
Article

Educational and Psychological
Measurement

2018, Vol. 78(5) 762–780
� The Author(s) 2017

Reprints and permissions:
sagepub.com/journalsPermissions.nav

DOI: 10.1177/0013164417719308
journals.sagepub.com/home/epm

Assessing the Quality and
Appropriateness of Factor
Solutions and Factor Score
Estimates in Exploratory
Item Factor Analysis

Pere J. Ferrando1 and Urbano Lorenzo-Seva1

Abstract

This article proposes a comprehensive approach for assessing the quality and appro-
priateness of exploratory factor analysis solutions intended for item calibration and
individual scoring. Three groups of properties are assessed: (a) strength and replic-
ability of the factorial solution, (b) determinacy and accuracy of the individual score
estimates, and (c) closeness to unidimensionality in the case of multidimensional solu-
tions. Within each group, indices are considered for two types of factor-analytic
models: the linear model for continuous responses and the categorical-variable-
methodology model that treats the item scores as ordered-categorical. All the
indices proposed have been implemented in a noncommercial and widely known pro-
gram for exploratory factor analysis. The usefulness of the proposal is illustrated with
a real data example in the personality domain.
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Exploratory (unrestricted) factor analysis (EFA) is a particular type of structural

equation model (SEM) with latent variables. So, the degree of goodness of the

model–data fit of any EFA solution can be assessed by using available procedures
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intended for SEMs in general (e.g., Ferrando & Lorenzo-Seva, 2017; Yuan, Chan,

Marcoulides, & Bentler, 2017). In principle, an acceptable fit is a basic requirement

for judging an EFA solution as appropriate. However, the sole reliance on this

requirement does not guarantee that the solution is a good one or is of practical use-

fulness, a point that is particularly relevant when EFA is used as a psychometric tool

for item calibration and individual scoring. Indeed, it is quite possible to obtain an

acceptable fit in a poorly determined solution based on low-quality items, which, in

turn, yields unreliable and indeterminate factor score estimates. Also, an essentially

unidimensional solution might require a multidimensional solution to be specified if

the model–data fit is to be acceptable. However, this solution might well consist of

additional minor and ill-defined factors of no substantive interest (e.g., Reise,

Bonifay, & Haviland, 2013).

Several complementary indices have been proposed for assessing the determinacy,

quality, and usefulness of psychometric FA solutions. Most of them have focused on

the unidimensional case (see, e.g., Hancock & Mueller, 2000), but recently,

Rodriguez, Reise, and Haviland (2016a, 2016b) have put forward a well-organized

proposal in the context of bifactor FA solutions (Reise, 2012). Also, most of the

indices are derived from the standard linear FA model. In this framework, most deri-

vations are quite direct because both the item scores and the factor score estimates

are linearly related to the common factors.

In practice, most item scores are discrete and bounded, so the linear FA model can

only be approximately correct (at best) when they are fitted. Our position is that the

linear approximation is reasonable when (a) the items have nonextreme distributions

and moderate discriminating power and (b) the number of categories is relatively

high (see Culpepper, 2013; Ferrando, 2009; Rhemtulla, Brosseau-Liard, & Savalei,

2012). When these conditions are not met, it is generally better to use categorical-

variable-methodology factor analysis (CVM-FA). CVM-FA is briefly summarized

below, but the most relevant point regarding the present developments is that the

relations between the factor(s) and the observed item scores are no longer linear.

The main aim of the present article is to propose a general approach for assessing

the quality, accuracy, and usefulness of a psychometric EFA application. The organi-

zation of our proposal closely follows that by Rodriguez et al. (2016a, 2016b).

However, there are important differences in both scope and content. First, we focus

mainly on multiple oblique solutions. Second, we consider measures based on both

linear FA and CVM-FA. Third, we are not concerned with sum test scores but only

with factor score estimates derived from calibration results. Finally, we propose only

simple indices that will be implemented in a well-known, noncommercial EFA pro-

gram, and which can be routinely used by the practitioner.

We shall now go on to summarize the starting position and scope of our proposal.

We consider full psychometric applications in which FA is used for both item cali-

bration and individual scoring. In this context, we consider that a good FA solution

not only has to reach an acceptable level of goodness of model-data fit but also has
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to provide (a) a clearly interpretable and strong pattern solution expected to be replic-

able across samples and studies and (b) factor score estimates that are determinate

and accurate. The need for these strong requirements, however, should be qualified.

If only the assessment of the test structure is of interest, then only requirement (a) is

relevant. Requirement (b) is relevant in validity assessments based on estimated

scores and, above all, in individual assessment.

