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Abstract: Information from complementary and redundant sensors are often combined within

sensor fusion algorithms to obtain a single accurate observation of the system at hand. However,

measurements from each sensor are characterized by uncertainties. When multiple data are fused,

it is often unclear how all these uncertainties interact and influence the overall performance of

the sensor fusion algorithm. To address this issue, a benchmarking procedure is presented, where

simulated and real data are combined in different scenarios in order to quantify how each sensor’s

uncertainties influence the accuracy of the final result. The proposed procedure was applied to

the estimation of the pelvis orientation using a waist-worn magnetic-inertial measurement unit.

Ground-truth data were obtained from a stereophotogrammetric system and used to obtain simulated

data. Two Kalman-based sensor fusion algorithms were submitted to the proposed benchmarking

procedure. For the considered application, gyroscope uncertainties proved to be the main error

source in orientation estimation accuracy for both tested algorithms. Moreover, although different

performances were obtained using simulated data, these differences became negligible when real

data were considered. The outcome of this evaluation may be useful both to improve the design of

new sensor fusion methods and to drive the algorithm tuning process.

Keywords: sensor fusion; algorithm benchmarking; inertial-magnetic sensors; human motion

tracking; orientation; locomotion

1. Introduction

Sensor fusion is a signal processing technique that combines data measured by multiple sources

in order to create a single measurement system with an augmented performance over each standalone

sensor [1,2]. The reason for designing sensor fusion algorithms (SFAs) is two-fold: first, to improve the

accuracy and/or robustness of the outcome by exploiting data redundancy and/or complementarity;

second, to provide a complete picture of the phenomenon under investigation unifying the partial

observations provided by each sensor.

SFAs are widely employed in several applications including autonomous navigation, robotics,

environmental monitoring, and healthcare [2–5]. In particular, the sensor fusion based on observations
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from magnetic and inertial sensors (commonly referred to as Magnetic-Inertial Measurement Units,

MIMUs) is increasingly employed for the estimation of human body segment orientation in movement

analysis and related applications [6–8]. A MIMU embeds a tri-axial gyroscope, accelerometer, and

magnetic sensor that provide measurements of the body’s angular velocity, the specific force (i.e., the

sum of the external and gravitational accelerations), and the Earth’s magnetic field, respectively. The

3D body orientation can be estimated through the numerical integration of the rotational kinematic

equation of a rigid body, by using angular velocity measurements and known initial conditions. The

accelerometer and the magnetic sensors are supposed to track two external reference vectors: the

Earth gravity acceleration (vertical reference vector) and the Earth magnetic field (heading reference

vector). Estimating the body orientation by comparing the reference vectors measured in the body

frame with their known counterparts expressed in an inertial reference frame, is known as field vector

matching [9]. Usually, gyroscope integration and field vector matching are combined in an SFA to

purposefully exploit their complementary properties. Several SFAs have been successfully proposed

in the literature for the MIMU-based orientation estimation, which typically rely on either Kalman

filtering [9–12] or complementary filtering [13,14]. On the contrary, when used alone, these sensors

may yield poor results due to different issues characterizing the magnetic and the inertial sensors.

In this respect MIMU observations are disparate [3], in the sense that part of the orientation

information is observed in three different physical domains, i.e., the angular velocity, the specific force,

and the Earth magnetic field vector. For this reason, MIMU data may be considered uncorrelated to

each other, i.e., no crosstalk among the three domains is expected. The only exception is the gyroscope

sensitivity to the gravity and external accelerations [15] which, however, is often considered negligible

as compared to other gyroscope error sources [16]. Within each domain, measurement noise is present

in the sensor outputs [3], i.e., each sample of measured angular velocity, specific force, and magnetic

field exhibits a degree of uncertainty [17] which has different effects on the orientation estimates due

to the different ways the MIMU sensor measurements are used to this purpose. Gyroscope-based

tracking proved to be accurate during short-term rapid movements, although it is prone to boundless

drift error over time occurring during integration. Of great concern in this regard is also the gyroscope

bias, a slowly-varying output that is present even when the gyroscope is still. On the other hand, field

vector matching does not suffer from drift errors, but it is heavily affected by external accelerations and

magnetic disturbances, which are continuous and time-varying. Therefore, measurement noise, sensor

bias, and external factors (external accelerations and ferromagnetic disturbances) result in conflicting

information to be fused in the SFA, which may lead to highly inaccurate estimates of the 3D body

orientation and even to the SFA failure to converge [3].

