions were generated from scored data. The
maxgap parameter was set to 50 for Affymetrix data and 80 for
MAS data. The minrun parameter was set to 50 for both ap-
proaches. Other maxgap/minrun parameter settings were also
tested (data not shown). We evaluated segmentation thresholds
of the 70–99th percentile.

HMM segmentation
The emission and transition probability distributions of the four-
state HMM for each data set were learned according to the scores
of those probes that fall into known gene regions, where the
score characteristics in the exon regions were used to estimate the
parameters for the TAR state, and those in the intron regions for
the non-TAR state. The parameters for the two intermediate tran-
sition states were obtained by investigating those probes contain-
ing both exon and intron regions. These emission distributions
were fitted with mixed-Gaussian distributions to generate a con-
tinuous model. The Viterbi algorithm was utilized to identify
TARs.

Assessing transcription of annotated genes
The transcription status was assessed using the sign test as de-
scribed for all annotated splice variants of all known genes in the
GENCODE annotation of regions ENm001–ENm011, accepting
the exons with labels “VEGA_known,” “VEGA_Novel_CDS,”
“VEGA_Novel_transcript_gencode_conf,” and “VEGA_Putative_
gencode_conf.” For the exon/intron-based investigations (Table
6; Supplemental Fig. S7), the median probe score for each feature
was used, with a percentile threshold for on/off calls as defined
for each experiment in Table 3.

Choosing primer pairs for validation
Primer pairs were generated using Primer3 (Rozen and Skaletsky
2000). Primers assessing novel TARs were required to define a
genomic region with no overlap with any GENCODE gene.
When assessing known genes, the exon with the highest P-value-
based transcription score was chosen. Primer3 settings were as
default or more stringent, e.g., GC content within 35%–65%,
primer size was forced to be between 20 and 28 nt, and the
resulting PCR products to be between 100 and 200 bp. Validation
candidates were checked using UCSC In Silico PCR (http://
genome.ucsc.edu/cgi-bin/hgPcr) against the NCBI v35 human
genome build to ensure that exactly one PCR product was pos-
sible; those that generated no or multiple hits were discarded.
Three regions that did not contain any verified or predicted tran-
scription were chosen to act as negative controls. The experimen-
tal protocol of the PCR validation is in the Supplemental mate-
rial.

Accessing data and results
The MAS ENCODE array platform has GEO (Gene Omnibus Ex-
pression, http://www.ncbi.nlm.nih.gov/geo/) accession number
GPL2105; the corresponding data series has GEO accession num-
ber GSE2720 (placenta and untreated NB4). The Affymetrix anti-
sense ENCODE array platform has GEO accession number
GPL1789; the corresponding data series has accession number
GSE2671 (placenta) and GSE2679 (untreated NB4). The TAR sets,
the gene/transcript/exon transcription status, the validation re-
sults, and the raw data are available at or from http://tiling.
gersteinlab.org/platformcmp.
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