In our proposal, property (a) above—the strength and replicability of a pattern or

structure solution—is assessed by using extensions of Hancock and Mueller’s (2000)

H index, while property (b)—the determinacy and accuracy of the individual trait

estimates—is assessed by using different determinacy and reliability indices.

Many psychometric measures were initially intended to be essentially unidimen-

sional. However, as mentioned above, the EFAs of these measures in most cases

yield multidimensional solutions in which the factor structures and derived score

estimates do not reach the requirements discussed above. In this case it is quite rele-

vant to assess how close a multidimensional solution is to a unidimensional solution,

and we also propose indices to assess this issue. Overall, a summary of the present

proposal is given in Table 1.

Background

Consider a test, made up of n items, that measures m traits or common factors uk. Let

Xij be the observed score of respondent i on item j. In the linear EFA model, Xij is

taken as a continuous-unbounded variable, and its expected score is given by

E(Xijjui) = lj1ui1 + � � � + ljkuik + � � � + ljmuim ð1Þ

Table 1. Summary of the Indices Proposed.

Property Linear FA CVM-FA

Factor score determinacy and accuracy FDI (regression based) FDI (EAP-based)
Marginal reliability
(regression based)

Marginal reliability
(EAP-based)
Individual reliabilities

Construct replicability G-H G-H latent
G-H observed

Closeness to unidimensionality ECV-global ECV-global
I-ECV I-ECV
IREAL-global IREAL-global
IREAL-item IREAL-item

Note. FA = factor analysis; CVM-FA = categorical-variable-methodology factor analysis; FDI = factor

determinacy index; EAP = expected a posteriori; ECV = explained common variance; IREAL = item

residual absolute loadings.
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where the ls are the factor loadings. Both the Xs, and the factors, us, are scaled in a

z-score metric (mean 0 and variance 1), so the ls are standardized loadings. For fixed

u, the Xs become linearly independent and their conditional distributions are assumed

to be normal. Furthermore, the marginal distribution of u is also assumed to be nor-

mal. The structural correlation matrix implied by Model (1) is

R = LFL0 + C ð2Þ

where L is the pattern loading matrix, F is the interfactor correlation matrix, and C
is the diagonal matrix of the item residual variances.

In the CVM-FA case, Model (1) is assumed to hold for latent response variables

X*s, normally distributed and scaled in a z-score metric, that underlie the observed

item scores

E(X �ijjui) = lj1ui1 + � � � + ljkuik + � � � + ljmuim ð3Þ

Furthermore, the observed scores are assumed to arise as a result of a step func-

tion governed by c 2 1 thresholds: t1, . . . , tc 2 1 where c is the number of response

categories

X = i, ti�1\X �\ti

�‘ = t0\t1 � � �\tc�1\tc = +‘
ð4Þ

Under the conditions described so far, the CVM-EFA implied correlation structure

is that of Equation (2) in which R is now the interitem polychoric correlation matrix.

With reparameterization, the CVM-EFA model becomes the item response theory

(IRT) multidimensional two-parameter normal-ogive model for the binary case and

the normal-ogive multidimensional graded response model for more than two ordered

categories (see, e.g., Ferrando & Lorenzo-Seva, 2013, or McDonald, 1999). Here we

shall mainly use the FA parameterization. However, some IRT results will also be

used when the CVM-based indices are derived.

In the conventional EFA scenario considered here, the linear and the CVM models

are fitted by using a random-regressors two-stage estimation approach (McDonald,

1982). In the first stage (calibration), the structural item parameters in (2) and (4) are

estimated. In the second stage (scoring), the item parameter estimates are taken as fixed

and known, and used to estimate the individual trait levels for each respondent. We

shall not consider here specific calibration procedures. However, in the scoring stage

we shall consider only Bayes Expected a Posteriori (EAP) score estimates. The main

reason for this choice is that these scores have the highest correlations with the common

factors they measure (e.g., Mulaik, 2010). This is a basic property in some of the indices

proposed here and considerably simplifies many of the present developments.

In the linear EFA model (1), and under the conditional and prior normality

assumptions discussed above, the EAP point factor score estimates are known in FA

terminology as ‘‘regression factor scores’’ and were originally proposed by
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Thurstone (1935). The term ‘‘factor scores,’’ however, might lead to confusion

between the latent factor scores (which are unknown) and the score estimates. For

this reason we shall continue using the terminology ‘‘factor score estimates.’’

Strictly speaking, however, it should be noted that the term ‘‘estimates’’ is not cor-

rect in the usual statistical sense because there are no ‘‘true’’ parameter values to be

approximated by these estimates (see Maraun, 1996).

