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Assessing the performance of docking scoring
function, FEP, MM-GBSA, and QM/MM-GBSA
approaches on a series of PLK1 inhibitors†

Chunlan Pu, ‡a Guoyi Yan,a Jianyou Shi*b and Rui Li*a

Over-expressed polo-like kinases 1, a key regulator of cell mitosis, is associated with carcinogenesis and

poor prognosis. It is very necessary to develop a reliable computational affinity prediction protocol

targeting PLK1. In this study, the performance of different docking scoring function, free energy perturba-

tion, MM-GBSA and QM/MM-GBSA were evaluated. The ranking capability of FEP is the best with rs =

0.854. However, the rs obtained from MM-GBSA can reach 0.767, which requires only about one-eighth of

the simulation time of FEP. As for the sampling method, single long molecular dynamics (SLMD) surpass

the multiple short molecular dynamics (MSMD) in ranking of the 20 congeneric compounds by about 0.1

in rs. In addition, ligands treated by QM can significantly improve the ranking performance. As for the

docking scoring functions, a force field-based scoring function is more suitable for ranking congeneric

compounds.

Introduction

Polo-like kinases 1 (PLK1) is a well-characterized member of

the serine/threonine kinases PLK family, which is highly con-

served among eukaryotes. PLK1 has been identified as a key

regulator of cell mitosis. It mediates a variety of cell cycle

events, including mitotic entry, centrosome duplication, bipo-

lar mitotic spindle formation, transition from metaphase to

anaphase, cytokinesis, and maintenance of genomic

stability.1–4 Furthermore, recent studies suggest that PLK1,

beyond its traditional function in mitosis, is also involved in

the DNA damage response, carcinogenesis, and early embry-

onic development.5 In about 80% of human tumors of various

origins (lung, breast, ovary, colon, stomach, and esophagus),

PLK1 is over-expressed.6 In addition, over-expression of PLK1

is associated with a poor prognosis in several tumor types

and a lower overall survival rate.7,8 The over-expression stud-

ies of PLK1 in cancer cell lines (MCF-7 breast, Hela S3 cervi-

cal, SW-480 colon, and A549 lung cancer) show that the loss

of PLK1 over-expression can induce pro-apoptotic pathways

and inhibit growth by mitotic chaos and severe perturbance

of cell cycle progression.9 The crystal structure of the kinase

domain for PLK1 has been reported in detail.10 Hence, PLK1

is one of the most attractive and promising targets for anti-

tumor drug development. More novel and selective small mol-

ecule inhibitors of PLK1 will offer new hope for cancer pa-

tients in the future.

To decrease the cost of synthesis and biological activity

testing, it is necessary to develop a reliable computational af-

finity prediction protocol targeting PLK1. The embedded

scoring functions of docking packages are rapid and suitable

for virtual screening, but have poor precision.11 Free energy

perturbation (FEP), having the most stringent theoretical

background, is suitable for the evaluation of relative binding

energies of congeneric compounds, but it demands large

computational resources.12 MMG(P)BSA achieves a balance

between speed and accuracy, which can be used for further

selection of candidates from the result of virtual screening.13

The performance of MM/PBSA and MM/GBSA methods was

evaluated by Hou's group systematically.14–18 These studies

provide useful guidance for the use of MMG(P)BSA. However,

simulation length, implicit solvent model, radii, and sam-

pling protocols affect the prediction quality of MM-GBSA dra-

matically.19 In addition, recent studies suggested that multi-

ple independent molecular dynamics can explore

conformational space more effectively than single long mo-

lecular dynamics, and thus can provide better convergence

and accuracy.20 Because of the semi-empirical calculation of
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a crucial amide acid and binding ligand in place of the em-
pirical small molecular force field, the QM/MM-GBSA method
is assumed to outperform the MM-GBSA method.21

Within this context, to investigate the difference in the ac-
curacy of docking scoring functions, MMG(P)BSA and FEP
against congeneric compounds, and moreover, to explore
what is the best combination of radii settings, QM Hamilto-
nians, implicit solvent methods and simulation length of the
system and whether multiple independent sampling im-
proves the prediction of binding free energy compared to the
use of one long simulation for the studied system, we
conducted a series of comparative trials using the PLK1 struc-
ture and 20 congeneric compounds with known affinity.

