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Abstract. Landslide susceptibility maps are helpful tools to
identify areas potentially prone to future landslide occur-
rence. As more and more national and provincial authorities
demand for these maps to be computed and implemented
in spatial planning strategies, several aspects of the quality
of the landslide susceptibility model and the resulting clas-
sified map are of high interest. In this study of landslides
in Lower Austria, we focus on the model form uncertainty
to assess the quality of a flexible statistical modelling tech-
nique, the generalized additive model (GAM). The study area
(15 850 km2) is divided into 16 modelling domains based
on lithology classes. A model representing the entire study
area is constructed by combining these models. The per-
formances of the models are assessed using repeated k-fold
cross-validation with spatial and random subsampling. This
reflects the variability of performance estimates arising from
sampling variation. Measures of spatial transferability and
thematic consistency are applied to empirically assess model
quality. We also analyse and visualize the implications of
spatially varying prediction uncertainties regarding the sus-
ceptibility map classes by taking into account the confidence
intervals of model predictions. The 95 % confidence limits
fall within the same susceptibility class in 85 % of the study
area. Overall, this study contributes to advancing open com-
munication and assessment of model quality related to statis-
tical landslide susceptibility models.

1 Introduction

Landslides occur in mountainous as well as in hilly or coastal
regions worldwide and have often been an underestimated
hazard. In general, people and governing authorities are
not sufficiently aware of the potential locations and conse-
quences of landslides (Hervás, 2003). However, in Austria
authorities and residents have become more aware of land-
slide hazards because of recent major landslide events, which
affected many residents, caused significant damage to infras-
tructure and private properties and were reported and dis-
cussed on the local media (Damm et al., 2010). These include
events in August 2005 in Gasen and Haslau and incidents
in 2009 in the district of Feldbach and in the province of
Lower Austria, where about 4000 landslides occurred in total
(Schwarz and Tilch, 2008; Hornich and Adelwöhrer, 2010;
Abteilung Feuerwehr und Zivilschutz, Amt der NÖ Lan-
desregierung, 2010; BMLFUW, 2010). While in the past in
Austria practices of post-disaster recovery and reconstruction
were applied, recently more and more national and provin-
cial authorities have been demanding pre-disaster mitigation
tools, which help to prevent future damage caused by nat-
ural hazards such as landslides. Aiming at avoidance of the
hazard, zonation plans can be facilitated in prospective land
use planning to prevent development in undesirable locations
or undesirable types of development (Schwab et al., 2005).
In this context landslide susceptibility maps have proven to
be a powerful tool, as they give coherent information on the
spatial probability on where landslides, or landslide scarps,
might occur (Brabb, 1984; Glade et al., 2005; Guzzetti et al.,
2000, 2006; Varnes, 1984). The term landslide susceptibil-
ity is hereby defined by Brabb (1984) as the likelihood of
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a landslide occurring in an area with given local terrain at-
tributes. The frequency or time of occurrence of the future
landslides is not assessed within susceptibility zoning (Fell
et al., 2008).

This study was embedded in a project preparing land-
slide susceptibility maps for the province of Lower Austria
(15 850 km2) with an aimed output map scale of 1 : 25 000
(Glade et al., 2012). Generally, landslide hazard zonation for
determining slope instability due to landslides is based on
simple landslide inventories or heuristic, statistical (includ-
ing machine learning) or deterministic approaches (Soeters
and Van Westen, 1996). Although these approaches are deal-
ing with landslide hazards (spatial and temporal occurrence
probability of landslides) the same categorization can be ap-
plied for susceptibility maps. Statistical landslide suscepti-
bility models are particularly useful for modelling large areas
on a medium scale (1 : 25 000–1 : 500 000) to get an overview
of which slopes or slope sections might be prone to land-
slides in future (Fell et al., 2008). According to the resulting
susceptibility maps, hot spots can be identified where more
detailed analysis of the slope stability should follow (Van
Westen et al., 1997). For this study a statistical approach was
regarded as suitable considering the aimed output map scale,
the size of the study area, the available data and the limited
availability of additional resources for preparing input data
(such as a more detailed landslide inventory or soil parame-
ters).

The central assumption of landslide susceptibility mod-
elling is based on James Hutton’s (1726–1797) concept of
uniformitarianism, “the past and the present are keys to the
future” (Orme, 2002). Thus, statistical estimation of the pos-
sible future location of landslides is usually based on the con-
ditions (e.g. local terrain attributes) of past landslides (Varnes
et al., 1984; Carrara et al., 1993). Presently, several statistical
and machine learning techniques are available for applica-
tion to landslide susceptibility modelling. The most common
are logistic regression (e.g. Atkinson et al., 1998; Ayalew
and Yamagishi, 2005; Van Den Eeckhaut et al., 2006), bi-
variate models such as weights of evidence (e.g. Neuhäuser
and Terhorst, 2007; Schicker and Moon, 2012) and machine
learning techniques such as artificial neural networks (e.g.
Nefeslioglu et al., 2008; Pradhan and Lee, 2009) and sup-
port vector machines (e.g. Marjanović et al., 2011; Pradhan,
2013). Detailed reviews and comparison of different models
can be found, among others, in Guzzetti et al. (1999), Dai
et al. (2002), Brenning (2005), Glade and Crozier (2005),
Guzzetti (2005), Rossi et al. (2010) and Vorpahl et al. (2012).
However, the more flexible machine learning algorithms of-
ten tend to overfit (Sect. 5.2), while linear models might not
be flexible enough to portray possible nonlinearity in the re-
lationship between landslide occurrence and the explanatory
variables (Brenning, 2005; Nefeslioglu et al., 2008; Goetz
et al., 2011). In this study the nonlinear generalized addi-
tive model (GAM, Hastie and Tibshirani, 1990) was selected
for the susceptibility modelling. The GAM is widely used in

ecological modelling (Guisan et al., 2002) and has recently
been introduced to landslide susceptibility modelling (Bren-
ning, 2008; Jia et al., 2008; Park and Chi, 2008; Goetz et al.,
2011; Vorpahl et al., 2012). It is an extension of the general-
ized linear models (GLMs, such as logistic regression) that
can model nonlinear relationships between response and ex-
planatory variables while being less prone to overfitting in
geomorphological modelling than the more flexible methods
(Hastie and Tibshirani, 1990; Brenning, 2009; Goetz et al.,
2011).

Since the application of the landslide susceptibility map
resulting from this study is planned for implementation by
municipal authorities, our main focus is to identify differ-
ent aspects of quality (depending on input data, model per-
formance and provided analysis of prediction uncertainties).
Accordingly, the purpose of this study is to review the char-
acteristics that describe quality, to analyse the (statistical)
model quality and to assess and visualize the uncertainty of
the prediction.

Likewise, this paper presents a review on considera-
tions on quality in statistical landslide susceptibility maps
(Sect. 2); background information on the study area and the
landslides (Sect. 3); a description of the data sources and
the input data preparation (Sect. 4); a detailed section on the
methods used assessing the model form uncertainty and pre-
diction uncertainty within a topographically heterogeneous
study area (Sect. 5) and a thorough presentation of the results
(Sect. 6) followed by a critical discussion (Sect. 7). The paper
ends with a short conclusion highlighting the main findings
of this study (Sect. 8).

2 Considerations on the quality of statistical landslide

susceptibility models and resultant maps

As it comes to the application of the landslide susceptibil-
ity maps, which is associated with constructing a decisive
reality (Egner and Pott, 2010) for the municipality and the
land use planners, a detailed and transparent assessment of
its quality is necessary. This very broad term of quality can
be interpreted in several ways and in several stages of the pro-
cess of preparing a landslide susceptibility map as described,
amongst others, by Carrara (1993), Carrara et al. (1995),
Ardizzone et al. (2002), and Guzzetti et al. (2006). In gen-
eral, good quality refers to input data, a model or result (e.g.
susceptibility map) which includes relatively low uncertain-
ties.

Landslide susceptibility modelling is inherently riddled
with uncertainties. In engineering and risk assessment a basic
distinction between aleatory and epistemic uncertainties is
very common (Hoffman and Hammonds, 1994; Oberkampf
et al., 2004; Roy and Oberkampf, 2011; Hill et al., 2013).
Many processes and conditions leading to landslide oc-
currence are known and mappable, known but not col-
lectable, or are simply unknown (Carrara et al., 1999). The
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imperfect understanding of the complexity of this hazardous
phenomenon arising from the missing knowledge (Ardizzone
et al., 2002; Kunz et al., 2011) is generally referred to as epis-
temic uncertainty (Hoffman and Hammonds, 1994; Hora,
1996; Oberkampf et al., 2004). Epistemic uncertainty is of-
ten divided into input uncertainty, parametric uncertainty and
structural or model form uncertainty (Roy and Oberkampf,
2011; Rougier and Beven, 2013). Naturally, these uncertain-
ties can be reduced by improving knowledge of the subject
(Spiegelhalter and Riesch, 2011). Unavoidable uncertainty
arising from the natural variability and/or randomness of
the natural hazard process can be distinguished as aleatory
uncertainty (Rougier and Beven, 2013; Rougier, 2013). Al-
though these distinctions can be applied, the organization
of uncertainties is dependent on the study objectives (Hora,
1996; Roy and Oberkampf, 2011).

In the following, we will discuss quality by addressing
uncertainty issues associated with statistical modelling re-
garding input data (parametric uncertainty), model perfor-
mance (model form uncertainty) and the final susceptibil-
ity map. Details on other types of uncertainties which might
be more important for other types of susceptibility assess-
ment (e.g. deterministic) or on the propagation of uncertain-
ties can be found e.g. in Hoffman and Hammonds (1994),
Draper (1995), Oberkampf et al. (2004), Karam (2005), Hel-
ton et al. (2010) and Rougier (2013).