In the general oblique case, regression factor score estimates can be obtained in

closed form as (Thurstone, 1935)

EAP(ui) = FL0R�1Xi = S0R�1Xi ð5Þ

where Xi, of dimension n 3 1 is the vector containing the standardized item scores of

respondent i, and S, of dimension n 3 m is the structure matrix whose elements are

the item–factors correlations.

In the case of CVM-EFA, the EAP point estimate of ui for the k dimension (uik)

cannot be obtained in closed form, and is obtained via the general definition:

EAP(uik) =

Ð
u ukL(xiju)g(u)duÐ

u L(xiju)g(u)du
ð6Þ

where g(u) is the joint multivariate prior density of u and L is the likelihood of xi

which can be written generically as

L(xijui) =
Yn

j = 1

P(Xijjui) ð7Þ

And the generic expression P(Xj|u) denotes the conditional probability assigned to a

specific item score for fixed u.

The diagonal elements of the posterior (error) covariance matrix are given by

PSD2(uik) =

Ð
u (uk � EAP(uik))2L(xiju)g(u)duÐ

u L(xiju)g(u)du
ð8Þ

where PSD means posterior standard deviation.

As mentioned above, the EAP estimator has minimum mean squared error, so it

cannot be improved upon in terms of average accuracy (e.g., Bock & Mislevy,

1982). At any uik level (except the population mean), however, it is inwardly biased

(i.e., regressed toward the mean), and this occurs in both the linear case (Krijnen,

Wansbeek, & ten Berge, 1996) and the CVM case (Bock & Mislevy, 1982). As the

number of items increases, the likelihood gradually dominates the prior, the likeli-

hood and the posterior density become virtually indistinguishable, and the EAP esti-

mate approaches conditional unbiasedness (Bock & Mislevy, 1982). We shall refer

to this result with the statement that asymptotically the EAP estimates are condition-

ally unbiased.
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Determinacy and Reliability of the Factor Score Estimates

In EFA, the factor indeterminacy problem is the result that more than one set of fac-

tor score estimates can be constructed that are consistent with a given correlational

structure with the form (2). This problem arises because the number of common and

unique factors exceeds the number of items and has generated a considerable amount

of controversy in the FA literature (see, e.g., Grice, 2001; Maraun, 1996; Mulaik,

2010).

From a practical perspective, the most usual way to address the problem stated

above is to assess the degree of indeterminacy of the score estimates (e.g., Grice,

2001). According to Cliff (1977), consistency of person ordering is the primary goal

of individual assessment, and a high degree of indeterminacy implies precisely that

respondents cannot be consistently ordered along the trait continuum. It also implies

that the validity relations between the factor score estimates and relevant criteria are

also indeterminate. Given the practical relevance of the problem, the degree of inde-

terminacy should be routinely assessed in FA studies of the type considered here, but

unfortunately, this does not appear to be the case (Grice, 2001).

Of the various indices that quantify the extent to which the scores are indeterminate

(Guttman, 1955), the most common is possibly the correlation between the factor score

estimates and the levels on the latent factors they estimate (Beauducel, 2011). We shall

denote this index by r(ûu) and name it ‘‘factor determinacy index’’ (FDI). When the FDI

value is near one, the factor score estimates are good proxies for representing the latent

factor scores, and the different factor score estimates that are compatible with the given

structure are also highly correlated with one another (Guttman, 1955). As for reference

values, Gorsuch, (1983) considered that FDI values around 0.80 will be adequate for

research purposes. However, if the scores are to be used for individual assessment, a

value of 0.90 may be a minimal requirement (Grice, 2001; Rodriguez et al., 2016a).

We shall first consider linear FA. The FDI estimates based on the regression

scores are the diagonal elements of the m 3 m matrix:

FL0R�1LF)
� �1=2

= S0R�1S)
� �1=2 ð9Þ

(e.g., Beauducel, 2011). As mentioned above, the FDIs in (9) are the highest possible

of all the types of factor score estimates.

The unidimensional case is useful for understanding the determinants of the FDI

values. In this case, the FDI is obtained as

r(ûu) = (l0R�1l)1=2 =
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 + 1Pn

j = 1

l2
j

s2
ej

s ð10Þ

The term
Pn
j = 1

l2
j

.
s2
ej

in (10) is the (constant) amount of information in the linear

FA model (Ferrando, 2009; Mellenbergh, 1996). Clearly, the degree of determinacy
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depends on (a) the number of items and the signal-to-noise ratios between the squared

loadings and the residual variances. In the standardized modeling considered here,

the residual variances depend only on the loadings, so test length and the magnitude

of the loadings are the sole determinants of FDI.

The square of r(ûu) is one of the standard definitions of a reliability coefficient

(Brown & Croudace, 2015; Mellenbergh, 1996). So, by this definition, the squared

values of the FDI estimates obtained in (9) are interpreted as the reliabilities of the

corresponding factor score estimates.