Results and discussion
Molecular docking

All molecules adopt similar docking modes, with the
imidazoĳ1,5-f ]ĳ1,2,4]triazine scaffold forming two hydrogen
bonds with Cys133 (Fig. 1) and interacting with Phe183 with
π–π stacking. Moreover, as for compounds with higher po-
tency, taking compound 15E as an example, the methoxyl
groups of the benzyl group on 2-NH form the other two hy-
drogen bonds with Arg57, making them more stable. In addi-
tion to that, the 7-substituted benzyl group is expected to
form the hydrophobic interaction with Cys67 and Leu59. As
for compound 20, because of the loss of a benzyl group on
2-NH, the hydrogen bond with Arg57 and hydrophobic inter-
action with Leu59 is not established, thus leading to very
poor activity.

FEP binding affinity calculation

In FEP calculation, the above docking conformations were
used as the initial binding poses. A single 5 ns simulation for
each of the 12 λ windows was used, leading to a total of 60
ns of cumulative simulation time per perturbation. FEP im-
plementation was based on OPLSv3, Desmond GPU MD en-
gine and REST sampling. All FEP perturbations were
performed in both solvent and protein. With compound 1 as
the reference structure, 19 compounds were calculated. The
predicted ΔG (kcal mol−1) and the experimental ΔG are shown
in Table 1 and Fig. 2. The rs-FEP is 0.854, and the correlation

R2 is 0.852, with MUE compared to the experimental value of
0.58 kcal mol−1. The solvent and complex contributions with
the standard deviations are presented in Fig. S1.†

Comparison of the performance of four docking scoring

functions

ChemPLP is an empirical scoring function, which uses the
piecewise linear potential (PLP) scoring function to model
steric complementarity of the protein and the ligand. More-
over, it adopts terms of GOLD's Chemscore implementation
to introduce angle-dependent terms for hydrogen bonding
and metal binding. It also employs the torsional potential
from the Tripos force field together with a heavy-atom clash
term to account for intraligand interactions. The rs-ChemPLP
is 0.217, which is much lower than rs-FEP. The scoring func-
tion embedded in Autodock vina is another empirical scoring
function, which is similar to X-score, but it counts the inter-
molecular and intramolecular contributions simultaneously
that can avoid severe internal clash. The rs-vina is 0.171.

AutoDock 4.2 uses a semi-empirical free energy force field
to evaluate conformations during docking simulations, whose
terms include evaluations for dispersion/repulsion, hydrogen
bonding, electrostatics, and desolvation. The rs-Autodock is
0.378. The AMBER score is a force field-based scoring func-
tion, which calculates the interaction between the ligand and
the receptor by electrostatic, van der Waals energy terms, and
the solvation energy using a generalized Born (GB) solvation
model. The calculation uses the following protocol: minimi-
zation with a conjugate gradient method, followed by MD
simulation (Langevin molecular dynamics at constant tem-
perature), another minimization, and a final energy evalua-
tion. The main advantage of the Amber score is that during
the MD simulation, both the ligand and the active site of the
receptor can be flexible, allowing small structural
rearrangements to reproduce the so-called “induced fit” while
performing the scoring. The rs-Amber score is 0.347.
Reviewing the abovementioned four docking scoring func-
tions, it has been found that the force field-based scoring
methods such as Amber score and the Autodock 4 scoring
function outperformed the empirical methods like ChemPLP
and vina score in ranking the potency of the congeneric
compounds.