2.1 Quality of input data

Achieving a good quality of the final landslide susceptibil-
ity map starts with the quality of the input data set for the
modelling. Besides the geomorphological relevance, the spa-
tial resolution and accuracy of the geo-environmental as well
as the landslide inventory data is important (van Westen et
al., 2008). During the preparation of all input data (done by
mapping or measuring) subjectivity, the experience of the
mapper, measuring errors or imprecision in computer pro-
cesses are sources of parametric uncertainty (Mosleh, 1986;
Ardizzone et al., 2002; Elith et al., 2002; van Westen et al.,
2005, 2008). Furthermore, possible incompleteness, not only
in a sense of full spatial coverage but also of general avail-
ability of important thematic information on (predisposing or
preparatory) factors determining the landslide susceptibility
influences the quality and makes the susceptibility assess-
ment more difficult (Carrara et al., 1999; Ardizzone et al.,
2002; Van Westen et al., 2005). This source of epistemic un-
certainty can rarely be reduced and other assessments of the
uncertainty have to be selected. The quantitative assessment
of parametric uncertainty and incorporation in subsequent
hazard and risk assessment is still a challenge (Ardizzone
et al., 2002; Oberkampf et al., 2004; Roy and Oberkampf,
2011). Therefore, estimation on the completeness of the land-
slide inventory and details on the collecting and mapping
method giving information on the accuracy and the location
of the landslide point/line/polygon (main scarp or entire land-

slide body) are very important. This influences the further us-
age of the input data set and the feasible interpretation of the
susceptibility maps substantially.

2.2 Quality of statistical model form

Every model is a simplification of reality. Therefore, while
modelling landslide susceptibility, it should be expected that
some discrepancies regarding the ability to explain all the
processes involved in the phenomenon would naturally oc-
cur (Rougier and Beven, 2013). Every modelling result is
highly dependent on the input data, the assumptions made
to set up the model design and the selection and performance
of an appropriate model. These assumptions also define the
limitations of the model, its result and the allowed interpre-
tation of it. Quantifying this part of the model form uncer-
tainty is challenging. However, model validation procedures
have been developed and are commonly applied to assess the
model performance and therefore the model form uncertainty
(Roy and Oberkampf, 2011).

The prediction skills (Guzzetti et al., 2006) can be
analysed quantitatively with various performance measures
and estimation techniques, and qualitatively by consider-
ing expert knowledge of a particular study area. Qualita-
tive methods analyse the geomorphic plausibility of the map
(Demoulin und Chung, 2007; Bell, 2007). Common quan-
titative performance measures are success/prediction rate
(Chung and Fabbri, 2003, 2008), confusion matrix or error
rates (Beguería, 2006a; Brenning, 2005), and cost curves
(Frattini et al., 2010). Among the performance estimation
techniques and measures, cross-validation using a single
hold-out method and the area under receiver operating char-
acteristic curve (AUROC) value based on ROC plots (Be-
guería, 2006a; Brenning, 2005; Frattini et al., 2010) are usu-
ally applied (i.e. Chung and Fabbri, 1999, 2003; Fabbri et
al., 2003; Remondo et al., 2003; Brenning, 2005; Beguería,
2006a; Frattini et al., 2010; Rossi et al., 2010).

In single hold-out methods the data set is split in one single
training and test sample. The training sample is used to fit the
model and the test sample is used to determine the model per-
formance. This results in a single estimate of the performance
measure (e.g. one single AUROC value) without providing a
measure of precision of the estimator. The estimate depends
on the (random) sample used for modelling the susceptibility
and testing the model’s performance, which may itself have
“peculiar” random characteristics that would be different for
a different test set. Repeated k-fold cross-validation solves
this problem by using, one after another, different subsets or
partitions of the data set as test and training sets, thus ef-
fectively using the entire data set for performance estimation
(Brenning, 2012a, b). In addition, repeating this procedure
for different data partitioning reduces sampling variability
and allows for the determination of the precision of the per-
formance estimator (see Sect. 5.3 for details).
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Depending on the partitioning method (randomly or spa-
tially) to obtain the folds, these statistical estimation methods
can further provide a means for assessing the non-spatial
transferability of a model onto a different, independent ran-
dom sample, and the spatial transferability into a spatially
separate area. Spatial transferability refers to the capability
of the model to generalize empirical relationships learned
on a training data set, and to transfer these relationships to
(usually adjacent) regions without major loss in predictive
performance (Brenning, 2005; Von Ruette et al., 2011). This
(non-) spatial transferability describes the model form uncer-
tainty besides other performance measures such as the AU-
ROC value.

In addition, aleatory uncertainties are of importance in the
modelling stage, because even if all parameters were known
perfectly, some deviance (or discrepancy) of the model re-
sults in nature might still occur due to the natural variability
of the process (Elith et al., 2002, Rougier and Beven, 2013).

2.3 Quality of final susceptibility map –

visualizing prediction uncertainties

One important model uncertainty which can be visualized in
a map is the prediction uncertainty arising from using a statis-
tical model. The output of a statistical model for spatial mod-
elling is usually comprised of a single probability value for
each unit of the prediction surface (grid cells, slopes or ter-
rain units). These individual probability values represent an
estimated conditional mean value of the predicted probabil-
ity (Hosmer and Lemeshow, 2000). Therefore, there is a pre-
diction uncertainty or possible range, as determined by the
standard error of the predicted probabilities, of probability
estimates for each unit of the susceptibility map (Guzzetti et
al., 2006). The analysis of the standard error of the predicted
probabilities and the prediction uncertainty analysis are in-
dependent of any class thresholds. Estimating the standard
error was analysed and presented in previous research (e.g.
Guzzetti et al., 2006; Van den Eeckhaut et al., 2009; Rossi et
al., 2010; Sterlacchini et al., 2011). However, the way it af-
fects the appearance of the classified landslide susceptibility
map is of interest for planning purposes as considering these
prediction uncertainties might result in overlaps of different
susceptibility classes. Naturally, the amount of overlapping
raster cells and therefore the uncertainty in the final classi-
fied map might be dependent on the number of classes and
the selected thresholds for the classification.

3 Lower Austria and landslide occurrence

The Austrian province of Lower Austria covers a total area
of 19 177 km2, 15 850 km2 of which constitute our study area
(Fig. 1).

The variation of material and topographic characteristics
across Lower Austria can be attributed to the diverse lithol-
ogy (Petschko et al., 2012). The predominant material types
include gravel, sand in the alluvial deposits and fluvial ter-
races; loess and loam; marl with a high amount of silt in the
Molasse Zone and Schlier Zone; sandstone and marlstone of
the Rheno-danubian Flysch Zone and Mélange Zone; lime-
stone, dolostone and the igneous rocks of the Austroalpine
Unit; and gneisses and granites in the Bohemian Massif
(Fig. 1, Table 1).

The median slope angle was used as a simple proxy of
the topographic characteristics to highlight the diverse con-
ditions across Lower Austria. The median slope angle ranges
from a minimum of < 1◦ (alluvial deposits) to a maximum of
27◦ (Austroalpine Unit with dolostone; Table 1).

Land use patterns and variation on precipitation also con-
tribute to the diverse geography of Lower Austria. The land
use (40 % agricultural land, 40 % forest, 13 % grassland)
is unevenly distributed across the province. Areas south of
the Danube and the relatively flat northeast region of the
province are predominantly used as agricultural land. The
steeper slopes in the south and southwest are mainly forest-
covered (coniferous and deciduous forest; Eder et al., 2011).
The spatial distribution of the mean annual precipitation rate
shows a gradient between the northeast (400–500 mm) and
the southwest regions (1600–1700 mm) (Hydrographischer
Dienst des Landes Niederösterreich, 2011).

Many different landslide types including rockfalls, earth
slides, debris slides and debris flows, can be found in Lower
Austria (classified according to Cruden and Varnes, 1996;
and Dikau et al., 1996). While rockfall and debris flows typ-
ically occur in the southern lithology (Austroalpine Unit),
earth- and debris slides occur all over the province with dif-
ferent densities (Table 1), sizes and depths. Only earth- and
debris slides which were mapped with one point in the main
scarp of each slide were within the scope of this study; recent
examples of these landslide types are shown in Fig. 2.

The earth- and debris slides in Lower Austria are
mainly triggered by heavy rainfall or rapid snowmelt
events (Schwenk, 1992; Schweigl and Hervás, 2009). The
Mélange lithology has the maximum landslide density of
5.5 landslides km−2. The Rheno-danubian Flysch Zone and
the Zone of Molasse with Schlier also have high landslide
densities (> 4 landslides km−2). The lithological properties
and topographic characteristics of these units are highly sus-
ceptible to earth- and debris slides (Gottschling, 2006; Wes-
sely, 2006). These densities were calculated from the land-
slide inventory described in Sect. 4.1.

4 Data sources and preparation

The susceptibility modelling in this study was based on an
airborne laser scanning digital terrain model (LiDAR-DTM)
with a resolution of 1 m × 1 m, acquired between 2006 and
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Fig. 1. Location and lithology of Lower Austria.

Table 1. Lithological units of Lower Austria: landslides and topography.

Code Merged Name Material+ Area (km2) No. Landslide Median
units of density slope

slides (No. km2) (◦)

1 0124 Anthropogenic deposits 2.93 0 0 3.1
2 02297 Alluvial deposits Gravel, sand, 3739.17 194 0.05 0.9
10 10 Loess, Loam Sand, loam, loess-loam, drifting sand 2849.22 329 0.12 2.8
24 0124 Quaternary fluvial terrace Gravel, sand, loess loam, 747.79 222 0.30 2.2
35 35 Debris, till Debris, till, scree material, 217.19 177 0.81 16.6

rock avalanche material
37 3786 Bohemian Massif with sedimentary cover Sandstone, claystone, conglomerate 30.95 0 0 12.2
39 39 Molasse Zone Marl, sand, gravel, silt 1462.46 428 0.29 4.7
58 58 Molasse, Schlier Fine sandy-silty marl in 117.43 501 4.27 4.8

the circum-Alpine Tertiary basins
86 3786 Waschberg Zone Marl, sand, limestone, clay 123.50 52 0.42 5.8
104 104 Intramontane Basins Sand, gravel, breccia, clay, marl 737.26 291 0.39 5.2
120 120 Mélange Zone, Klippen Zone Dominantly penninic metasediments and phiolites as well 73.46 404 5.50 11.9

as insignificant Austroalpine elements, Ybbsitzer and Grestener Klippen Zone
126 126 Rheno-danubian Flysch Zone Interbedded sandstone, marlstone to mudstone, marl 1365.96 6281 4.60 12.6
179 179 Austroalpine Unit with limestone, marls and sandstone Limestone, marl, shale, sandstone, gypsum, conglomerate 785.85 1636 2.08 20.2
191 191 Austroalpine Unit with dolostone Dolostone, limestone 2148.57 1419 0.66 27.1
230 230 Permo-Mesozoic rocks (overlying the Austroalpine igneous rocks) Carbonate rocks, siliciclastics, porphyry (mostly metamorphics) 116.43 88 0.76 19.5
239 239 Igneous rocks of the Austroalpine Unit Orthogneiss, Paragneiss, Mica-schist, Phyllite 614.35 586 0.95 15.1
251 251 259 Bohemian Massif, Fault Zone Tectonic fault zone 11.81 0 0 7.0
259 251259 Bohemian Massif Paragneiss, mica-schist, phyllite, orthogneiss, Gföhl Gneiss, Granulite 2398.93 227 0.09 6.1
276 276 Bohemian Massif, plutonic rock Granite, plutonic rock 1606.85 52 0.03 6.5
297 02297 Lake, wetland Limnic sediments, wetland 38.77 2 0.05 3.5