We turn now to CVM-FA. Reliability estimates based on the r2
(ûu)

definition (and,

therefore, on the corresponding FDI estimates) have received some attention in the

IRT literature (Green, Bock, Humphreys, Linn, & Reckase, 1984; Samejima, 1977).

To derive the FDIs in this case, we shall write the EAP estimated score for individual

i in factor k as

ûik = uik + dik ð11Þ

(see, e.g., Samejima, 1977). If the estimator in (11) is conditionally unbiased, then by

standard covariance algebra, it follows that the FDI could be obtained as

r(ûk uk ) =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var(ûk)� Var(dk)

Var(ûk)

s
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var(ûk)� E(PSD2(uik))

Var(ûk)

s
ð12Þ

And its squared value is the corresponding reliability estimate. This estimate is an

empirical estimate (Brown & Croudace, 2015) which uses (a) the variance of the

EAP scores and (b) the average of the squared PSDs both obtained in the calibration

sample. However, unlike the linear estimate (9), which is correct for any number of

items, (12) is only asymptotically correct, because, as discussed above, the estimator

(11) is only asymptotically unbiased. As discussed below, in very short tests, we

expect (12) to be somewhat upwardly biased.

A conditional or individual reliability estimate (Green et al., 1984, Raju, Price,

Oshima, & Nering, 2007) can further be obtained as

r̂(uik) =
Var(ûk)� PSD2(uik)

Var(ûk)
ð13Þ

So the reliability marginal estimate (i.e., the squared value in 12) is the average of

the individual estimates in (13). We propose to obtain the distribution of these indi-

vidual estimates as auxiliary information that complements the information provided

by the marginal estimate. To see the interest of this additional measure, consider that

an acceptable marginal reliability estimate is still compatible with the presence of a

non-negligible proportion of respondents that cannot be accurately measured.

To close this section, we note that Beauducel and Hilger (2017) considered a scor-

ing schema that is half way between (5) and (6), and derived unbiased FDIs (and mar-

ginal reliability estimates) based on the resulting score estimates. Specifically they
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considered obtaining linear regression estimates of the form (5) in which S and R

were based on the CVM but Xi contained the observed categorical scores. We shall

not consider this approach in the present proposal, but it would be of interest in the

future to assess how the resulting FDI and reliability estimates behave in comparison

to those proposed here.

Construct Replicability

Hancock and Mueller (2000) and Hancock (2001) proposed an index to assess the

extent to which a factor is well represented by a set of items. This general concept

comprises several properties (mainly, the quality of the items as indicators of the fac-

tor, and the replicability of the factor solution across studies). Hancock and Mueller

(2000) labeled their index H, and used the term ‘‘construct reliability.’’Rodriguez

et al. (2016b) renamed it as ‘‘construct replicability,’’ which is the name we shall

use here. The initial proposal considered only the unidimensional case, and, using

the present notation, can be written as

H = (l0R�1l) =
1

1 + 1Pn

j = 1

l2
j

s2
ej

ð14Þ

Essentially (14) measures the maximal proportion of the variance of the factor that

can be accounted for by its indicators. So, H is the squared correlation between the

factor and an optimal composite of its indicator scores, or in other words, the squared

multiple correlation between the factor and its indicators. We note that (14) is the

square of the FDI measure in (10) and, therefore, the reliability estimate we propose

here for the unidimensional linear model. This result is only to be expected given that

the regression factor score estimates are the optimal linear composite that maximizes

the multiple correlation.

In the general oblique case, the multiple correlations between the factors and their

indicators are obtained as the squared diagonal elements of the matrix (9) (e.g.,

Mulaik, 2010, Equation 13.16)

G � H = diag FL0R�1LF)
� �

= diag S0R�1S
� �

ð15Þ

We propose to use these elements as generalized H indices (denoted by G-H) for

multidimensional oblique solutions. To justify this choice, we note that, in terms of

structural coefficients, G-H has the same basic properties as has the original H in

terms of standardized loadings. First, it is not affected by the sign of the structural

coefficients. Second, its value is always at least as large as the largest squared struc-

tural coefficient (Yule, 1907, Equation 17). Finally, the addition of an indicator

will always increase the existing G-H value or leave it same. The maximum value of

G-H is 1 and will occur when one of the indicators has a perfect correlation with the

common factor. Initially, Hancock and Muller (2000) proposed 0.70 as a minimal
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reference value because the factor was well represented. Rodriguez et al. (2016b)

raised it to 0.80. For the G-H indices proposed here, the 0.80 cutoff also seems to be

reasonable.