The effect of MD simulation length on MM-G(P)BSA

The rs between the experimental and predicted binding free
energies using different MD trajectory lengths in MM-G(P)
BSA calculations are depicted in Fig. 3. It can be seen that for
the PBSA method, even 10 ns is not enough to get the opti-
mal rs, while for GBSA, 8 ns seemed to be a plausible choice
in getting the ideal result.

Comparison of radii sets, generalized Born methods, QM/

MM-GBSA and multiple short MD simulation

Generally, SLMD surpasses the MSMD in ranking of the 20
congeneric compounds by about 0.1 in rs. SLMD and MSMD

Fig. 1 Docking conformations of imidazoĳ1,5-f]ĳ1,2,4]triazine

derivatives.
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have a similar response for different radii sets, different gen-
eralized Born methods and different QM method (Fig. 4).
Specifically, as for the radii sets, mbondi is better than
bondi, while bondi is similar to mbondi2. Overall, the QM/
MM-GBSA method is significantly better than MM-GBSA by
about 0.2 in rs. As far as the semi-empirical QM theory levels
were concerned, the PM3 method seemed to outperform the
AM1 and PM6 methods. As for the generalized Born model, it
depends on the sampling and molecular mechanics (MM)

methods. In the MM and AM1 methods, generally, for the
SLMD and MSMD, igb1 < igb2 < igb5, except for MSMD-
mbondi2 with MM method. It should be noted that for SLMD,
the mbondi method is more sensitive to the generalized Born
method. In MM, when igb = 1, the rs is 0.528; when igb = 2, the
rs is 0.659; when igb = 5, the rs is up to 0.722, which is higher
than that of igb1 by 0.2. As for AM1, a similar phenomenon
was observed. When igb = 1, the rs is 0.635, but when igb = 5,
the rs reaches 0.752. In the PM3 method, for MSMD, igb1 <
igb2 < igb5, while for SLMD, igb1 < igb5 < igb2. It should be
noted that there are two coincidence points in igb1 and igb5,
that is to say, the radii sets have no influence on the ranking
when using PM3 and SLMD sampling. In PM6, the result is
complex. As for MSMD, igb5 > igb1 ≈ igb2, while for SLMD,
for mbondi, igb1 < igb5 < igb2; for bondi, igb2 < igb1 < igb5;
for mbondi2, igb1 < igb2 < igb5. The optimal rs of SLMD is
0.767 when using the mbondi2, PM6 and igb5 method, which
is higher than that of MSMD by 0.069 using mbondi, PM3 and
the igb5 method (Table 2). It was found that although the rs of
SLMD is better than MSMD, the standard deviation of the bind-
ing energy predicted by the SLMD is significantly larger than
that of MSMD.

Conclusions

The ranking capability of FEP is the best with rs = 0.854.
However, the rs obtained from the 8 ns MD sampling-based
MM-GBSA score can reach 0.767, which is lower than that
of FEP by 0.087, but the computation time is much lower
than that of FEP. In addition, as for MM-GBSA, ligands
treated by QM can significantly improve the ranking perfor-
mance. As far as QM is concerned, PM3 is more stable
than AM1 and PM6. Mbondi is more sensitive to the gener-
alized Born method, and the recommended igb is 5. Igb2
is appropriate for bondi and mbondi2. As for the docking
scoring function, a force field-based scoring function is
more suitable for ranking of the congeneric compounds.

Fig. 2 Correlation between predicted FEP and experimental binding

energy for the 20 imidazoĳ1,5-f]ĳ1,2,4]triazine derivatives.

Fig. 3 The variation of rs with the length of the production simulation.

Fig. 4 The variation of rs with the different radii, GB model, QM, and

sampling method.