+ sorted according to frequency of occurrence, after geological map
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unit (a) landslide in Molasse Zone at Strengberg, (b) the village “Waitzendorf” located on a 
Fig. 2. Examples of landslides (earth- and debris slides) typical of
the respective lithological unit (a) landslide in Molasse Zone at
Strengberg, (b) the village “Waitzendorf” located on a landslide
in Molasse with Schlier, (c) translational landslide in the Rheno-
danubian Flysch Zone at Brand, (d) rotational landslide/flow in
the Rheno-danubian Flysch Zone at Stössing, (e) landslide in Aus-
troalpine Unit (Limestone, Marls) at Dippelreith, (f) landslide in
Austroalpine Unit (with Dolostone) at Kleinzell. Pictures taken by:
(a), (b), (c), (f) Petschko (2010, 2011, 2012); (d) Bertsch (2009);
(e) BGR (2006).

2009. LiDAR-DTMs are very useful for mapping landslides
and representing the morphology of the study area, even in
forest areas (Van den Eeckhaut et al., 2007; Razak et al.,
2011).

Considering the detailed resolution we have given in the
LiDAR-DTM and the rather coarse resolution given in the
soil data (50 m × 50 m) we had to find a compromise for the
analysis and output of the susceptibility map. We decided
an output resolution of the maps of 10 m × 10 m would be
suitable to produce 1 : 25 000 scale maps; we are still able
to take advantage of the high resolution of the topographic
data but also avoid wrong signals in the modelling from very
local variations in the derivatives of the high-resolution DTM
(Van Westen et al., 2008). The resampling to a 10 m × 10 m
resolution was done by bilinear interpolation. Nevertheless,
we are aware that this artificial improvement of the soil data
resolution does not increase the data accuracy.

4.1 Response variable – landslide inventory

The landslide inventory originates from previous research
where earth- and debris slides were mapped from a high-
resolution LiDAR-DTM (Petschko et al., 2010; Glade et al.,
2012, Petschko et al., 2013a). This inventory consisted of

points located in each landslide’s main scarp and includes
12 889 earth- and debris slides (Table 1). However, no at-
tributes (landslide type, estimated age, land use, time/date of
occurrence etc.) were assigned to each point.

Considering the large study area and the aimed result of a
susceptibility map with three classes, a point inventory was
preferred over a polygon inventory (Petschko et al., 2013a,
c). The decision to map one point per landslide was aimed
at increasing mapping effectiveness, avoiding uncertainty re-
lated to mapping landslide polygon boundaries, reducing
spatial autocorrelation of the case samples (e.g. landslides)
and providing equal treatment of small and large landslide
samples (Carrara, 1993; Atkinson and Massari, 1998; Van
den Eeckhaut et al., 2006; Heckmann et al., 2013; Petschko
et al., 2013a). A comparison of modelling landslide suscep-
tibility with sampling either a single point for the main scarp
or a random point anywhere in a landslide polygon was con-
ducted by Petschko et al. (2013c). They observed only small
differences between the predictive model performances and
classified susceptibility maps for the two landslide sampling
schemes.

The landslide mapping focussed on distinct and easily de-
tectable morphologies that remain visible after the occur-
rence of a landslide (McCalpin, 1984). Very old landslides
and landslides that were not visible in the available imagery,
were not included in the inventory; the full slide with scarp,
transportation and accumulation area had to be discernible in
the LiDAR-DTM hillshade to be included in the inventory
(Petschko et al., 2013a). In areas where human activity on
land use was very high, such as agricultural areas, the abil-
ity to identify landslides was particularly challenging (Bell et
al., 2012). We assume that in agricultural areas fewer land-
slides were mapped than actually occurred; however, the full
extent of the incompleteness of the inventory obtained in the
study area remains unknown.

4.2 Explanatory variables

Geomorphically meaningful, explanatory variables available
for this study represented terrain conditions, soil properties
and potential tectonic activity.

Several terrain attributes were derived from the LiDAR-
DTM as proxies for geomorphic and hydrological pro-
cesses. We used SAGA GIS (Conrad, 2007) to calculate
slope angle (◦), slope aspect (◦, transformed using the sine
and cosine representing east versus west and north versus
south; Brenning, 2009), overall curvature (all calculated with
second-degree polynomial approximation; Zevenbergen and
Thornes, 1987), a topographic wetness index (SAGA wet-
ness index; Boehner et al., 2002), catchment height and
catchment area calculated with multiple flow direction algo-
rithm (Freeman, 1991; Quinn et al., 1991), as well as con-
vergence indices, calculated with 10 m and 50 m radius, re-
spectively, to represent morphological changes on different
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scales. Data preparation was performed within the R pack-
age RSAGA (Brenning, 2011).

Van Westen et al. (2008) had discussed the relevance of
most of these terrain attributes to landslide susceptibility.
The relationship of slope angle with landslide activity is well
known from general slope stability literature (e.g. Crozier,
1986). Slope aspect can be used as a proxy for bedding ori-
entation. It may also reflect differences in intensity of solar
radiation, which controls the local temperature and evapora-
tion and therefore soil moisture (Van Westen et al., 2008).
Curvature represents convex and concave surfaces related to
local morphology (3 × 3 grid cells). The topographic wet-
ness index was used as a proxy for the soil moisture and
ground water level (Beven and Kirkby, 1979; Seibert et al.,
2007). The position of the landslide on the slope and the dis-
tance from the ridge was represented by the variable catch-
ment height. The catchment area was calculated for the sub-
catchments and gives a local representation of the contribut-
ing area. Convergence indices were calculated to represent
the slope morphology on two different scales by using two
different window sizes for the calculation (10 and 50 m). Pos-
itive values indicate ridges while negative values indicate lo-
cal depressions.

Information on the soil properties is also very important as
they have an effect on the infiltration capacity and water stor-
age in the soil, which ultimately influences the disposition to
landslides (Crozier, 1986). From the soil data set of Eder et
al. (2011) we extracted four gridded variables representing
permeability (mm d−1; average value of the top 20 cm, and
minimum value within 100 cm profiles) and void space (%;
average value of the top 20 cm, and average of 100 cm pro-
files), which may be considered as a proxies for the infiltra-
tion capacity.

Available tectonic vector data included fault lines and
nappe boundaries (Kurz, 2012). The proximity to a fault line
might refer to the occurrence of weakened material that has
already been strongly tectonically influenced, reworked and
mechanically fragmented. This material generally has lower
shear strength and may therefore be more prone to landslides
(Crozier, 1986). Furthermore, earth- and debris slides might
occur with higher density close to nappe boundaries, as these
indicate a distinct difference in the material and permeabil-
ity. For example, many earth- and debris slides have been
observed where the nappe boundary of the Austroalpine Unit
with limestone overlays the Rheno-danubian Flysch Zone.
The higher water permeability of the Austroalpine limestone
on top of denser sandstones and marlstones of the Flysch
Zone can result in increased soil water availability at the
boundary zone and presence of boundary springs (Schnabel,
1985). The fault lines and nappe boundaries were included
in the susceptibility analysis by calculating grids represent-
ing the Euclidean distance from the respective features.

Land cover data for Lower Austria was also available for
this study, but was not included in the analysis. Since the ages
of the landslides were not available in the inventory, it would

not be accurate to associate the landslide distribution with
present land cover conditions (Petschko et al., 2013b). We
simply do not know how land cover had historically changed
and influenced all of the landslides in this inventory, which
is important to understand the changing conditions of slope
stability (Glade, 2003; Beguería, 2006b; Van Den Eeckhaut
et al., 2009; Bathurst et al., 2010). For example, areas which
are forested today might not have been forested for a long
time period in the past, e.g. due to influences of mining ore
in the study area (Lettner and Wrbka, 2011). Therefore, the
landslide susceptibility models were prepared focussing on
local terrain conditions (Brabb, 1984), which are relatively
static compared to the dynamic nature of land cover (Van
Westen et al., 2008).

5 Methods

5.1 Modelling of heterogeneous areas

The heterogeneity of geotechnical and topographical charac-
teristics over a study area should be considered when mod-
elling landslide susceptibility (Lee et al., 2008; Blahůt et
al., 2010). Modelling separately in lithology units is one
approach to addressing this heterogeneity (Petschko et al.,
2012). This approach avoids the use of interaction terms to
represent lithology-dependent processes and preparatory fac-
tors, and thus facilitates easier interpretation of the models.
Fitting the model with individual modelling domains based
on the lithology units is expected to improve overall predic-
tive performance by accurately representing the diversity of
geotechnical conditions across the study area (Blahůt et al.,
2010; Petschko et al., 2012; Trigila et al., 2013).

Accordingly, the study area was divided into 16 modelling
domains based on a simplified 1 : 200 000 lithological map
(Fig. 1; Schnabel, 2002; Bell et al., 2013). The lithologi-
cal map gives details on the parent material available for
soil formation. This determines the geotechnical character-
istics on a scale of 1 : 200 000. Data on the parent material
was used as a proxy for these characteristics, as no appro-
priate geotechnical data covering the entire study area was
available. Lithology units with no observed landslides were
merged with geotechnically similar units to create homoge-
nous modelling domains (Table 1). The final susceptibility
map of the province was obtained by merging the individual
susceptibility maps of the 16 domains.

5.2 Generalized additive model

Among the currently available methods for landslide suscep-
tibility modelling a generalized additive model (GAM) is a
compromise between the nonlinear predictive flexibility of
machine learning algorithms and the smooth, yet linear, pre-
dictions of GLMs such as logistic regression. The model fit
of the GAM can be easily interpretable, unlike most machine
learning algorithms (Brenning, 2008; Goetz et al., 2011). In
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addition, the GAM is more suitable for representing the non-
linear response of slope stability to changing site conditions
than the GLM (Goetz et al., 2011).