In summary, if the G-H conceptualization is accepted, it follows that, in the linear

model and when regression factor score estimates are considered, the measures of

determinacy, reliability, and construct replicability are all obtained from the same

basic expression. So, the squared FDIs can be interpreted as both the reliabilities of

the regression factor score estimates and the squared multiple correlations between

the item scores and the common factors (i.e., generalized H measures).

We turn now to the CVM-FA where the relations are more complex. Consider first

that (15) is computed by using (a) the calibration estimates obtained from fitting a

CVM-FA solution and (b) the interitem polychoric correlation matrix. The diagonal

elements of (15) now become the multiple correlations between the factors and the

continuous latent response variables that underlie the observed item scores. We shall

label the index proposed so far as G-H-latent.

The multiple correlations between the factors and the observed item scores are

necessarily lower than the corresponding G-H-latent values due to (a) the nonlinear-

ity of the item-factor regressions and (b) attenuation for coarse grouping. They can

be predicted from the CVM-FA solution as follows. First, R can be directly esti-

mated via the product moment interitem correlation matrix. Second, the elements of

S in G-H-latent are the (polyserial) item–factor correlations. So, the product–moment

item–factor correlations can be predicted from the elements of S by using the relation

between the polyserial and the product-moment correlation (e.g., Olsson, Drasgow,

& Dorans, 1982)

r(X j, uk) =

r(X �j , uk)
Pc�1

u = 1

f(tu)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var(X j)

p ð16Þ

where f is the ordinate of the standard normal distribution. The resulting measure is

denoted by G-H-observed and, when compared to G-H-latent, quantifies the pre-

dicted loss of information and construct replicability that will occur if the item scores

are treated as continuous-unbounded variables and fitted with the linear EFA model.

We believe that this information is relevant to deciding which model is the most rea-

sonable for a given analysis: if the differences between G-H-latent and G-H-observed

are minor, the simpler linear model could be considered.

Finally, we should point out that the equivalence between the reliabilities of the

factor score estimates and the generalized H measures does not hold in the CVM

case. G-H-latent can be viewed as the hypothetical reliability that the regression

scores would have in model (3) if the underlying latent response variables were avail-

able. Indeed, this is not the case, and the EAP estimates in (6) are obtained from the

pattern of observed scores, as specified in Equation (7).
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Closeness to Unidimensionality

A review of many reported oblique solutions suggests that they are compatible with

an essentially unidimensional solution (Reise, Cook, & Moore, 2015; Reise et al.,

2013). Furthermore, according to the proposal made here, for an oblique solution to

be justifiable and useful, all the proposed factors have to be well defined and replic-

able (in terms of G-H) and lead to determinate and reliable factor score estimates.

We suspect that this is not the case in most applications. So, given these results, it

seems necessary to assess the extent to which an oblique EFA solution is close to

unidimensionality, and interpretable in these terms. In this assessment, it should also

be considered that forcing a unidimensional solution on data that is clearly multidi-

mensional can lead to biased results in which the single fitted factor does not reflect

a unitary construct but is, essentially, a weighted composite of the different factors.

A simple and informative index that assesses closeness to unidimensionality has

been proposed in slightly different variants for the linear FA model (see, e.g.,

Rodriguez et al., 2016a, 2016b). Here we propose using the version by ten Berge and

Kiers (1991) based on minimum rank factor analysis (MRFA). For a unidimensional

solution, MRFA produces a reduced correlation matrix (with communalities in the

main diagonal) so that the sum of its eigenvalues except the first one is the smallest

possible. Conceptually this is equivalent to obtaining a canonical factor solution

(e.g., Harman, 1962) in n 2 1 factors in which the sum of the squared loadings on

the first factor is the maximum possible and the sum of the squared loadings on the

remaining n 2 2 factors is the smallest possible. A natural index in this setting is

the explained common variance (ECV) index, which in terms of factor loadings is

given by

ECV =

P
j

l2
j1P

j

l2
j1 +

P
j

l2
j2 + � � � +

P
j

l2
jn�1

ð17Þ

Stucky, Thissen, and Edelen (2013) proposed that ECV should also be computed

at the single item level j, and that the resulting index be labelled I-ECV. Here we

propose that this index (as derived from 17 in our case) also be used as an auxiliary

measure useful for detecting the items that most contribute to the departure from

unidimensionality.

Essentially, (17) measures the relative magnitude of the squared loadings on the

first MRFA factor with respect to the magnitude of the full set of squared loadings

on the complete MRFA solution in n 2 1 factors. So, in principle, the index can be

directly computed from the linear and CVM solutions (although the interpretation in

terms of explained common variance is different). We also note that the index can be

computed with no need to specify a particular alternative solution in terms of struc-

ture or number of factors. Finally, regarding cutoff values, it has been proposed that

ECV cutoff values should be in the range 0.70 to 0.85 if it is to be concluded that a
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solution is essentially unidimensional (Green et al., 1984; Rodriguez et al., 2016a,

2016b; Stucky et al., 2013).