Unfortunately, when sensor observations are fused in an SFA, it is very difficult to assess to which

extent each sensor issue influences the final error. This information would be crucial to guide the

SFA design process (i.e., the choice of different tuning settings or of the adaptive mechanisms to be

built in the SFA) or to compare different combinations of sensor hardware components. Therefore,

the development of benchmarking methods aimed at quantifying the effect of each sensor issue on

the SFA performance is of the utmost importance. Nevertheless, no clear methodologies, guidelines,

or tools for SFA performance assessment are available.

The main contribution of this paper is to propose a novel benchmarking method for the assessment

of SFAs’ performance. Another subsidiary contribution is to provide, as an outcome of the proposed

benchmarking method, useful considerations about the MIMU-based orientation estimation research

field. In fact, to show the potentialities of the proposed method and to illustrate its application,

a case study is considered where the 3D orientation of a human body segment is estimated using

a MIMU during a clinical test. The proposed benchmarking method relies on the concept of data

hybridization: measured and simulated MIMU data are combined in different ways to create different

testbeds, hereafter referred to as scenarios. Each scenario is conceived to isolate the influence of the

errors characterizing each sensor and to allow quantifying the efficacy of adaptive mechanisms built

in different SFAs. In order to highlight both these specific aspects of the benchmarking problem,
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two different Kalman filter-based SFAs were considered and their performance in estimating the 3D

orientation of the pelvis during a Timed Up and Go test was assessed.

2. Methods

2.1. Proposed Benchmarking Method: Overview

The proposed method for evaluating and comparing the performance of SFAs is based on the

workflow depicted in Figure 1.

 

μ

Figure 1. General overview of the proposed SFA evaluation framework.

Specifically, for the application investigated in the present study, ground-truth and real sensor

data were acquired during a motion capture session. The ground-truth data were processed within

the Ground-truth Data Processing block to obtain the reference output, which was used to simulate

ideal sensor data (Data Simulation block). In addition it provided a reference for the calculation of

the Measure Of Performance (MOP), i.e., the metrics that quantifies the performance of an algorithm.

A pool of evaluation scenarios (Scenario Selection block) was then created. Each scenario is a different

combination of measured and/or simulated MIMU data. The SFA under analysis was then run using

the data of each scenario as input, and the MOP was calculated by comparing the corresponding

output with the reference one.

2.2. The Timed up and Go Dataset

The considered case study is the estimation of the pelvis orientation, by using data measured

by a waist-worn MIMU, during a Timed Up and Go test (TUG) (Figure 2), which is a frequently

performed clinical test aimed at assessing motor function. In particular, the TUG test was selected

because it is a complex motor task, being characterized by transitory phases, such as sit-to-stand or

change of direction, and by cyclic movements, such as level walking.

The University ethics board approved the adopted experimental protocol: 24 healthy subjects,

after being informed of the goals and the modalities of the experiments, performed a TUG test. Prior

to the TUG test, a MIMU (Opal, APDM Inc., Portland, OR, USA), embedding a tri-axial gyroscope,

accelerometer, and magnetic sensor (˘6 g with g = 9.81 m/s2, ˘1500˝/s and ˘600 µT of full-range scale,

respectively), was secured to the participants’ lower back (lumbar region of the spine, approximately

at L3–L4 vertebrae level, Figure 2), using an elastic belt. MIMU data were collected at 128 samples/s.

A plastic plaque equipped (Figure 2) with a cluster of four infrared reflective markers was rigidly
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attached to the MIMU case for ground-truth data acquisition using a nine-camera motion capture

system (Vicon MX3, Oxford, UK) at 100 sample/s.

 

− −

μ

Figure 2. (Left) Sensor location on the participants’ body, axes orientation and TUG scheme, and

(Right) Opal MIMU with the infrared reflective marker cluster.