The basic design of a GAM is to replace the linear func-
tion of each co-variate as used in a GLM with an empiri-
cally fitted smooth function to “let the data show the ap-
propriate functional form” (Hastie and Tibshirani, 1990).
Thus a GAM allows the combination of linear and nonlin-
ear smoothing functions in an additive manner to describe
the relationship between explanatory and response variables.
In the case of the logistic additive model for binary (pres-
ence/absence) response variables, the response variable is not
modelled directly, but using the logit of the occurrence prob-
ability p(x) conditional on explanatory variables x = (x1,
. . . , xm)T (Hastie and Tibshirani, 1990):

logit(x) = log
(

p(x)
/

(1 − p(x))
)

(1)

= β0 + β1f1 (x1) + ... + βmfm (xm),

where the functions fi are nonparametric smoothers. The
quantity

odds(x) = p(x)
/

(1 − p(x)) (2)

is referred to as the odds. Thus, the logistic GAM is additive
at the logit level, but increases in fi have a multiplicative
effect on the odds.

We used a combined backward and forward stepwise vari-
able selection based on the Akaike Information Criterion
(AIC), which measures the goodness-of-fit while penaliz-
ing for model complexity to obtain a parsimonious model
(Akaike, 1974). Smaller models help to keep the estimated
coefficient standard errors small and prevent the model from
overfitting, which occurs when the number of variables in
the model is large relative to the number of landslide sam-
ples (Hosmer and Lemeshow, 2000). Overfitting refers to an
algorithm or model that performs very well on the available
training data to which it is fitted, but poorly on future or
new test data and therefore produces unreliable predictions
(Hand, 1997; Hosmer and Lemeshow, 2000).

Our study design was a case-control study with the
mapped landslide samples as cases and randomly selected
non-landslide samples as controls. The landslide suscepti-
bility maps were derived for each modelling domain from
a model (GAM1–GAM16) using all landslide samples while
the model performance is assessed using cross-validation, i.e.
subsamples of landslide cells (Sect. 5.3). The sampling of
non-landslide cells for the entire study area was based on a
density of 2 % of all grid cells. An equal number of cases and
controls (1 : 1) was used for each model fitted; the landslide
samples were matched to an equal number of randomly se-
lected non-landslide samples. This gives the sample size in
the respective modelling domain.

It was necessary to adjust each model’s raw predictions
based on the corresponding sampling rate to account for the
general relative landslide susceptibility of each modelling

domain. We adjusted the prediction by considering the sam-
pling rate (τ0/τ1) of each domain, using Eq. (3),

odds∗(x) = τ0
/

τ1 × odds(x), (3)

where

τ0 = number of sampled non-landslide cells
/

(4)

total number of non-landslide cells,

and

τ1 = number of sampled landslide cells
/

(5)

total number of landslide cells,

and odds (x) is the unadjusted prediction, in our case,
based on training a model with an equal number of land-
slides to non-landslides (1 : 1) in each domain. The odds∗(x)
gives the adjusted odds (Scott and Wild, 1986; Hosmer and
Lemeshow, 2000). As all landslides were used in this step,
τ1 =1. The adjusted probability p∗(x) was calculated from
odds∗(x) which was therefore comparable among different
modelling domains. GAM modelling was performed with the
gam package within the open-source statistical software R
(Hastie, 2011; R Development Core Team, 2011).

The adjusted probabilities of landslide susceptibility of the
merged map were further classified into discrete classes of
low, medium and high susceptibility based on thresholds re-
lated to the percentage of observed landslides falling within
each susceptibility class. This was a result of testing differ-
ent thresholds and checking them in the field according to
the best geomorphic and planning plausibility. A threshold
for the low susceptibility class was selected so that 5 % of
the observed landslides having the lowest predicted proba-
bilities would fall within this class. An additional 25 % of
the observed landslides would fall within the medium sus-
ceptibility class, while the high susceptibility class contained
the 70 % of the landslides with the highest predicted proba-
bilities. The corresponding class thresholds of 0.00209 and
0.0141 were also applied to classify the maps corresponding
to the approximate upper and lower confidence limits calcu-
lated for each grid cell at the 95 % confidence level (refer to
Sect. 5.5).

5.3 Spatial and non-spatial cross-validation

The assembly of the test data for performance assessment
can be achieved in three ways: (1) random subsampling, (2)
spatial subsampling and (3) temporal partitioning of the land-
slide data (Chung and Fabbri, 2003). As there was no infor-
mation on the landslide age or time of occurrence available
for temporal partitioning, we focused on testing random and
spatial subsampling of cases and controls within each homo-
geneous modelling domain.

We used non-spatial and spatial k-fold cross-validation to
assess each model’s predictive performance as a measure of
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the model’s non-spatial and spatial transferability (Kohavi,
1995; Townsend Peterson et al., 2007). With random subsam-
pling traditional non-spatial cross-validation was performed.
Furthermore, spatial cross-validation was applied by spatial
subsampling based on k-means clustering classification of
point coordinates (Ruß and Brenning, 2010). In k-fold cross-
validation, k (here: k = 5) randomly or spatially selected dis-
joint subsamples, or folds, are derived. The model was fitted
k times on the combined data of k-1 folds and tested on the
data of the remaining fold by applying the fitted model to the
test fold and calculating the performance measure (Kohavi,
1995).

In order to obtain results that are independent of a particu-
lar partitioning, cross-validation was repeated r times (here:
r = 20), and the median and interquartile range of the 20
outcomes was calculated. This resulted in 100 different esti-
mates of the performance measures.

We use the AUROC as a performance measure, which
was derived by comparing the sensitivity of a model (pro-
portion of true positives) to the specificity (more precisely,
1-specificity, or false positives rate; Hosmer and Lemeshow,
2000). The AUROC takes values between 0 and 1 where a
value of 0.5 would be achieved by pure chance agreement
between predictions and observations and a value of 1 repre-
sent perfect discrimination (Brenning, 2005; Guzzetti et al.,
2006); however, this may also indicate overfitting. Thus, the
AUROC measures the model’s ability to discriminate land-
slide and non-landslide cells (Hosmer and Lemeshow, 2000).

Spatial and non-spatial cross-validation was also applied
to test the effects of reducing the sample size on the in-
terquartile range of the AUROC values and the thematic con-
sistency within one domain. This was performed within the
modelling domain Flysch Zone. The cross-validation was ap-
plied 9 times (with 5 folds and 20 repetitions each) while
the sample size of the training sample (including landslide
and non-landslide samples) is reduced from 12 562 to 6400,
3200, 1600, 800, 400, 200, 100 and to 50 samples. The test
sample was determined constant with a sum of 2000 land-
slide and non-landslide sample cells. Spatial and non-spatial
cross-validation was performed with the sperrorest package
in R (Brenning, 2012b).

5.4 Transferability and thematic consistency indices

The non-spatial and spatial transferability were expressed by
the interpretation of the estimated interquartile range (IQR)
of the AUROC values resulting from the non-spatial and spa-
tial cross-validation of each modelling domain. The lower
the estimated IQR, the better we considered the non-spatial
and spatial transferability of the model within the modelling
domain. However, sample size differences among modelling
domains result in differences in sampling variability of AU-
ROC estimators, which then has an influence on the IQR
of AUROC among cross-validation repetitions. In order to
account for this contribution to sampling variability and be

able to provide a transferability measure that was compara-
ble among modelling domains, the IQR had to be adjusted
according to the sample size. We define a transferability in-
dex by adjusting the estimated interquartile range (IQR) for
the contribution of test-set estimation to sampling variabil-
ity. For this purpose, we calculated the approximate standard
error (SE) of the AUROC (AUC) estimator on a test set of
N landslide and N non-landslide samples using the equation
presented by Hanley and McNeil (1982):

SE =

(

AUC × (1 − AUC) + (N − 1) × (Q1 − AUC2) (6)

+(N − 1) × (Q2 − AUC2)
)

/

N2.

The quantities Q1 and Q2 were calculated from the AUROC
(AUC) value as shown by the following equations:

Q1 = AUC
/

(2 − AUC) (7)

Q2 = 2 × AUC2/(1 + AUC). (8)

Since the IQR is approximately equal to 1.35 times the cor-
responding standard deviation under normal distribution, we
used the following equation to remove the contribution of SE
to the IQR of the AUROC, and refer to this quantity as the
transferability index T :

T =

√

IQR2
− (1.35 × SE)2. (9)

When slightly negative terms occurred under the square root
due to the approximation used, these values were replaced by
a value of zero.

A higher value of T indicates a greater variation in pre-
dictive performance among models fitted to cross-validation
training partitions, which can be interpreted as a poorer trans-
ferability. We refer to the transferability calculated by spatial
(non-spatial) cross-validation as spatial (non-spatial) trans-
ferability Tsp (Tnsp).

Furthermore, the results of the non-spatial and spatial
cross-validation provide an estimate on the variable impor-
tance and the thematic consistency in each modelling do-
main. Based on the 100 models fitted on the different cross-
validation training sets within each modelling domain, using
stepwise variable selection we assess the importance of each
variable in predicting landslide susceptibility using its selec-
tion frequency (Goetz et al., 2011). This variable-selection
frequency can also be interpreted as a proxy for the the-
matic consistency of the model (Guzzetti et al., 2006). The
thematic consistency is an additional measure to the trans-
ferability index showing the model’s (and the stepwise vari-
able selection’s) sensitivity to sample variation. A high the-
matic consistency is preferable and describes a good quality
of the model (Guzzetti et al., 2006). To formalize this con-
cept, we introduce a thematic consistency index that mea-
sures the agreement between variable choices among cross-
validation repetitions. In analogy to the Gini impurity index
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used in classification (Hand, 1997), we define the consistency
index C by

C = (p1 (1 − p1) + ... + pm (1 − pm))
/

(0.25 × m), (10)

where pi is the proportion of models that include the ith pre-
dictor variable out of m predictors. The consistency index is
calculated for each modelling domain and for spatial (Csp)

and non-spatial cross-validation (Cnsp). Good thematic con-
sistency is achieved when each variable has a selection fre-
quency either close to 0 % or 100 %, resulting in a pm(1-
pm) value near 0. Therefore, a low value of C indicates
a strong consistency among models. Selection frequencies
around 50 % indicate weak thematic consistency and produce
pm(1-pm) values of up to 0.25 m and a maximum C value of
1.