Table 2 The spearman coefficient of experimental and predicted binding

free energies of different radii sets, GB model, QM and sampling method

igb = 1 igb = 2 igb = 5
AM1
igb = 1

AM1
igb = 2

AM1
igb = 5

RM-mbondi 0.474 0.528 0.544 0.558 0.627 0.642
RM-bondi 0.451 0.477 0.489 0.558 0.588 0.602
RM-mbondi2 0.444 0.495 0.463 0.559 0.594 0.621
LM-mbondi 0.528 0.659 0.722 0.635 0.666 0.752
LM-bondi 0.562 0.592 0.627 0.603 0.641 0.662
LM-mbondi2 0.562 0.583 0.621 0.615 0.647 0.662

PM3
igb = 1

PM3
igb = 2

PM3
igb = 5

PM6
igb = 1

PM6
igb = 2

PM6
igb = 5

RM-mbondi 0.614 0.662 0.698 0.583 0.567 0.641
RM-bondi 0.606 0.647 0.662 0.549 0.502 0.549
RM-mbondi2 0.606 0.662 0.66 0.576 0.555 0.576
LM-mbondi 0.666 0.747 0.719 0.668 0.761 0.743
LM-bondi 0.666 0.725 0.719 0.653 0.618 0.696
LM-mbondi2 0.666 0.737 0.719 0.654 0.701 0.767
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The reported results using FEP calculations are better than
other approximate methods like DockScore, Amber score
and QM/MM-GBSA, but the accuracy of the FEP results is
not as high as one would have expected. This could be be-
cause of the issues with the force field parameters, and we
believe that on using the QM/MM-based FEP method
reported by Reddy's group,22,23 the accuracy of the FEP re-
sults could be improved.

Experimental
Computational docking procedure and scoring

Docking was performed using the GOLD software.24 The re-
ceptor X-ray structure was retrieved from RCSB.org with PDB
code 2rku. The ions, water molecules and ligands were re-
moved prior to docking. Default options were used unless
otherwise noted. Moreover, 10 genetic algorithm dockings
were conducted in a single run. The binding site point was
set as −44.7010, 2.9850, 6.0460. All atoms within 6 Å of the li-
gands were used to define the binding site. The slow option
was used for docking. The scoring function used was
ChemPLP.25

With the above docking conformations, the binding affini-
ties were also evaluated by Autodock4.2,26 Autodock Vina27

and Amber score embedded in DOCK6.28 Default parameters
were used. As for Autodock Vina, the local_only parameter
was used.

Complex preparation

The binding conformations of 20 compounds were taken
from the abovementioned docking results. AM1-BCC
charges were assigned to the ligands. The AMBER 99SB
force field and the general AMBER force field (GAFF) pa-
rameters were assigned to the protein and the ligand using
the antechamber in AMBER v11,29 respectively. A 10 Å
TIP3P water molecule octahedron box was set to solvate the
complex system along with Na+ and Cl− counter-ions to
neutralize the system.

Experimental enzymatic activity

The experimental inhibition data of the 20 compounds were
taken from Cheung's study.30 The experimental free energies
of binding were calculated from Ki using eqn (1), where R is
the ideal gas constant (1.9872 × 10−3 kcal K−1 mol−1) and T is
300 K. As for compound 5 and 20, only > 10 μM inhibition
data was available. According to their binding modes and
docking scores acquired from Autodock 4, we assumed that
the IC50 of compound 5 is 10 μM because its predicted affin-
ity is close to compound 7 whose IC50 is 2.74 μM. As for com-
pound 20, because of the loss of a methoxyl benzyl moiety to
interact with the crucial residue Asp57, the predicted binding
energy of Autodock 4 is evidently higher than that of com-
pound 5 by 1.82 kcal mol−1; thus we assumed that the IC50 of
compound 20 is 5000 μM.