As defined above, ECV essentially measures the dominance of the first MRFA

factor over the other factors. However, a clear dominance is still compatible with

potentially biasing multidimensionality (e.g., Reise et al., 2015). To address this issue

we propose that an auxiliary, model-independent, index also be used. Consider the

pattern with the first and second factors of the MRFA solution described above. This

pattern represents the most general common factor that can be obtained from the data

plus an orthogonal residual second factor. We propose to use the absolute loadings

on the second MRFA factor as measures of departure from unidimensionality at the

item level, and denote them as ‘‘item residual absolute loadings’’ (IREAL). The aver-

age of these loadings can then also be used as a general measure of departure from

unidimensionality. Note that these indices address the basic concept of unidimension-

ality that the residual loadings must be negligible regardless of the magnitude of the

loadings on the dominant factor (e.g., Green et al., 1984). So, if their values are con-

sistently low, no substantial bias can possibly be expected if a unidimensional solu-

tion is fitted. With regard to threshold values, the most common rule of thumb for

judging a loading as salient is 0.30 (e.g., Grice, 2001), and tentatively, we propose

this criterion as a rough initial reference.

Implementation

All the indices proposed in this article have been implemented in version 10.5 of the

program FACTOR (Ferrando & Lorenzo-Seva, 2017), a well-known, free exploratory

factor analysis program that can be downloaded at http://psico.fcep.urv.cat/utilitats/

factor/. Indices of determinacy, reliability, and construct replicability are provided as

default output for both linear and CVM solutions. Indices of closeness to unidimen-

sionality are provided as default when a unidimensional solution is requested, and are

optional otherwise. All the proposed indices are relatively simple to implement.

However, as Grice (2001) noted in the context of factor score assessment, no com-

mercial or widely available programs appear to provide this type of index.

Hancock and Mueller (2000) considered that it was important to report confidence

intervals (CIs) for H, and proposed that they be derived with Bootstrap resampling.

We believe that this point is also relevant for all the indices proposed here. In princi-

ple, CIs for some of the indices based on linear FA, mainly FDIs, marginal reliabil-

ities, and G-H indices, could be analytically approximated by using the delta method

(see, e.g., Raykov, 2002). For the remaining indices, however, an analytical treatment

appears to be very complex. For this reason, we decided to implement a unified treat-

ment in FACTOR in which bootstrap-based confidence intervals are available for all

the indices proposed here. The 90%, 95%, and 99% confidence intervals available

are (a) percentile intervals and (b) bias-corrected percentile intervals. The number of

bootstrap samples can be defined by the user in the range [500, 3,000].
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Illustrative Example

The real-data study in this section is based on a Spanish version of Buss and Perry’s

(1992) aggression questionnaire (AQ; Vigil-Colet, Lorenzo-Seva, & Morales-Vives,

2015). The AQ is a multidimensional questionnaire made up of 5-point Likert-type

items intended to measure different related dimensions of aggression. For the present

illustration, we chose a subset of 20 items that were expected to measure two factors:

physical aggression (PA; 7 items) and nonphysical aggression (NPA; 13 items). The

indicators, however, were not expected to be so factorially pure that an independent-

cluster solution could be specified. So, an unrestricted solution was fitted instead.

The questionnaire was administered to a sample of 538 secondary school students

aged between 12 and 17 years. Data were kindly supplied by Dr. A. Vigil-Colet.

Descriptive analysis of the item scores showed that the distributions were gener-

ally not extreme and that linear EFA could be considered a reasonable approach. To

illustrate all the procedures proposed here, both linear EFA and CVM-EFA solutions

were fitted to the data. In both cases a two-factor solution was fitted by using robust

unweighted least squares estimation as implemented in FACTOR.

Goodness of model–data fit was assessed by using both the conventional approach

and the recent proposal by Yuan et al. (2017) based on equivalence testing. So far,

the latter approach has only been fully developed for the root mean square error of

approximation (RMSEA) and comparative fit index (CFI) measures based on the lin-

ear model, so we have only used it in this case.

For both models, goodness of fit results are in the upper panel of Table 2. The

RMSEA and CFI measures are based on the second-order (mean and variance) cor-

rected chi-square statistic proposed by Asparouhov and Muthen (2010). Overall, the

fit based on the conventional approach can be considered to be acceptable and quite

similar in both solutions. Equivalence-testing results for linear FA also suggests that

the fit of the model is acceptable.