The reference frames used in this paper were the navigation frame tnu (also referred to as the

global or inertial frame) and the body frame tbu (also referred to as the local frame). In the following, pb

denotes the representation of the generic vector p in tbu, whereas qbn and Rbn represent, respectively,

the quaternion of orientation and the orientation matrix which rotate tnu to tbu. Furthermore, p̂ is

an estimate of the vector p.

The MIMU sensor was calibrated before the experiments, as suggested in [6]. The navigation

reference frame was defined with the z-axis aligned with the vertical direction, whereas the angle about

the vertical axis was set as the value recorded during a static posture performed at the beginning of the

trial. This static time window, which lasted 3 s, was also used to perform the gyroscope bias capture [6].

MIMU and stereophotogrammetric data streams were electronically synchronized using a square

wave signal simultaneously detected by both systems. Both data were resampled at 200 Hz using

cubic spline interpolation. Marker trajectories were low-pass filtered using a second-order zero-lag

Butterworth filter. The cut-off frequency was determined by performing a residual analysis [18] on

each trial of each subject and conservatively set to 6 Hz for all trials. A marker-cluster reference frame

was then defined using the markers attached on the MIMU and its alignment with the MIMU case

verified [19].

In order to obtain simulated (considered to be error-free and, thus, referred to as ideal) MIMU

data, the ground-truth body orientation qbn and position bn, obtained from the marker cluster attached

to the MIMU case, were used as an input to the data simulator described in [20]. In particular, for

each trial, the ideal angular velocity was obtained by differentiating the ground-truth quaternions

qbn with standard formulae [21]. The same quaternions were used to rotate the coordinates of the

Earth’s gravitational and magnetic field vectors, known a priori, from tnu to tnu. The rotated Earth’s

magnetic field represented the ideal magnetometer data, whereas the external acceleration was added

to the rotated gravitational field to build the ideal accelerometer data. All the ideal sensor data were

corrupted with white noise before applying the stochastic filters (standard deviation estimated during

the static postures equal to 5 ˆ 10´3 rad/s, 5 ˆ 10´3 m/s2 and 0.15 µT). At this point in time, both

the experimental and the ideal data required to devise the different scenarios for the SFA evaluation

were available.

2.3. Scenario Selection

To isolate the influence of the errors characterizing each MIMU sensor and to quantify the efficacy

of the adaptive mechanisms built in to test SFAs, the following scenarios were defined (Table 1): (a) two

scenarios where the full set of MIMU data was either simulated or measured (hereafter, they are

referred to as the SIM and MEAS scenarios, respectively). These two scenarios represent the best and
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worst testbeds for the considered SFAs, respectively; (b) three scenarios (named GYR, ACC, and MAG)

in which two MIMU sensors’ data were simulated and one MIMU sensor at a time was accounted for

with its measured data. Specifically, the name of each scenario indicates the abbreviation of the sensor

accounted for with its measured data. The rationale is to isolate the influence of each sensor data issue

on the overall SFA output; (c) a scenario (named MOD) which differed from the SIM scenario in the way

the simulated accelerometer data were generated: in this case, in fact, the simulated accelerometer data

contained only the contribution due to the gravity reference vector (that determines the orientation

estimation), without taking into account the external acceleration, which in this context represents

a disturbance. In this way, the detrimental effect of the external acceleration on the SFAs performance

was also evaluated.

Table 1. The six evaluation scenarios considered in this work, listed theoretically from the best to the

worst case.

Scenario Gyroscope Accelerometer Magnetometer

MOD simulated gravity-only simulated
SIM simulated simulated simulated
GYR measured simulated simulated
ACC simulated measured simulated
MAG simulated simulated measured
MEAS measured measured measured

2.4. Sensor Fusion Algorithms

Two Kalman-based orientation estimators were benchmarked in this work by using the proposed

approach (Figure 3). The pseudo-code description of the two algorithms is reported in the Appendix

A. In Algorithm 1, presented in [10], gyroscope measurements are used as input in two parallel linear

Kalman filters that separate the component due to the reference field vectors (Earth’s gravitational gb

and magnetic hb fields) from the disturbances affecting the accelerometer and magnetometer readings

(the external acceleration ab and the magnetic disturbances db, respectively). The estimated reference

field vectors ĝb and ĥb are then used to feed the TRIAD method [22] for single-frame orientation

estimation, given that gn and hn are known.