ΔGbind = RT lnKi (1)

Computational FEP procedure

All calculations were conducted using Desmond version
3.9.31 OPLSv3 force field32 was used and the MD simulation
was calculated by the GPU-enabled parallel molecular dynam-
ics engine. Overall, the system is solvated by adding SPC wa-
ter with a buffer distance of 5 Å for complexes and 10 Å for
the pure solvent. The system was relaxed by two minimiza-
tions, followed by 4 short molecular dynamics simulations.
The production simulation is run for 5 ns for each lambda
window, and 12 windows are used for each perturbation, with
the molecules in the chosen docked posing as the starting
conformation. Proteins were prepared using the Protein Prep-
aration Wizard in Maestro. In FEP calculations, compound 1

was set as the reference, and the ΔΔGbind of the other 19 com-
pounds was calculated. To avoid the larger mutation and en-
hance the prediction accuracy of the FEP, the mutation path-
way and their ΔΔGbind are described in Fig. S1.† Briefly,
compound 20 was first mutated into compound 1 and com-
pound 19. Then, on the basis of compound 1, R2 was kept as
H, and only minor changes were made in the benzene ring of
R1 to obtain compounds 2, 3, 5, 6, 7. Then, compound 3 was
mutated into compound 4 and compound 8, and then com-
pound 8 was further modified to form compound 9. Finally,
according to compound 9, R1 was kept as the –(3,4,5-
TriOMe)Ph group, and R2 was mutated to obtain compounds
10–18.

Molecular dynamics (MD) simulations

The systems were first minimized using 5000 steps (1000
steps of steepest descent minimization and 4000 steps of
conjugate gradient method) with restraint_wt 500 kcal mol−1

Å−1 fixing the solution molecule to optimize the water mole-
cules, followed by another 5000 steps with restraint force 10
kcal mol−1 Å−1 fixing the Cα and ligand to optimize the inter-
nal H bonds. After minimization, the system was heated from
0 to 300 K over 50 picoseconds (ps) using the NVT ensemble
with a 10 kcal mol−1 Å−1 weak restraint on the kinase and li-
gands. Then, the systems were density equilibrated over 50
ps at constant pressure (1 bar) and temperature (300 K) with
a 2 kcal mol−1 Å−1 on the complex. Next, 400 ps of NPT equili-
bration was conducted. Finally, a 10 nanosecond (ns) NPT
production run was conducted. The long-range electrostatics
were included by means of a particle mesh Ewald (PME)
method, and the cutoff of 10 Å was used for all the MD simu-
lations. All hydrogen-heavy atom bonds were constrained by
the SHAKE method, and simulations were performed with a
2 fs time, and Langevin dynamics were used for temperature
control.

MM-PBSA calculation

The MM-PBSA calculations were performed using MMPBSA.
py in AMBERTools 12. The MM-PBSA surface tension (α) and
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the non-polar free energy correction term (β) were set to
0.00543 kcal mol−1 Å−1 and 0.92, respectively. An exterior di-
electric constant of 80 and solute dielectric constant of 1
were used. 500 snapshots were taken evenly from the MD
simulations trajectory from 0 to 10 ns in the MM-PBSA
calculations.

MM-GBSA and QM/MM-GBSA calculation

The (QM)/MM-GBSA calculations were performed using
MMPBSA.py in AMBERTools 12. We investigated three GB
models in this study. Including the GBHCT (igb = 1), GBOBC
(igb = 2) and GBOBC2 (igb = 5). The default setting of MM-
GBSA surface tension and the non-polar free energy correc-
tion term were applied. In the QM/MM-GBSA, the 20 ligands
were treated as the QM region using the AM1, PM3 and PM6
semi-empirical Hamiltonian theories. The QM charge of the
ligand was set to zero.

Multiple short MD simulations

The multiple short MD simulations were prepared using the
same settings and, starting structures are described above,
with the exception that the random starting velocities were
applied by setting the random starting velocity generator ig =
−1 and the equilibration time changed to 100 ps with 0.5 kcal
mol−1 Å−1 restraints on the complex. In order to compare the
differences between the MSMD and SLMD, the 10 ns simula-
tion time of SLMD was separated to fifty, 200 ps components
to MSMD. For the (QM/)MM-GBSA, same as SLMD, total 500
snapshots were taken evenly from each of the fifty trajectories
from 0 to 200 ps. Other settings for the MM-PBSA, MM-GBSA,
and QM/MM-GBSA calculations for MSMD are as described
above.