The canonical pattern was then rotated using the Promin criterion (Lorenzo-Seva,

1999), and the solutions are in table 2 with the dominant loadings boldfaced. The esti-

mated inter-factor correlations were f = 0.50 (linear) and f = 0.53 (CVM).

As Table 2 shows, none of the solutions have an independent-cluster structure.

However, they are quite clear: Bentler’s simplicity indices are 0.997 in both linear

and CVM, and the overall congruence between the linear and the ECV solution is

0.999. Overall, (a) the factors can be well distinguished, (b) the solution agrees with

the ‘‘a priori’’ hypothesis, and (c) the linear and CVM patterns are very similar.

The calibration estimates were taken as fixed and known, and EAP factor score

estimates, and PSDs, were obtained. In the CVM case, the prior for u was specified

as bivariate standard normal with correlations of 0.50 (linear) and 0.53 (CVM) (see

Ferrando & Lorenzo-Seva, 2016).

The results about the determinacy and accuracy of the EAP scores are in the upper

rows of Table 3. For linear FA, the determinacies are acceptable for both factors, sug-

gesting that the factor score estimates reflect quite univocally the latent levels they

attempt to estimate. And the estimated reliabilities are appropriate for most
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applications, although perhaps a little low for accurate individual assessment. As for

the CVM-FA, the determinacy and reliability results are virtually the same as the

ones obtained from the linear model for the second factor, but are clearly higher for

the longer NPA factor.

Table 4 shows the within-and-between-model (linear vs. CVM) correlations

between the factor score estimates. Furthermore, the correlations corresponding to

the same factor measured with the different models were corrected for unreliability

by using the marginal reliability estimates in Table 3, which are again displayed

in the main diagonal of Table 4. Results can be summarized as follows. First, the

disattenuated correlations are 1 for both factors, which again suggests that the

Table 2. Bidimensional EFA Results for the Illustrative Example.

(a) Goodness-of-Fit Results

RMSEA 95% CI RMSEA T-size RMSEA CFI T-size CFI GFI Z-RMSR

Linear .054 (.051; .055) .062 (fair) .97 .953 (close) .98 .052
CVM .056 (.051; .057) .97 .98 .058

(b) Promin Rotated Pattern

Item

Linear FA CVM-FA

u1 u2 u1 u2

1 .035 .618 .040 .715
2 .273 .075 .266 .066
3 .334 .097 .342 .108
4 .485 .041 .499 .055
5 2.093 .842 2.094 .892
6 .341 .089 .354 .083
7 .500 .008 .535 2.001
8 2.055 .692 2.090 .753
9 .669 .012 .719 2.006
10 .519 .057 .552 .051
11 .719 2.211 .757 2.223
12 2.025 .723 2.032 .771
13 .426 .144 .470 .170
14 .529 2.036 .576 2.044
15 2.031 .792 2.025 .865
16 .591 .099 .616 .129
17 .680 2.140 .730 2.154
18 .119 .533 .132 .605
19 .395 .054 .406 .075
20 .270 .357 .292 .403

Note. RMSEA = root mean square error of approximation; CI = confidence interval; CFI = comparative

fit index; GFI = goodness of fit index; RMSR = root mean square residual; FA = factor analysis; CVM-FA

= categorical-variable-methodology factor analysis. Values in boldface indicate the dominant loading.
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linear-based and the CVM-based score estimates measure the same factors. Second,

the interfactor correlation estimates, both within and between models, agree quite

well with the structural interfactor correlation estimates reported above. This second

result provides more support for the FDI results above that the factor score estimates

are good proxies for the corresponding latent factor scores.

Figure 1 shows the distribution of the individual reliabilities for both factors in the

CVM-FA. It seems clear that Factor 1 not only has a higher marginal reliability but is

also able to accurately measure most of the respondents. In contrast, although the esti-

mated marginal reliability of Factor 2 is only a bit lower, it will provide poor mea-

surement precision for many respondents.

Construct replicability indices and the confidence intervals are in the lower rows

of Table 3. In all cases they are acceptable, which suggests that in both linear and

CVM solutions both factors are well defined and so the solution is expected to remain

stable across studies. In the linear case, the G-H values are the same as the reliability

estimates, as discussed above, and they reasonably agree with the G-H-Observed val-

ues predicted from the CVM-FA. As expected, the GH-latent values are the highest

for both factors, reflecting the result that the factors are better defined by the

Table 3. Score Accuracy and Construct Replicability Results.