5.5 Spatially varying prediction uncertainties

The basis for the visualization of the landslide susceptibility
map is the predicted probability of the occurrence of land-
slides of each grid cell, which is computed from the pre-
dicted logit. These predictions are subject to uncertainty due
to sampling variability and model error, which can be ex-
pressed by the standard error of model predictions. This stan-
dard error further provides a means to determine approx-
imate upper and lower confidence limits for the predicted
logit and ultimately the predicted probability. These limits
define an interval within which the true logit or probability
of sites with given values of the explanatory variables is lo-
cated with the chosen confidence of, for example, 95 % (Hos-
mer and Lemeshow, 2000). In other words, we have strong
confidence that the true probability of landslide occurrence
at a given type of location is within the confidence interval,
but we would hesitate to claim that the true probability falls
within any narrower range of values within the confidence
interval.

In this study, confidence interval estimates for the pre-
dicted logit and probability are of special interest in or-
der to assess the implications of spatially varying uncertain-
ties for the interpretation of the final classified susceptibil-
ity map. Since the available GAM implementation (Hastie,
2011) does not provide standard errors or confidence inter-
vals for “new” objects that are not included in the training
sample, we proceed as follows to estimate standard errors for
each location in the prediction map. We first compute stan-
dard errors on the logit and probability levels for all sample
cells. A lookup table is then used to transfer these standard
errors to all grid cells of the raster based on the similarity of
the values of explanatory variables used by the model. Tol-
erance thresholds were applied to each explanatory variable
to identify suitable observations in the training sample that
match any given prediction location and therefore have sim-
ilar standard errors. Several tolerance thresholds were tested
for each modelling domain to maximize the R2 obtained by
comparing, on the training sample, standard errors estimated

by table lookup to the standard errors calculated by the GAM
implementation. This results in a raster data set which gives
an estimation of the standard error of the predicted logit for
each grid cell.

Based on these approximated standard errors we estimate
the approximate upper and lower limit of a 95 % confidence
interval of the predicted logit using a normal approximation.
These logit-scale confidence intervals are further converted
to the probability level and adjusted based on each mod-
elling domain’s sampling rate (Sect. 5.2). The approximate
upper and lower confidence limits and the predicted probabil-
ity are used to compare the spatially varying uncertainties in
a classified landslide susceptibility map. Therefore, the clas-
sified susceptibility map is compared to the classified maps
of upper and lower confidence limits to assess potential areas
and grid cells in which overlaps of the susceptibility classes
(high, medium or low) may occur.

Furthermore, the approximate logit-scale standard errors
from each model’s predictions are used as relative uncer-
tainty indices of the susceptibility map within each domain.
This uncertainty index allows for a more nuanced visualiza-
tion of prediction uncertainties within each domain, know-
ing, however, that its interpretation is only applicable within
the domain since no adjustment for the domain-specific sam-
pling rate is applied to this index.

To communicate the possible effects of the prediction un-
certainty on the classified susceptibility map, a static way of
visualization of the results was selected (Elith et al., 2002).
Therefore, the classified susceptibility map was presented
alongside a map of possible class overlaps considering the
upper and lower confidence limits and with a map of the stan-
dard errors (unclassified).

A flow chart of the analysis in this study points out the
relation of the different aspects of quality raised in Sect. 2
with the presented methods and measures (Fig. 3).

6 Results

6.1 Landslide susceptibility map

The three classes of the final landslide susceptibility map
classified according to the proportion of landslides included
covered 75 % (low susceptibility), 19 % (medium suscepti-
bility) and 6 % (high susceptibility) of the total study area
(Fig. 4).

The variable frequency analysis showed that different sub-
sets of the available 15 explanatory variables were included
in the GAMs (GAM1–GAM16) for the different modelling
domains (Table 2). The total number of variables used in the
models (GAM1–GAM16) ranged from four variables in the
Bohemian Massif with plutonic rock and Waschberg Zone,
including Bohemian Massif with sedimentary cover domains
(52 landslides each), to 11 variables used in the model for
the Flysch Zone (6281 landslides, Table 3). The number of
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Fig. 3. Flow chart presenting the methods and measures applied
within this study assessing the quality of input data, quality of sta-
tistical model and quality of final susceptibility map.

variables included in the models generally increased with the
number of observations in the training sample, which was at-
tributed to the AIC’s penalization based on model complexity
relative to sample size. Furthermore, 65 % of the variables
were used in a smoothed form (Table 2). However, mainly
linear model terms were selected in four modelling domains.
A similar overall frequency of nonlinear model terms was
obtained in the models fitted within the cross-validation pro-
cedures (71 % nonlinear overall) with very similar results for
the spatial and non-spatial techniques (refer to Table 2 for
details). Two domains (Loess, Loam and Waschberg Zone
and Bohemian Massif with sedimentary cover) primarily
used linear model terms in spatial and non-spatial cross-
validation. Additionally, in the Bohemian Massif with plu-
tonic rock (only in spatial cross-validation) and in the allu-
vial deposits including lake and wetland (only in non-spatial
cross-validation) high proportions of linear terms were ob-
served.

6.2 Spatial and non-spatial cross-validation

In general, spatial cross-validation had a larger range of AU-
ROC values than non-spatial cross-validation over all cross-
validation repetitions (Fig. 5). However, the median AU-
ROC values were very similar; non-spatial cross-validation
had only slightly higher median values. The highest me-
dian AUROC values of 0.98 (spatial) and 0.99 (non-spatial
cross-validation) were found in the alluvial deposits includ-
ing lakes and wetland domain. With the exception of the
Permo-Mesozoic rocks domain, all median AUROC values
are higher than 0.74 (Fig. 5). In this domain the largest differ-
ences of median AUROC values between spatial (0.53) and
non-spatial cross-validation (0.79) were found. Furthermore,
the lowest 1st quartile AUROC value, which was higher per-
forming with non-spatial cross-validation (0.73) than spatial

Fig. 4. Resulting classified landslide susceptibility map for Lower
Austria. Data source: LiDAR-DTM hillshade – Provincial Govern-
ment of Lower Austria.

cross-validation (0.35), was found for the Permo-Mesozoic
rocks domain. Additionally, this domain showed the high-
est interquartile range of AUROC values (0.42) with spa-
tial cross-validation and the second highest (0.11) with non-
spatial cross-validation.

Three domains had very high AUROC values of the 3rd
quartile, which ranged from 0.97 to 1 in the spatial and non-
spatial cross-validation. These were the loess and loam, the
Bohemian Massif with plutonic rock and the alluvial deposits
including lakes and wetland domains.

The poorest spatial and non-spatial transferabilities as-
signed at Tsp > 0.10 and Tnsp > 0.04 were obtained in the three
modelling domains with the smallest sample sizes (Table 3).
Transferability tended to be better in domains with larger
sample sizes and/or higher landslide densities, but was un-
related to median AUROC. Among the domains with larger
sample sizes, the Austroalpine Unit with dolostone stood out
with relatively poor spatial transferability (Tsp = 0.098) in
addition to its relatively low median AUROC of 0.75. Spa-
tial transferabilities were best (Tsp < 0.03) for igneous rocks
of the Austroalpine Unit, the Molasse Zone and the Schlier
Zone.

Reducing the sample size from using the total number of
landslide and non-landslide samples in the case-control sam-
ple (12 562) to 50 samples within a modelling domain (Fly-
sch Zone) still resulted in acceptable median AUROC val-
ues (> 0.76) for all sample sizes. However, the median AU-
ROC values decreased from 0.84 to 0.76 in both the spa-
tial and non-spatial cross-validation (Fig. 6) with very lit-
tle difference between both approaches. While the AUROC
values stay relatively constant until a sample size of 3200,
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Table 2. Variable frequency for the model using all landslide cells (GAM1–GAM16) and variable-selection frequency of variables used
linearly (N ) or with a smoothing function (S) in spatial (spCV) and non-spatial (nspCV) cross-validation. All values are summarized over
all modelling domains.

Variable frequency Variable frequency total Relative variable-selection frequency from cross-validation
(GAM1–GAM16) (GAM1–GAM16)

N S All spCV All nspCV N spCV N nspCV S spCV S nspCV

Slope angle 2 13 15 91.8 95.7 9.1 17.3 82.8 78.4
Curvature 2 10 12 53.8 58.6 7.1 1.5 46.7 57.1
Topographic wetness index 4 7 11 68.3 61.4 15.9 13.5 52.3 47.9
Catchment height 4 6 10 55.6 65.0 26.3 21.1 29.3 43.9
Convergence Index (10) 3 6 9 48.8 44.1 16.5 19.8 32.3 24.4
Euclidian distance to tectonic lines 4 5 9 53.4 53.3 23.6 18.3 29.8 34.9
Euclidian distance to nappe boundaries 4 5 9 74.2 56.1 24.1 11.8 50.1 44.3
Convergence Index (50) 3 5 8 56.1 64.3 21.3 26.3 34.8 38.0
Void space (0–20 cm) 3 4 7 0.3 0.2 0.0 0.1 0.3 0.1
Catchment area (log) 2 4 6 43.4 45.0 4.9 10.2 38.6 34.8
Permeability (0–20 cm) 3 1 4 36.9 23.7 15.3 8.3 21.6 15.4
East aspect 2 1 3 9.4 6.5 5.2 4.8 4.2 1.8
North aspect 2 0 2 11.8 19.5 8.1 17.9 3.7 1.6
Void space (mean 0–100 cm) 0 2 2 0.0 0.0 0.0 0.0 0.0 0.0
Permeability (min) 0 0 0 1.1 4.9 0.5 0.4 0.6 4.5

 

Fig. 5. Box plots showing the range of AUROC values resulting from repeated k-fold cross-validation with spatial subsampling (spCV) and
non-spatial subsampling (nspCV) for each modelling domain. The y axis limits for this domain range from 0 to 1 and a grey line marks the
0.5 value.

they started to decrease more rapidly from there on as the
sample size decreases. Despite that, the interquartile ranges
were substantially higher with spatial cross-validation, and

generally increased with decreasing sample sizes in both
spatial (0.052–0.087) and non-spatial (0.011–0.059) cross-
validation. Below a sample size of about 400 (spatial cross-
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Table 3. Number of selected variables for the models GAM1–GAM16. Median AUROC values, transferability and thematic consistency of
the modelling domains for spatial (spCV) and non-spatial (nspCV) cross-validation. Lower index values Tsp,Tnsp and Csp, Cnsp indicate
strong spatial and non-spatial transferability and thematic consistency, respectively. Minimum (Min.), maximum (Max.) and range of standard
error (SE) of the prediction on logit level. R2 obtained by comparing standard errors estimated by the lookup table to the standard errors
calculated by the GAM implementation.