 

Figure 3. Overview of the Kalman-based SFAs considered in this work: (Left) Algorithm 1 and (Right)

Algorithm 2.

Algorithm 2 is the Extended Kalman Filter (EKF) presented in [9]. In the prediction step, the

quaternion estimate is projected ahead using the measured sample of the angular velocity. Then,

assuming that external accelerations are negligible and no ferromagnetic disturbances are present,

the measured acceleration and the measured magnetic field vector are used to update the projected

quaternion in the nonlinear measurement equation. A linearization step is then needed at each iteration.

The combination of ideal and/or measured angular velocity, acceleration, and magnetic field

vector data, associated with each above-mentioned scenario, were fed into both Algorithms 1 and 2.
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For each SFA and time sample, six orientation estimates were obtained (one for each scenario) and

each of them was compared to the ground-truth body orientation, as explained in Section 2.5.

2.5. Measure of Performance

The accuracy in estimating the MIMU orientation was expressed in terms of orientation error

computed as the quaternion that rotates the estimated MIMU orientation q̂bn
k onto the ground-truth

one qbn
k as proposed in [23]:

∆q̂bn
k “ qbn

k b
´

q̂bn
k

¯

´1
(1)

where b represents the quaternion multiplication operator and pqq´ 1 is the inverse quaternion

operator.

Then, in accordance with [10], ∆q̂bn
k was split into two error components, one related to the

heading head
∆q̂bn

k (yaw angle) and one to the attitude att
∆q̂bn

k (pitch and roll angles). The heading and

attitude orientation parameterization, in fact, is particularly convenient for the problem at hand as

the pitch and roll angles may be reasonably assumed to have similar error characteristics since they

both represent an inclination with respect to the vertical direction [6,23]. The Root Mean Square (RMS)

values of the scalar part (indicated as S in the following equations) of both head
∆q̂bn

k and att
∆q̂bn

k were

then considered as MOPs:

RMShead “

d

1

N

N
ř

k“1

`

2acos
“

S
`

head∆q̂bn
k

˘‰˘2

RMSatt “

d

1

N

N
ř

k“1

`

2acos
“

S
`

att∆q̂bn
k

˘‰˘2
(2)

The MOP was computed for each scenario, SFA, and trial performed by each subject.

2.6. Statistical Analysis

In order to assess the performance of both Algorithms 1 and 2, the following specific questions

were considered: (i) To which extent the SFA performance is affected by the errors characterizing each

MIMU sensor? (ii) Can the SFA mitigate the effect of these sensor-specific errors, at least when all other

sensors’ data are considered to be as ideal? (iii) How do different SFAs behave when fed with either

simulated or real sensor signals?

For what concerns questions (i) and (ii) (intra-algorithm analysis), a one way repeated-measures

ANalysis Of VAriance (ANOVA) was performed, using the scenario as a factor, on both the attitude

and heading accuracy obtained for each method, separately. The MOP values were transformed

according to the Tukey Ladder of Powers in order to achieve normality, in case of a lack of normality

revealed by the Shapiro-Wilk test. The Greenhouse-Geisser correction was used to take into account

possible violations of the sphericity assumption. Given possible significant differences revealed by the

ANOVA test for the scenario effect, the Dunn-Sidak’s post-hoc pairwise tests were used to compare the

GYR, ACC, and MAG scenarios with both the SIM and MEAS scenarios in order to answer (i) and (ii),

respectively. In addition, the same test was adopted to compare the MOD and SIM scenario in order to

assess the effect of the external acceleration on the SFAs output.

In order to answer question (iii) (inter-algorithm analysis), the presence of significant differences

between the orientation accuracy obtained for Algorithms 1 and 2 was verified using a Wilcoxon

test for both the SIM and MEAS scenarios. The alpha level of significance was set to 0.05 for all

statistical tests.

3. Results

The heading and attitude ground-truth curves and the errors associated to each simulated scenario

are reported in Figure 4 for one randomly-chosen participant. The different phases of the TUG task
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are also indicated by different colors: sit-to-stand and stand-to-sit (yellow bands), walking (light blue

bands), and turns of 180˝ about the cranio-caudal direction (green bands).