Index Linear FA CVM-FA

F1(NPA) F2(PA) F1(NPA) F2(PA)

FDI .921 (.908; .935) .936 (.924; .946) .954 (.939; .966) .936 (.897; .965)
Marginal reliability .849 (.824; .864) .876 (.853; .894) .912 (.882; .934) .876 (.805; .931)

Latent Latent

G-H .849 (.824; .864) .876 (.853; .894) .876 (.848; .889) 0.919 (.899; .930)

Observed Observed

.865 (.841; 0.881) .832 (.812; .849)

Note. FA = factor analysis; CVM-FA = categorical-variable-methodology factor analysis.

Table 4. Correlations Among the Factor Score Estimates With the Marginal Reliabilities in
the Main Diagonal.

û1L û2L û1CVM û2CVM

û1L .849
û2L .558 .876
û1CVM .951 .503 .912
û2CVM .574 .945 .556 .876
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underlying responses than by the observed item scores. Finally, we note that the

CVM-based marginal reliability for the PA factor is below the corresponding G-H

value, which seems reasonable. However, this is not the case for the NPA factor,

which suggests that the marginal reliability estimate for this factor is possibly a little

too optimistic.

Figure 1. Distribution of the individual reliabilities estimates of the F1 and F2 scores, CVM-FA.
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Finally, we summarize the closeness-to-unidimensionality results. The ECV val-

ues and 95% confidence intervals were the following: 0.738 (0.703; 0.769) for the

linear model and 0.754 (0.721; 0.789) for the CVM model. And, for 5 items (the

same in both models), the I-ECV values were below 0.70. As for the IREAL values,

the averages were .276 (linear FA) and .291 (CVM FA), and 8 items (linear FA) and

9 items (CVM FA) had values above .30. Overall, and in both models, it would be

marginally acceptable to consider that the AQ items measure a general common

dimension of aggression. However, given that the bidimensional solution is clear,

replicable, and leads to accurate and reliable factor score estimates for both factors,

the oblique solution seems to be the most appropriate in this case.

Discussion

The main purpose of this article was to propose and implement a series of auxiliary

indices designed to judge the quality and usefulness of FA solutions intended for psy-

chometric applications. Our idea was to propose simple indices that could be provided

as the standard output of an FA program requiring minimal specifications by the user.

Overall, we believe that this purpose has been achieved, and that the proposal is poten-

tially useful for practitioners. However, some issues deserve further discussion.

The first of these issues is the relevance and scope of the contribution. For

decades, the dominant view regarding item FA has been that confirmatory FA is the

way to go, while EFA is at best a rough precursor that can be useful only in the pre-

liminary stages of the analysis (see, e.g., Ferrando & Lorenzo-Seva, 2017). In princi-

ple, we do not agree with this view and, like Cattell (1986), believe that most items

are inherently complex and that unrestricted FA is the most natural and flexible

approach for calibrating and scoring them. This is not an isolated opinion. In recent

times there has been growing discontent among practitioners regarding the unneces-

sarily strong restrictions of strict confirmatory solutions more flexible methods have

been on the rise (e.g., Marsh, Morin, Parker, & Kaur, 2014).

With regard to the scope, we believe it is considerable. In the illustrative example,

we have purposely considered the less restricted form of EFA based on analytical

rotations. However, the procedures proposed here can also be used with more

restricted approaches based on Procrustres transformations against fully specified or

semispecified targets, which are also available in FACTOR (e.g., Ferrando &

Lorenzo-Seva, 2013).

On the practical level, we have implemented CIs based on bootstrap resampling

for all the proposed indices. They seem to work well but are rather time-consuming.

So, perhaps an approach in which approximate CIs are obtained analytically for the

indices in which this approach is feasible, and using Bootstrap for the remaining ones

would be the best option. This point is left for future research.

On the methodological level, the proposal made here is mostly based on results

that are known in the psychometric or statistical literature. However, the novelty is

that this is the first time so many of these results have been used in the present
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context. We are not aware of generalized H indices being used in oblique solutions,

or that they are interpreted differently in linear and the CVM models.

To summarize, we acknowledge that the proposal has its share of limitations and

points that deserve further study. While factor indeterminacy and reliability estimates

are correct for any number of items in the linear case, the empirical estimates in the

CVM case are only asymptotically correct, and probably biased in short tests.

Furthermore, this bias might well depend on the estimation method that is chosen for

calibrating the items (see Beauducel & Hilger, 2017). So, the potential improvement

of these estimates is an issue that warrants further research. More generally, if the

procedures proposed here are to be used correctly, sensible and well-established ref-

erence values need to be provided for all the indices. This point is particularly rele-

vant for the IREAL index in which only a rough rule of thumb has been tentatively

proposed as a cutoff. Overall, further intensive research based on both simulation

and real data, as well as further statistical developments are needed if reference val-

ues are to be improved.
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