Domain Name No. of Median Median Transfer- Transfer- Consis- Consis- Min. Max. SE R2

selected AUROC AUROC ability ability tency tency SE SE range
variables spCV nspCV index Tsp index Tnsp index index (logit) (logit) (logit)

CspCnsp

239 Igneous rocks of the Austroalpine Unit 7 81.7 86.2 0.000 0.000 0.247 0.151 0.12 1.61 1.49 0.77
58 Molasse, Schlier 6 92.2 94.3 0.015 0.000 0.364 0.191 0.19 2.35 2.16 0.87
39 Molasse Zone 6 91.4 91.4 0.029 0.000 0.418 0.326 0.19 2.63 2.44 0.76
35 Debris, till 7 75 82.7 0.042 0.023 0.352 0.253 0.25 3.61 3.36 0.76
02297 Alluvial deposits including lakes and wetlands 7 97.9 99.3 0.042 0.000 0.339 0.389 0.44 3.12 2.68 0.76
179 Austroalpine Unit with limestone, marls and sandstone 8 79.5 81.2 0.046 0.000 0.176 0.109 0.08 1.63 1.55 0.84
126 Rheno-danubian Flysch Zone 11 84.5 84.1 0.051 0.002 0.099 0.180 0.05 1.62 1.57 0.82
104 Intramontane basins 7 90.8 95.4 0.052 0.000 0.164 0.324 0.25 2.20 1.94 0.79
0124 Quaternary fluvial terrace and anthropogenic deposits 6 90.8 94.3 0.070 0.033 0.363 0.283 0.23 1.69 1.46 0.86
10 Loess, Loam 5 97.8 96.7 0.084 0.010 0.349 0.174 0.27 8.73 8.46 0.90
251259 Bohemian Massif including Fault Zone 6 83.4 92.5 0.091 0.000 0.377 0.251 0.24 1.73 1.49 0.79
120 Mélange Zone, Klippen Zone 8 68.1 80.7 0.098 0.000 0.210 0.081 0.19 1.84 1.65 0.51
191 Austroalpine Unit with dolostone 9 74.7 77 0.098 0.000 0.162 0.068 0.09 1.66 1.57 0.75
3786 Waschberg Zone including Bohemian Massif with sedimentary cover 4 88.4 88 0.170 0.102 0.424 0.235 0.35 4.38 4.03 0.62
276 Bohemian Massif, plutonic rock 4 85.6 93.4 0.208 0.073 0.419 0.323 0.37 16.25 15.88 0.67
230 Permo-Mesozoic rocks (overlying the Austroalpine igneous rocks) 6 52.4 79 0.397 0.045 0.519 0.319 0.27 2.92 2.65 0.57

Fig. 6. (a) Median AUROC value and (b) interquartile range of AU-
ROC values (IQR) at reduced sample sizes (numbers given refer to
the total number of equally distributed landslide and non-landslide
points) in the Flysch Zone (Domain 126) resulting from spatial
cross-validation (spCV, grey line) and non-spatial cross-validation
(nspCV, black dashed line).

validation) and 200 (non-spatial cross-validation) the in-
terquartile range of the AUROC values sharply increased
as the sample size decreased; thus the transferability of the
model decreased substantially for sample sizes smaller than
400 (spatial cross-validation) and 200 (non-spatial cross-
validation). In addition, the smaller sample sizes led to lower
thematic consistency of the model.

6.3 Variable importance and thematic consistency

In the comparison of the models fitted within the 16
modelling domains (GAM1–GAM16), topographic variables
were more important than the available variables on soil
properties. Out of a maximum of 16 selections, the vari-
able slope angle was selected 15 times within the stepwise
variable selection, whereas the minimum permeability value

was not selected at all (Table 2). However, this only shows
the result of one specific random sample and variable selec-
tion. According to the relative variable-selection frequency
resulting from the two cross-validation approaches, the vari-
able importance for predicting the landslide susceptibility
also changed distinctly between the modelling domains.
All modelling domains (except the domain of the Permo-
Mesozoic rocks) had slope angle as the most important vari-
able. It was selected on average in 91.8 and 95.7 % of the
model repetitions in spatial and non-spatial cross-validation.
Another important variable was catchment height, which was
selected 55.6 % (spatial) and 65 % (non-spatial) of the repe-
titions. In the spatial cross-validation the Euclidian distance
to nappe boundaries was the second most important vari-
able as it was selected in 74.2 % of the models (non-spatial
selection frequency 56.1 %, rank 6). The topographic wet-
ness index (68.3 % / 61.4 %), the convergence index (50 pixel
radius; 56.1 % / 64.3 %) and the curvature (53.8 % / 58.6 %)
were also among the top ranking variables in both cross-
validation approaches. Void space (mean 0–100 cm) was not
selected in any of the model runs, while void space (0–20 cm)
was selected by less than 1 % of the models and the minimum
permeability was included in 1.1 % (spatial cross-validation)
to 4.9 % (non-spatial cross-validation) of the models on av-
erage over all modelling domains.

Overall the thematic consistency was stronger within the
non-spatial cross-validation because training sets are less
variable when the data are partitioned randomly as opposed
to spatially (Table 3). A strong thematic consistency was as-
signed for a consistency index of Csp, Cnsp < 0.20 and was
found for seven domains in the non-spatial cross-validation
but only for four domains in the spatial cross-validation.
The strongest thematic consistency was observed in the Fly-
sch Zone (Csp = 0.099) in spatial cross-validation and in
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the Austroalpine Unit with dolostone (Cnsp = 0.068) and
the Klippen Zone (Cnsp = 0.081) in the non-spatial cross-
validation. These domains had a very large sample size and
landslide density and also a good spatial or non-spatial trans-
ferability. While in spatial cross-validation the domains with
the smallest sample size and poorest spatial transferability
had the weakest thematic consistency, in non-spatial cross-
validation the consistency index was unrelated to sample size
and transferability. Among these, the Waschberg Zone (in-
cluding the Bohemian Massif with sedimentary cover do-
main) gave very contrasting results. It showed a weak the-
matic consistency in spatial cross-validation but a medium
consistency index in non-spatial cross-validation. The weak-
est thematic consistency was found for the Permo-Mesozoic
rocks (Csp = 0.519) and the alluvial deposits including
lakes and wetlands (Cnsp = 0.389) domains. In non-spatial
cross-validation the thematic consistency was stronger with
lower median AUROC values. However, in spatial cross-
validation the median AUROC values and the thematic con-
sistency were unrelated.

6.4 Spatially varying prediction uncertainties

The largest range of logit-scale standard errors was obtained
for the Bohemian Massif with plutonic rock domain (0.37–
16.24; Table 3), whereas the Quaternary fluvial terrace had
the minimum range (0.22–1.69). The highest standard error
of 16.24 was in the Bohemian Massif with plutonic rock do-
main, while the median of the highest standard errors over all
domains was 2.27. After the transformation from logit-scale
to probability scale the typical distribution of the standard er-
ror was the following: the range of the standard error of the
predicted probability was largest for medium probabilities
that were in the medium susceptibility class. The minimum
range of the standard errors was typically obtained at the
minimum and maximum probability that were contained in
the low and high susceptibility class. Nevertheless, the low-
est standard errors were computed at the minimum predicted
probability.

Within the study area of Lower Austria seven types of sus-
ceptibility class uncertainties in the classified landslide sus-
ceptibility maps were identified by the analysis of overlaps
between the susceptibility classes (Figs. 7 and 8). Most com-
monly, for about 85 % of the grid cells, there were no over-
laps of different susceptibility classes either with the lower
or the upper confidence limit meaning that in all maps the
susceptibility class was the same. The most common over-
laps were found for the low susceptibility class where 6 %
of the grid cells were classified with low susceptibility in the
predicted probability map but with medium susceptibility in
the upper confidence limit map (Fig. 7). Moreover, 2 % of the
study area experienced overlaps of the medium class in the
predicted probability map to the high susceptibility class in
the upper confidence limit map. Even fewer grid cells, 0.03 %

had a range from the low class in the predicted probability
map to the high class in the upper confidence limit map.

The results of the analysis of spatially varying uncertain-
ties were presented by maps chosen in two exemplary mod-
elling domains with contrasting landslide densities, the Fly-
sch Zone (4.6 km−2) and the Bohemian Massif (0.09 km−2,
Fig. 8). The range of the standard errors of the predicted logit
of these domains was very similar. While the standard errors
range from 0.05 to 1.6 in the Flysch Zone, the Bohemian
Massif had a range from 0.24 to 1.73 (Table 3). With this
minimum value the Flysch Zone gives the lowest standard er-
ror in the study area. The R2 resulting from using the lookup
table to transfer the standard errors to all grid cells range
from 0.51 (in the Mélange Zone) to 0.9 (in Loess, Loam; Ta-
ble 3). In the Flysch Zone the computed R2 was 0.82 which
is only slightly better than in the Bohemian Massif (0.79).

Comparing the classified maps from the Flysch Zone to
the Bohemian Massif it can be seen that the grid cells show-
ing an overlap in the Flysch Zone were much more scattered,
pixel-wise, and mainly occurred at the boundaries of the sus-
ceptibility classes (Fig. 8). In the centre of the high suscep-
tible class no overlaps occurred. However, in the Bohemian
Massif the overlaps mainly occurred between the medium
and high susceptibility classes and generally covered the en-
tire class or larger areas, instead of single grid cells only.
Both maps shared a low frequency of dark blue and dark
green grid cells, which showed overlaps from the low class to
the high class (either from lower confidence limit to predicted
probability or from predicted probability to upper confidence
limit). Furthermore, the overlaps of classes were occurring
equally in- and outside of permanent settlement areas, which
was important when considering the map for future planning
purposes (Fig. 8).