Figure 4. Heading (a) and attitude (b) ground-truth curves; heading (c) and attitude (d) error angles

obtained for all the six scenarios considered. The colored bands in the upper row denote activities of

sit-to-stand and stand-to-sit (yellow), walking (blue), and 180˝ turns around the cranio-caudal axis.

Figure 5 shows the RMS error values (medians and inter-quartile ranges) obtained for both

Algorithms 1 and 2.

 

Figure 5. RMShead and RMSatt median and inter quartile ranges obtained for the two considered SFAs

and all the six tested scenarios.

For what concerns the intra-algorithm comparisons, the results of the one-way repeated measures

ANOVA are reported in Table 2. A significant scenario effect was found for both heading and attitude

errors and for both Algorithms 1 and 2. The scenario factor accounts for a minimum of 83% to

a maximum of 97% of the overall orientation errors variance.
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Table 2. Results of the one-way repeated measures ANOVA for both the attitude and heading errors

and for each tested algorithm. Degrees of freedom for the effect (dfscenario) and for the error term

(dferror) are reported together with F values, p values and partial eta squared (η2).

Algorithm MOP dfscenario dferror F p η
2

1
RMSatt 1.13 25.93 193.95 <0.001 0.85

RMShead 3.09 71.21 661.30 <0.001 0.97

2
RMSatt 1.05 24.26 113.60 <0.001 0.83

RMShead 3.37 77.67 285.84 <0.001 0.92

The selection of the scenarios considered for the post hoc tests was done according to the questions

presented in Section 2.6. In Table 3, the results of the statistical analysis are reported (mean differences

between the errors obtained in the considered scenarios and significance).

Table 3. Post-hoc analysis: marginal differences between the scenarios indicated in the first and second

column for both algorithms. Significant differences are indicated with an asterisk.

Tested Scenario Testbed Scenario
Algorithm 1 Algorithm 2

Attitude Heading Attitude Heading

GYR
SIM 2.11 * 3.82 * 1.03 * 2.61 *

MEAS ´0.9 * ´0.19 ´1.22 * ´0.98 *

ACC
SIM 0.25 * 0.54 * 0.15 * 0.61 *

MEAS ´1.95 * ´3.47 * ´2.10 * ´2.99 *

MAG
SIM 0.00 1.93 * 1.76 * 1.66 *

MEAS ´2.20 * ´2.08 * ´0.49 * ´1.94 *

MOD SIM ´0.46 * ´0.22 * ´0.25 * ´0.64 *

The results of the Wilcoxon test are reported in Table 4. Significant differences were found between

the two algorithms for both attitude and heading errors for the SIM scenario. On the other hand, for the

MEAS scenario, the two algorithms provided significantly different results only for the attitude angle.

Table 4. Results (Z and p-values) of the comparison between Algorithms 1 and 2 for the SIM and

MEAS scenarios. To improve the table readability/clarity, significant differences are also indicated

with an asterisk.

Considered Scenario
Attitude Heading

Z p Z p

SIM ´4.286 <0.001 * ´4.286 <0.001 *
MEAS ´2.143 0.032 * ´0.829 0.407

4. Discussions

In the present study, a novel benchmarking method for SFAs performance assessment was

presented and applied to a human movement analysis case study. In particular, the 3D pelvis

orientation was estimated during a TUG test. A pool of hybrid scenarios, including both simulated

and real MIMU data, was created and the combination of data associated to each scenario was fed to

two different Kalman-based SFAs. The accuracy with which the pelvis orientation was estimated was

then assessed by comparing the output of each algorithm with the reference output.

In Figure 4, the attitude curve exhibits two transitions at the beginning and the end of the test

(about 3 s and 23 s), clearly corresponding to the sit-to-stand and stand-to-sit phases. The two 180˝
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turns are also visible in the heading plot. Interestingly, both the attitude and heading error trends do

not seem to be related with any of the activities mentioned above.