Estimation methods

To measure the performance of scoring function and MM-
GBSA without considering the change in the conformational
entropy upon ligand binding the Spearman ranking coeffi-
cient (rs) was used for the estimation of the ranking power of
predictions.

Acknowledgements

The authors are grateful for the support from the National
Science Foundation of China (81472780 and 81302643),
Young foundation of Sichuan (2017JQ0038) and the National
Key Program of China (2012ZX09103101-022).

Notes and references

1 K. Gumireddy, M. V. Reddy, S. C. Cosenza, R. Boominathan,
S. J. Baker, N. Papathi, J. Jiang, J. Holland and E. P. Reddy,
Cancer Cell, 2005, 7, 275.

2 H. A. Lane and E. A. Nigg, J. Cell Biol., 1996, 135, 1701.
3 K. E. Mundt, R. M. Golsteyn, H. A. Lane and E. A. Nigg,

Biochem. Biophys. Res. Commun., 1997, 239, 377.

4 S. Chen, D. Bartkovitz, J. Cai, Y. Chen, Z. Chen, X. J. Chu, K.
Le, N. T. Le, K. C. Luk, S. Mischke, G. Naderi-Oboodi, J. F.
Boylan, T. Nevins, W. Qing, Y. Chen and P. M. Wovkulich,
Bioorg. Med. Chem. Lett., 2012, 22, 1247.

5 M. A. van Vugt, A. Brás and R. H. Medema, Mol. Cell,
2004, 15, 799.

6 N. Takai, R. Hamanaka, J. Yoshimatsu and I. Miyakawa,
Oncogene, 2005, 24, 287.

7 W. Weichert, M. Schmidt, V. Gekeler, C. Denkert, C.
Stephan, K. Jung, S. Loening, M. Dietel and G. Kristiansen,
Prostate, 2004, 60, 240.

8 W. Weichert, G. Kristiansen, K. J. Winzer, M. Schmidt, V.
Gekeler, A. Noske, B. M. Müller, S. Niesporek, M. Dietel and
C. Denkert, Virchows Arch., 2005, 446, 442.

9 B. Spänkuchschmitt, J. Bereiterhahn, M. Kaufmann and K.
Strebhardt, J. Natl. Cancer. Inst., 2002, 94, 1863.

10 M. Kothe, D. Kohls, S. Low, R. Coli, A. C. Cheng, S. L.
Jacques, T. L. Johnson, C. Lewis, C. Loh, J. Nonomiya, A. L.
Sheils, K. A. Verdries, T. A. Wynn, C. Kuhn and Y. H. Ding,
Biochemistry, 2007, 46, 5960.

11 S. P. Leelananda and S. Lindert, J. Org. Chem., 2016, 12,
2694.

12 R. W. Zwanzig, J. Chem. Phys., 1954, 22, 1420.
13 S. Genheden and U. Ryde, Expert Opin. Drug Discovery,

2015, 10, 449.
14 T. Hou, J. Wang, Y. Li and W. Wang, J. Chem. Inf. Model.,

2011, 51, 69.
15 L. Xu, H. Sun, Y. Li, J. Wang and T. Hou, J. Phys. Chem. B,

2013, 117, 8408.
16 H. Sun, Y. Li, M. Shen, S. Tian, L. Xu, P. Pan, Y. Guan and T.

Hou, Phys. Chem. Chem. Phys., 2014, 16, 22035.
17 F. Chen, H. Liu, H. Sun, P. Pan, Y. Li, D. Li and T. Hou,

Phys. Chem. Chem. Phys., 2016, 18, 22129.
18 Z. Wang, H. Sun, X. Yao, D. Li, L. Xu, Y. Li, S. Tian and T.