7 Discussion

7.1 Quality of input data

Practical challenges in this study arise from the size of the
study area and the intended output map scale of 1 : 25 000.
The size of the study area brings along some limitations re-
garding the availability of data sources that offer a full spa-
tial coverage and a reasonable map scale. This introduces a
number of parametric uncertainties into the modelling. Gen-
erally a complete, unbiased inventory would be desirable,
as for example a full inventory that was mapped directly in
the aftermath of a landslide event (single landslide or multi-
ple landslides triggered at the same time) in the area of the
susceptibility map (Van Westen et al., 2008). This would al-
low for the inclusion of land cover or precipitation data in
the modelling which might be helpful to learn even more
about the landslides in the area and to build scenarios on fu-
ture landslide susceptibility (or hazard/risk; Begueria, 2006b;
Tarolli et al., 2011). However, a complete inventory is rarely
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Fig. 7. Susceptibility class uncertainty expressed by types of overlaps between susceptibility maps at the lower confidence limit (LLCI) or the
upper confidence limit (ULCI) at the 95 % confidence level relative to the class in the predicted probability map (PP). With the susceptibility
class the percentage of area in the maps of LLCI, PP and ULCI is given in the box. The arrow thickness is relative to the percentage of
affected area. Possible types of overlaps, which did not occur in the study area, are indicated with grey arrows. Next to the type of overlap
the percentage of affected area related to the study area is given. In 85 % of the study area, the 95 % confidence limits fall within the same
susceptibility class (not indicated here).

available. Particularly for historical inventories, the level and
type of completeness is unknown, while it is known that they
are generally incomplete (Malamud et al., 2004). Even a sub-
stantially complete inventory, which would be useful in sta-
tistical modelling as it includes a substantial fraction (random
sample) of all landslides at all scales, land use types, litho-
logical units or slope angles, cannot be reached for histori-
cal inventories (Malamud et al., 2004). This originates from
the observation that landslides and their visibility on aerial
photographs or other base maps (e.g. hillshades derived from
airborne laser-scanning DTMs) are highly influenced by new
landslides, reactivation, erosion, land use type and anthro-
pogenic activities (Bell et al., 2012; Malamud et al., 2004;
McCalpin, 1984, Van Westen et al., 2008). Furthermore the
mapping and identification of landslides is highly depen-
dent on the experience and knowledge of the investigator
(Van Westen et al., 1999; Harp et al., 2002; Ardizzone et
al., 2002). If these influences on the completeness are not
random they might introduce a bias in the inventory and fur-
thermore in the sampling which results in a model bias or
systematic modelling error.

In our study area it is assumed that the inventory is not
complete as it originates from recent data sources (not multi-
temporal) only and the visibility of landslides in the LiDAR-
DTM or orthophoto is influenced by human impact depend-
ing on the land use type (Bell et al., 2012). Furthermore, a
drawback is that no information on the time of occurrence of
the landslide is available. However, the type of incomplete-
ness was not analysed for the entire study area. Therefore,

it is not clear if the missing landslides are missing com-
pletely at random or are biased toward absence in certain
land uses or lithological units. The implications of an in-
complete inventory on the model performance (shown by the
AUROC value) were estimated by performing the repeated
k-fold cross-validation using training and test samples. The
results show rather high AUROC values for most modelling
domains, which indicates that even with an incomplete in-
ventory (training sample) the prediction of landslides of the
test sample was successful for most cases. However, sample
size is of importance for the model performance. For the dis-
cussion of this please see Sect. 7.4.

7.2 Quality of statistical model form

7.2.1 Study design to meet the heterogeneity

of the study area

Observed variable-selection frequencies showed that differ-
ent explanatory variables were relevant in different domains,
which provides additional justification to the decision to
model susceptibility in each modelling domain separately.
Additionally, not only the different choice of the variables
is important but also the way the variables are fitted or
smoothed according to the sample in the respective domain.
Previous studies showed that within each lithological unit
landslides occur at different slope angles (Blahůt et al., 2010;
Muenchow et al., 2012; Petschko et al., 2012). Similar dif-
ferences within lithological units or terrain types might be
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Fig. 8. Landslide susceptibility map (target scale 1 : 25 000) and map uncertainty in an example area. (a), (d) Susceptibility map; (b), (e)

relative uncertainty index; (c), (f) susceptibility class uncertainty. Panels (a–c) correspond to an area in the Flysch Zone (very high landslide
density), (d–f) are in the Bohemian Massif (very low landslide density). The susceptibility class uncertainty refers to differences between
susceptibility maps at the lower confidence limit (LLCI) or the upper confidence limit (ULCI) at the 95 % confidence level relative to the
class in the predicted probability map (PP) in panels (a) and (d). Data sources: LiDAR-DTM hillshade, river, major road and settlement –
Provincial Government of Lower Austria.

present for other explanatory variables as well, as the ge-
omorphic and geologic characteristics change (Lee et al.,
2008). Facing this, our study design gives much more flexi-
bility to represent the characteristics of the study area. Fur-
thermore, it incorporates information on lithology by adjust-
ing the odds of the prediction with the sampling rate of cells
in each lithological unit.

However, one may argue that with this approach problems
occur at the boundaries of the lithological units. Inaccuracies
in the delineation of the lithological map of the area have ef-
fects on the model results as the landslides might be assigned
incorrect lithological information. This may lead to an under-
estimation of effect sizes as data from different (true) litho-

logical units would be mixed. Similar mixing effects may
occur for quantitative predictor variables as well, for exam-
ple as a function of positional accuracy for scale and resolu-
tion. In regression this effect is known as dilution, which may
introduce a bias of estimated regression coefficients toward
zero (Frost and Thompson, 2000). As this would also occur
using the lithological map as a factor instead of as a mask for
partitioning the study area, the boundary inaccuracies are not
only a problem in the applied study design.
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7.2.2 Spatial and non-spatial cross-validation

We assessed the model form uncertainty by deriving a model
performance estimate and thematic consistency by spatial
and non-spatial cross-validation. Cross-validation estimation
of a model’s predictive performance is a crucial step in pre-
dictive modelling because estimation on the training set is
always too optimistic (Hosmer and Lemeshow, 2000; Bren-
ning, 2005). Cross-validation results in bias-reduced perfor-
mance estimates as the test partitions used in each repetition
do not overlap with the training sample (Brenning, 2005).
In particular spatial cross-validation is recommendable for
spatial data, which may be subject to spatial autocorrelation
(Brenning, 2005, 2012a).

The median AUROC values estimated by spatial and non-
spatial cross-validation were generally similarly high in this
study. However, the median AUROC values and the transfer-
ability index clearly showed that non-spatial cross-validation
provided a more optimistic or even overoptimistic assess-
ment of the model performance and transferability in contrast
to spatial cross-validation. Therefore, spatial and temporal
cross-validation should be preferred for performance estima-
tion (Chung and Fabbri, 2008). While spatial performance
and transferability do not necessarily reflect a model’s pre-
dictive performance in the time domain, they provide a more
realistic assessment of its ability to generalize from the avail-
able data than non-spatial approaches (Brenning, 2005).

The spatially and non-spatially least transferable models in
this study were associated with domains that had the small-
est sample sizes. The relationship of sample size on predic-
tive abilities has also been shown in other spatial modelling
studies (Stockwell and Peterson, 2002; Hjort and Marmion,
2008). However, we believe that the cases of high variation
in AUROC values may be also related to the cross-validation
sampling variation as indicated by the difference between Tsp

and lower Tnsp, and possibly the proportion of stable and un-
stable terrain in a modelling domain.

Heterogeneity of landslide conditions (e.g. related to to-
pography or land use) in the cross-validation samples is more
likely to occur if samples are partitioned spatially, such as the
case in spatial cross-validation. Here, similar characteristics
of the explanatory variables in both training and test sample
are assumed and necessary (Guzzetti et al., 2006). If this as-
sumption is not met by the data (e.g. a rock type or land use
class is missing in the test sample) the transfer of the fitted
model to the test sample and the estimation of the model per-
formance are difficult (or impossible) (Guzzetti et al., 2006).
In our study some model domains might have high contrast
between stable (e.g. large flat areas) and unstable (e.g. steep
areas) terrain which gives potential for greater variation of
sampled terrain conditions; it may be possible that in some
samples one terrain condition is overrepresented relative to
others. The sampling strategy may be improved further by
masking low-lying flat areas that are not typically suscepti-
ble to landslides (Van den Eeckhaut et al., 2009; Goetz et al.,

2011). Consequently, the sample may have more potential to
capture the differentiating conditions of stable and unstable
terrain in an area that is generally susceptible to landslides
(e.g. steep hillslopes). This might lead to a smaller variation
in the AUROC values.

The high importance of topographic variables in the sus-
ceptibility modelling goes along with findings in other stud-
ies (Guzzetti et al., 2006; Begueria, 2006b; Van Westen et al.,
2008; Guns and Vanacker, 2012). However, it was rather sur-
prising that the soil data on permeability and void space was
not selected more often during the stepwise-variable selec-
tion. This might be related to the poor resolution of the soil
data (50 m × 50 m) and to the usage of topographic data as a
proxy for hydrological and soil characteristics (soil moisture
and thickness). A strong correlation between the topographic
wetness index and soil characteristics was found amongst
others by Seibert et al. (2007). Furthermore, the higher reso-
lution of the topographic variables might be of advantage for
better describing the local conditions of landslide suscepti-
bility.

Whereas a very strong thematic consistency was generally
found for domains with a large sample size and sampling
rate, domains with a small sample size and rate showed a
high variability in the variable-selection frequencies which
gave a weak thematic consistency. Therefore, the weak the-
matic consistency might also be associated with a poor spa-
tial and non-spatial transferability, both originating from a
small sample size and a small sampling rate. This relation
was stronger for the spatial cross-validation, while the the-
matic consistency from non-spatial cross-validation was un-
related.