For both SFAs, the orientation errors were, on average, 3˝ and 4˝ for the attitude and heading,

respectively (Figure 5). These errors can be considered rather large given the short test time duration

(less than 20 s). In addition, it is clear that, for the task being shown, the GYR errors are highly

correlated with the MEAS ones, suggesting a crucial role of the gyroscope errors in determining the

performance of the SFA considered. To reduce orientation estimation errors, SFAs may be revised and

tuned and, to do so, the information about the effect of the different noise sources characterizing each

MIMU sensor is fundamental. The proposed benchmarking method aimed at providing a contribution

in this respect. The following considerations are a concrete example of the information that can be

derived by applying the proposed method for the assessment of a generic SFA.

For what concerns the intra-algorithm evaluation, a significant scenario effect was found for both

Algorithms 1 and 2. This result was expected as the scenarios consisted of different combinations of

simulated and real sensor data. The cascaded post-hoc analysis between the SIM and GYR scenarios

revealed that using the simulated gyroscope data instead of the measured ones produced a significant

effect for both attitude and heading accuracy, regardless of the considered SFA (Table 3). This means

that the errors characterizing the gyroscope have a detrimental effect on both SFAs performance.

In addition, both SFAs were found to take advantage of the simulated accelerometer and magnetometer

data to partially correct the gyroscope-related errors (GYR vs. MEAS). This was always true except

for the heading estimation obtained using Algorithm 1 (Table 3). Such a result may be explained by

focusing on the inner structure of this specific algorithm, for which the angular velocity obtained from

the gyroscope drives the accelerometer and magnetometer data pre-processing. Algorithm 1 is, thus,

particularly sensitive to gyroscope imperfections and inconsistencies. Conversely, for what concerns

Algorithm 2, accelerometer and magnetometer data are used to explicitly correct the quaternion

predicted according to the gyroscope measurement. Therefore, the update step performed in this

algorithm appears to be effective in correcting the prediction errors due to the gyroscope when the

accelerometer and magnetometer are ideal. In any case, the GYR scenario is clearly the closest to the

MEAS scenario, which represents the upper bound for the SFA error. This means that, both SFAs are

more sensitive (both in terms of attitude and heading) to the gyroscope issues than to the accelerometer

and magnetometer ones.

Significant differences were reported also between the ACC scenario and both the SIM and MEAS

scenarios. On the one hand, the imperfections affecting the real accelerometer measurements degrade

significantly the orientation estimates with respect to the SIM scenario. On the other hand, it has to

be noted that both SFAs successfully exploit the other simulated sensors to reduce the errors due to

these imperfections, as highlighted by the comparison between the ACC and the MEAS scenarios.

Interestingly, significant differences between ACC and SIM were found also for the heading estimation,

indicating that, although gravity measurements (from the accelerometer) do not convey heading

information, errors in the accelerometer data cause errors in the heading estimation. This is also

supported by the results of the comparison between the MOD and SIM scenarios: for both SFAs and

both heading and attitude, a significant difference was observed between the two scenarios, which only

differ for the presence of external accelerations (accelerometer inconsistency [3]). These two results are

in accordance with the existing literature [24], where heading notoriously represents the most difficult

degree of freedom to be estimated with MIMU data [6]. In fact, it is well known that attitude errors

imply an additional error on heading [24]. Unfortunately, no algorithm design can prevent this effect.

When considering the heading estimation using both Algorithms 1 and 2, the errors associated

to the MAG scenario were significantly different from those obtained for both the SIM and MEAS

scenarios. On the other hand, for Algorithm 1, when the attitude is considered, no significant difference

was observed between the MAG and SIM scenarios. This result may be explained as follows: within

Algorithm 1 the actual orientation estimation is performed by the TRIAD block (see Figure 3), which

uses the estimated gravity as the first (more reliable) direction. As a result, magnetic inconsistencies
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(due to ferromagnetic disturbances) are prevented from degrading significantly the attitude estimation.

In other words, in Algorithm 1, the magnetometer readings are almost neglected for the attitude

estimation. Conversely, for Algorithm 2, magnetic disturbances have a significant detrimental effect

both on attitude and heading estimation, as magnetometer data are used for the attitude estimation as

well. Given this result, it is recommendable to decouple the attitude estimation from the magnetometer

measurements when designing SFA for orientation estimation targeted to indoor applications, where

the hypothesis of uniform and constant magnetic field can be undermined.