Hou, Phys. Chem. Chem. Phys., 2016, 18, 12964.
19 P. C. Su, C. C. Tsai, S. Mehboob, K. E. Hevener and M. E.

Johnson, J. Comput. Chem., 2015, 36, 1859.
20 D. W. Wright, B. A. Hall, O. A. Kenway, S. Jha and P. V.

Coveney, J. Chem. Theory Comput., 2014, 10, 1228.
21 K. Wichapong, A. Rohe, C. Platzer, I. Slynko, F. Erdmann, M.

Schmidt and W. Sippl, J. Chem. Inf. Model., 2014, 54, 881.
22 M. R. Reddy and M. D. Erion, J. Am. Chem. Soc., 2007, 129,

9296.
23 M. R. Reddy, U. C. Singh and M. D. Erion, J. Am. Chem. Soc.,

2011, 133, 8059.
24 G. Jones, P. Willett, R. C. Glen, A. R. Leach and R. Taylor,

J. Mol. Biol., 1997, 267, 727.
25 O. Korb, T. Stützle and T. E. Exner, J. Chem. Inf. Model.,

2009, 49, 84.
26 G. M. Morris, D. S. Goodsell, R. S. Halliday, R. Huey, W. E.

Hart, R. K. Belew and A. J. Olson, J. Comput. Chem.,
1998, 19, 1639.

27 O. Trott and A. J. Olson, J. Comput. Chem., 2010, 31, 455.
28 A. P. Graves, D. M. Shivakumar, S. E. Boyce, M. P.

Jacobson, D. A. Case and B. K. Shoichet, J. Mol. Biol.,
2008, 377, 914.

MedChemComm Research Article

P
u
b
li

sh
ed

 o
n
 2

2
 M

ay
 2

0
1
7
. 
D

o
w

n
lo

ad
ed

 b
y
 R

S
C

 I
n
te

rn
al

 o
n
 0

7
/0

6
/2

0
1
8
 1

3
:4

2
:5

4
. 

View Article Online

http://dx.doi.org/10.1039/c7md00184c


1458 | Med. Chem. Commun., 2017, 8, 1452–1458 This journal is © The Royal Society of Chemistry 2017

29 D. A. Case, T. A. Darden, T. E. Cheatham, C. L. Simmerling,
J. Wang, R. E. Duke, R. Luo, R. C. Walker, W. Zhang and
M. K. Merz, Amber 11, University of California, 2010.

30 M. Cheung, K. W. Kuntz, M. Pobanz, J. M. Salovich, B. J.
Wilson, C. W. Andrews 3rd, L. M. Shewchuk, A. H. Epperly,
D. F. Hassler, M. A. Leesnitzer, J. L. Smith, G. K. Smith, T. J.
Lansing and R. A. Mook Jr, Bioorg. Med. Chem. Lett.,
2008, 18, 6214.

31 K. J. Bowers, E. Chow, H. Xu, R. O. Dror, M. P. Eastwood,
B. A. Gregersen, J. L. Klepeis, I. Kolossvary, M. A. Moraes,
F. D. Sacerdoti, J. K. Salmon, Y. Shan and D. E. Shaw, In

Proceedings of the 2006 ACM/IEEE conference on

Supercomputing, ACM, Tampa, FL, 2006, vol. 84.
32 D. Shivakumar, E. Harder, W. Damm, R. A. Friesner

and W. Sherman, J. Chem. Theory Comput., 2012, 8,
2553.

MedChemCommResearch Article

P
u
b
li

sh
ed

 o
n
 2

2
 M

ay
 2

0
1
7
. 
D

o
w

n
lo

ad
ed

 b
y
 R

S
C

 I
n
te

rn
al

 o
n
 0

7
/0

6
/2

0
1
8
 1

3
:4

2
:5

4
. 

View Article Online

http://dx.doi.org/10.1039/c7md00184c