Generally, the usage of rather static data in the modelling
was a necessity resulting from the available landslide inven-
tory. However, this does not give the possibility to include
dynamic data on triggers into the modelling or to design
scenarios of future landslide susceptibility considering land
cover or precipitation change. A clear source of model form
uncertainty is the concept of uniformitarianism in modelling.
This implies that the predisposing and triggering factors of
landslides do not change in future. However, natural vari-
ability of landslide triggering mechanisms and also of the
climate system might cause future changes. Currently, the
influence of climate change on current or future landslide ac-
tivity is debated. However, no clear evidence on these possi-
ble future changes was found in many regions (e.g. Crozier,
2010; Huggel et al., 2012). Additionally, it might be possible
that the most important data set explaining the susceptibil-
ity might still be missing. This might happen although expert
knowledge on geomorphology was applied in selecting geo-
morphologically relevant data. Moreover, it has to be stated
that this type of susceptibility map was designed for the main
scarps of landslides. A classified map might cover the possi-
ble runout of landslides but by definition does not show how
the initiated landslides might move downslope and endanger
further areas (Demoulin and Chung, 2007).
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7.3 Quality of final susceptibility map –

visualizing prediction uncertainties

This analysis of prediction uncertainty is an improvement
of previous landslide susceptibility studies (Guzzetti et al.,
2006; Van den Eeckhaut et al., 2009; Rossi et al., 2010,
Sterlacchini et al., 2011), as it not only showed an uncer-
tainty index of the predicted probability on a grid cell basis
but additionally provided information on where the suscep-
tibility class uncertainties were located. Some model uncer-
tainties within this method arise from using the lookup table
for transferring the prediction standard error to all grid cells
as shown by the range of resulting R2. This method might be
improved or substituted by a function assigning the standard
errors to all grid cells.

It was found that in the classified map the majority of grid
cells did not change. However, there are differences between
the modelling domains where some domains had larger over-
laps of different susceptibility classes than others. Special at-
tention should be given to the low susceptibility class. Here,
the highest percentage of overlapping classes and underesti-
mation of the susceptibility were detected.

The visualization of these spatially varying uncertainties is
of special interest for future land use and development plan-
ning usually performed by non-landslide experts. In the af-
termath of this study each landslide susceptibility class will
be related to, not legally binding, recommendations for the
designation of new building areas. Therefore, a misclassifi-
cation (e.g. low instead of medium susceptibility) might lead
to an interpretation by the municipality or landowner that un-
derestimated landslide susceptibility. Knowledge about the
susceptibility class overlaps might outline where more cau-
tion and detailed investigations are necessary. Additionally, it
also shows where no uncertainties are expected, which might
help to avoid costs for slope investigations.

There is a need to communicate the research results and
their quality with appropriate explanations for the local offi-
cials, environmental managers and the public to raise aware-
ness and knowledge about it, which leads to an easier under-
standing and incorporation of the results into the decision-
making process (Knuepfer and Petersen, 2002; Rogers, 2006;
Brierley, 2009; Hill et al., 2013). This analysis might aid
good acceptance of the landslide susceptibility maps in
the local governments, as instead of a fuzzy statement on
involved uncertainties, these are clearly shown in a map on
grid cell level (Guzzetti et al., 2006; Luoto et al., 2010). Fur-
thermore, the preparation of the susceptibility maps showing
the class overlaps contributes to an easier understanding of
the possible effects of the prediction uncertainties.

The question if the policy-makers or stakeholders are re-
ally interested in knowing more about the uncertainty is
discussed conversely. The study of Brugnach et al. (2006)
pointed out that the confidence in modelling results is de-
pendent on the way the uncertainties are addressed. Policy-
makers were missing more information on the uncertainty

of any model result. Therefore, the modelling results should
be presented with a measure of uncertainty or confidence in-
dicator (Brugnach et al., 2006). In habitat suitability mod-
elling the visualization of uncertainty was identified as rele-
vant to inform decision-makers about areas with extreme er-
ror, but also about areas which are particularly well modelled
(Elith et al., 2002). This openly addresses the uncertainties
involved in the maps instead of giving an impression of cer-
tainty (Elith et al., 2002). However, interviews of Klimeš and
Blahůt (2012) showed that local governments do not want
any information on uncertainties.

Nevertheless, the spatially verying prediction uncertain-
ties might have severe consequences on buildings and their
inhabitants if an event occurred within the uncertainties of
the method used to delineate the hazard zones. The converse
discussion shows that more or better communication with
the stakeholders or policy-makers (also during the modelling
process) is necessary to learn about uncertainties and enlarge
confidence into the modelling (Brugnach et al., 2006). How-
ever, the way the uncertainties are presented to the stake-
holder has to be adapted by the scientist to ensure the success
of the communication. The visualization of some aspects of
the quality of landslide susceptibility maps, such as the spa-
tially varying prediction uncertainty, can enhance the com-
munication among experts and decision-makers to facilitate
informed decisions (Kunz et al., 2011).

Additionally, further aspects of considering and commu-
nicating the effects of epistemic uncertainty are still open re-
search fields in susceptibility modelling. A clear assessment
of these is necessary to evaluate on their consequences on the
susceptibility (or hazard or risk) map.

7.4 Considerations on sample size

Summarizing the previously discussed findings some consid-
erations on a minimum sample size might be possible. While
the transferability index is less strongly related to sample
size or sampling rate, the thematic consistency index shows a
stronger relationship to them. Generally, larger sample sizes
and sampling rates result in better thematic consistency and
transferability of the model. Furthermore, the minimum stan-
dard error of the prediction was lower with larger sample size
(Table 3).

The effect of a reduced sample size on the median and in-
terquartile range AUROC values was assessed in the Flysch
domain. We found that the median AUROC remained satis-
factory high but decreased as sample size decreased, while
the interquartile range of the AUROC increased. Even with
the smallest sample size the model still achieved a good
discrimination between landslide and non-landslide cells ac-
cording to the median AUROC value. Summarizing the re-
sults, a minimum sample size with a sum of around 400 slide
and non-slide cells might be recommended for the methods
applied in this study. This size leads to an acceptable trans-
ferability and thematic consistency of the model in spatial
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cross-validation in the analysed modelling domain. However,
examples from successfully fitting a susceptibility model
with smaller sample sizes (10 landslides with 15 cells each in
an area of 177 km2; Demoulin and Chung, 2007) give a very
contrasting result. This shows that for small sample sizes
other modelling methods (statistical or heuristic) might be
more suitable. However, some difficulties arise in the mod-
elling with small samples, which might create the need for a
larger sample or for selecting a different method. The sam-
ple needs to be substantially complete to represent all local
terrain conditions (Malamud, et al., 2004). However, increas-
ing the sample size can only be done by enlarging the land-
slide inventory (e.g. by selecting a larger study area, mapping
more landslides). This is challenging, as in some regions no
additional data on landslides (or resources for mapping more
landslides) might be available due to a general low suscepti-
bility of the area or to missing data.

Giving a recommendation on a minimum sample size is
challenging, as this study showed that the general trends
found for sample size and sampling rate do not apply for all
modelling domains. Therefore, we highlight that the result-
ing quality estimates (transferability index, consistency index
and prediction uncertainty) might additionally be dependent
on a combination of the domain size and the landslide den-
sity (landslides per km2). Also, dependencies on local terrain
conditions and their homogeneity in the modelling domain
might exist. In this context the provision of the presented
quality estimates is recommended, as these clearly show the
quality of the results which might be lower compared to stud-
ies with larger sample sizes.

Moreover, the geomorphic plausibility of the susceptibil-
ity map has to be analysed. Previous studies found that high
performance measures do not always guarantee high geomor-
phic plausibility of the map (Bell, 2007; Trigila et al., 2013).
It might be possible that with a smaller sample size the geo-
morphic plausibility of the map is lower. However, the influ-
ence of a small sample size on the geomorphic plausibility
of the susceptibility map is unclear. Nevertheless, analysing
this was beyond the scope of this study.

8 Conclusions

The high quality of landslide susceptibility maps is defined
by the low aleatory and epistemic uncertainties involved
in the susceptibility modelling. This was analysed in terms
of landslide susceptibility model performance and spatially
varying prediction uncertainties of the final classified sus-
ceptibility map. The analysis gives an overview and some
estimates on the epistemic and aleatory uncertainties in-
volved in statistical susceptibility modelling. However, the
effect of the propagation of all the single uncertainties on the
final map and subsequently to hazard and risk maps has to
be analysed further. Considering the present results in high
model performance, analysis and visualization of prediction

uncertainties, the applied model and resulting classified land-
slide susceptibility map are regarded to be of high quality.

The applied study design with modelling in the different
domains provides a high flexibility for representing the char-
acteristics of the heterogeneous study area. Opposed to single
hold-out validation the repeated k-fold cross-validation pro-
vides a measure on the precision of the estimator and is inde-
pendent of the one (random) test sample. The spatial cross-
validation gave a more realistic assessment of the model per-
formance and spatial transferability from the available data
than non-spatial approaches. This aids as an estimate on the
model form uncertainty, which is considered to be low.

A recommendation on an appropriate minimum sample
size might be given considering the presented analysis in
different modelling domains and the tests on reducing the
sample size. According to the results, the larger the sam-
ple size the better is the transferability and thematic con-
sistency. Therefore, also the quality of the statistical model
form increases with sample size. However, not all modelling
domains follow this trend. This might be related to a com-
bined influence of the heterogeneity or homogeneity of the
local terrain conditions, the size of the domain and its land-
slide density. A minimum sample size of around 400 slide
and non-slide cells (200 each) might be recommended for
the methods applied in this study.

Only rather static data on local terrain conditions could
reasonably be included in the analysis given the landslide
inventory, with no known landslide age. The stepwise vari-
able selection resulted in a satisfactory thematic consis-
tency. Among the geomorphologically relevant variables, to-
pographic variables were selected with a higher frequency
than soil variables. This might be related to the spatial reso-
lution of the respective data. However, this result goes along
with comparable studies having topographic variables as the
most frequently selected variables. The final landslide sus-
ceptibility map gives a good representation of the landslide
susceptibility based on topography although the map does
not include possible landslide triggers.

Regarding the susceptibility class uncertainties we con-
clude that the majority of the study area is not affected by
class uncertainties. Special attention has to be drawn to pos-
sible overlaps of the low and medium susceptibility class in
the predicted probability map and the map of the upper confi-
dence limit. A misclassification in the low class might result
in an underestimation of the susceptibility. This might have
adverse effects on the municipality or landowner if the rec-
ommendations for the assignment of building areas might not
be restrictive enough.

We discussed that there is a need to assess, minimize and
communicate uncertainties involved in susceptibility mod-
elling. The analysis results need to be communicated in an
understandable manner to the stakeholder to allow for in-
formed decisions instead of giving an impression of certainty.
A possible example was shown by the visualization of the
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prediction uncertainty and its effects on the classified land-
slide susceptibility map.
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