With regard to the inter-algorithm comparison (Table 4), when considering the SIM scenario,

a statistically different performance was exhibited by the two SFAs. In particular Algorithm 1 was

characterized by smaller heading and attitude errors. This result can be explained by the different

algorithm design and, in particular, by the fact that Algorithm 1 takes advantage of the linear approach

to the Kalman filtering over the extended one implemented in Algorithm 2. On the other hand, this

performance gap is much less evident when real sensor data are involved, as shown by the comparison

of the two MEAS scenarios (Table 4). Even though a significant effect is reported for the attitude

estimation in the MEAS scenarios, it should be more reasonably attributed to the exclusion of the

magnetic measurements from the attitude estimation than to the linear estimation approach. In fact,

no statistical differences were found for the heading estimation, for which the magnetometer is used

by both methods. In other words, the different designs might indeed imply different estimation

performances. However, these differences may be concealed by the inconsistencies and imperfections

characterizing real data obtained from low grade MIMUs.

As a summary, the proposed benchmarking method has the benefit to allow for an improved

understanding of the extent to which each sensor issue influences the final orientation estimate. This

possibility is of paramount importance in the context of SFAs design to correctly consider the role of

each sensor. As an example, by means of the proposed methodology the following considerations

for the MIMU-based human motion tracking can be drawn: (1) the gyroscope errors appear to be the

main error source for both the SFAs considered; (2) the processing of accelerometer data proposed in

Algorithm 1 is promising because it reduces the detrimental effect of the external acceleration; (3) using

the magnetometer data for the heading estimation only leads to more accurate attitude estimates.

These considerations can then be used to improve the existing designs/tuning settings in accordance

to the needs of the specific application.

5. Conclusions

In conclusion, the methodology presented in this paper allows to gain insight into the working

principles of a generic sensor fusion algorithm. The proposed data hybridization process consists in

combining real and ideal sensor data with the aim of addressing the main strengths and weaknesses

of an SFA. Moreover, the results obtained with this methodology when applied to multiple SFAs

allow highlighting their specific behavior with respect to different input data issues. The proposed

benchmarking method was applied to a typical sensor fusion context in human movement analysis,

namely 3D orientation estimation through MIMU data. The potential of the proposed methodology

was thus exploited to reveal the main issues involved in this specific application context.
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Appendix A

In this appendix the two orientation estimators (Algorithms A1 and A2) evaluated and compared

in this paper are detailed with a CLRS description, where:

‚ xk and x̂k are, respectively, the real and estimated value of the state vector x;

‚ and are, respectively, the a priori and a posteriori estimate of the state vector x at the k-th

time instant;

‚ hn and hb are the representation of the Earth’s magnetic field in the tnu and tbu reference

frames, respectively;

‚ gn and gb are the representation of the Earth’s magnetic field in the tnu and tbu reference

frames, respectively;

‚ g
σ, a

σ and m
σ are the standard deviations of the gyroscope, accelerometer and the magnetometer

measurement, respectively;

‚ b
σ is a tuning parameter encoding the expected severity of the magnetic disturbances in method B;

‚ ca and cb are the Gauss-Markov parameters of the prediction models in method A;

‚ H, Q and R are, respectively, the extraction matrix, the process noise matrix and the measurement

noise matrix in the Kalman filter;

‚ Ts is the sampling time;

‚ ˆ represents the cross product operator;

‚ b represents the quaternion product operator;

‚ qbn and Rbn represents, respectively, the quaternion and the rotation matrix encoding the

orientation from the tnu reference frame to the tbu reference frame.

‚ In and 0n are the n ˆ n identity and null matrix;

‚ rp ˆs is the cross product matrix for the vector p “
”

p1 p2 p3

ıT
,

rp ˆ s “

»

—

–

0 ´p3 p2

p3 0 ´p1

´p2 p1 0

fi

ffi

fl
;

‚ Ωppq “

«

´ rpˆs p

´pT 0

ff

;

‚ Ξ pqq “

«

rvqˆs ` q4 ¨ I3
vqT

ff

with q “
”

q1 q2 q3 q4

ıT
“

”

vq q4

ıT
being a generic

unit quaternion;

‚ Ψ pq, pq “

B

˜

q b

«

p

0

ff

b q´1

¸

B pqq
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Algorithm A1

for each measured sample from the sensors do

ω
b
k Ð gyroscope sample

Prediction

Predict gravity and acceleration (KFacc)

´
accxk “

«

´ĝb
k

´âb
k

ff

“

«

expp´rωb
k´1ˆs ¨ Tsq 03

03 ca ¨ I3

ff «

`ĝb
k´1

`âb
k´1

ff

Process noise covariance matrix (KFacc)

accQk´1 “

«
”

´ĝb
kˆ

ı

03

03 cb ¨ I3

ff

»

–

I3 ¨ pg
σTsq

2 03

03 I3

fi

fl

«
”

´ĝb
kˆ

ı

03

03 cb ¨ I3

ffT

Predict Earth’s magnetic field and disturbances (KFmag)

´
magxk “

«

´ĥb
k

´d̂b
k

ff

“

«

expp´rωb
k´1ˆs ¨ Tsq 03

03 ca ¨ I3

ff «

`ĥb
k´1

`d̂b
k´1

ff

Process noise covariance matrix (KFmag)

magQk´1 “

«
”

´ĥb
kˆ

ı

03

03 cb ¨ I3

ff «

I3 ¨ pg
σTsq

2 03

03 I3

ff «
”

´ĥb
kˆ

ı

03

03 cb ¨ I3

ffT

Update:

H “mag H “acc H “
”

I3 I3

ı

Measurement update (KFacc)

accyk Ð accelerometer sample

accR “ I3 ¨a σ2

`
accx̂k Ð KalmanUpdate (´

accxk, accQk´1, accyk, H, accR)

Measurement update (KFmag)

magyk Ð magnetometer sample

magR “ I3 ¨m σ
2

`
magx̂k Ð KalmanUpdate (´

accxk, magQk´1, magyk, H, magR)

Orientation computation (TRIAD algorithm)

Normalize `ĝb
k and `ĥb

k to one

Mobs “
”

`ĝb
k

`ĝb
k ˆ` ĥb

k
`ĝb

k ˆ
´

`ĝb
k ˆ` ĥb

k

¯ ı

Mre f “
”

gn gn ˆ hn gn ˆ pgn ˆ hnq
ı

q̂bn
k “ matrixToQuaternion

´

Mre f MT
obs

¯

end for
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Algorithm A2

for each measured sample from the sensors do

ω
b
k Ð gyroscope sample

Prediction

Predict the quaternion and the magnetic disturbance

´x̂k “

«

´q̂bn
k

´
m b̂n

k

ff

“

«

exp
´

Ω

´

ω
b
k´1

¯

Ts

¯

03

03 I3

ff «

`q̂bn
k´1

`
m b̂n

k´1

ff

Process noise covariance matrix

Qk´1 “

»

–

ˆ g
σTs

2

˙2

Ξ

´

`q̂bn
k´1

¯

I3Ξ

´

`q̂bn
k´1

¯T
04ˆ3

03ˆ4
b
σ

2 ¨ I3

fi

fl

Update:

compute ´R̂bn “ quaternionToMatrixp´q̂bnq

yk “

«

magyk

accyk

ff

, magyk Ð magnetometer sample

accyk Ð accelerometer sample

Sensor data validation

accR “

#

I3 ¨a σ2, i f
ˇ

ˇ

ˇaccy ´´ R̂bngn
ˇ

ˇ

ˇ
ăacc ε

8, otherwise

magR “

#

I3 ¨m σ
2, i f

ˇ

ˇ

ˇmagy ´´ R̂bn
´

hn ´´
m b̂n

k

¯ˇ

ˇ

ˇ
ămag ε

8, otherwise

R “

«

magR

accR

ff

Jacobian calculation

H “

»

–

Ψ

´

´q̂bn
k , hn `´

m b̂n
k

¯

Rbn

Ψ

´

´q̂bn
k , gn

¯

03

fi

fl

`x̂ ÐKalmanUpdate (´x̂, Qk´1, yk, H, R)

end for
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