
Assessing the Relationship between Vector Indices and
Dengue Transmission: A Systematic Review of the
Evidence
Leigh R. Bowman1, Silvia Runge-Ranzinger2, P. J. McCall1*

1 Liverpool School of Tropical Medicine, Liverpool, United Kingdom, 2 The Special Programme for Research and Training in Tropical Diseases of the World Health

Organization (WHO/TDR), Geneva, Switzerland

Abstract

Background: Despite doubts about methods used and the association between vector density and dengue transmission,
routine sampling of mosquito vector populations is common in dengue-endemic countries worldwide. This study examined
the evidence from published studies for the existence of any quantitative relationship between vector indices and dengue
cases.

Methodology/Principal Findings: From a total of 1205 papers identified in database searches following Cochrane and
PRISMA Group guidelines, 18 were included for review. Eligibility criteria included 3-month study duration and dengue case
confirmation by WHO case definition and/or serology. A range of designs were seen, particularly in spatial sampling and
analyses, and all but 3 were classed as weak study designs. Eleven of eighteen studies generated Stegomyia indices from
combined larval and pupal data. Adult vector data were reported in only three studies. Of thirteen studies that investigated
associations between vector indices and dengue cases, 4 reported positive correlations, 4 found no correlation and 5
reported ambiguous or inconclusive associations. Six out of 7 studies that measured Breteau Indices reported dengue
transmission at levels below the currently accepted threshold of 5.

Conclusions/Significance: There was little evidence of quantifiable associations between vector indices and dengue
transmission that could reliably be used for outbreak prediction. This review highlighted the need for standardized
sampling protocols that adequately consider dengue spatial heterogeneity. Recommendations for more appropriately
designed studies include: standardized study design to elucidate the relationship between vector abundance and dengue
transmission; adult mosquito sampling should be routine; single values of Breteau or other indices are not reliable universal
dengue transmission thresholds; better knowledge of vector ecology is required.
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Introduction

Global dengue incidence has increased markedly over the past

50 years to the point where it is now the most widespread

mosquito-borne arboviral disease. The World Health Organisa-

tion (WHO) has estimated that 50–100 million dengue infections

occur annually, while a recent study calculated that the true figure

may be closer to 400 million [1–3]. Dengue is endemic throughout

the tropics, and almost half of the world’s population are at risk of

infection, 75% of whom live in the Asia-Pacific region [4]. Dengue

has been confirmed in 128 countries worldwide [4,5] with major

social and economic consequences [6–10].

Dengue is transmitted by Aedes mosquitoes, primarily by the highly

urban-adapted vector Aedes aegypti, and a secondary vector Aedes

albopictus [11]. Ae. aegypti thrives in the man-made urban environment,

particularly in deprived communities where water storage is routine,

sanitation is poor and non-biodegradable containers accumulate.

The abundance of dengue vectors species as well as dengue

transmission generally show seasonal variation. Depending on the

local ecology, these patterns can be in part driven by meteorological

parameters such as rainfall and temperature [12,13]. Vector

surveillance is recommended by WHO and is a routine practice

in many dengue-endemic countries to provide a quantifiable

measure of fluctuations in magnitude and geographical distribution

of dengue vector populations, ultimately with the purpose of

predicting outbreaks and evaluating control [14]. The standard

protocol relies on the Stegomyia indices, which sample the immature

mosquito stages (larvae and pupae) alone [15]. This approach was

developed over 90 years ago [16] for yellow fever, a markedly

different infection (zoonotic in origin though ultimately transmitted

between humans by Ae. aegypti) during a very different era (i.e. in

terms of urbanization levels and human population densities). Focks

(2004) questioned the reliability and sensitivity of the Stegomyia

indices because they correlate poorly with abundance of adult
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mosquitoes, (i.e. the actual vector stage) which should be sampled

directly [15]. Focks and others recommended sampling adult

mosquitoes directly or indirectly via pupal/demographic surveys

(calculating a pupae per person/area index, defined as the number

of pupae divided by the number of residents/area surveyed) [15,17].

Indices based on actual counts of adult female Ae. aegypti infesting

houses are likely to be the most accurate, but this is rarely done [15].

The Stegomyia indices remain central to the monitoring of dengue

vector populations. The most commonly used indices are the House

(or ‘premise’) index (HI - percentage of houses infested with larvae

and/or pupae;) the Container index (CI - percentage of water-

holding containers infested with larvae and/or pupae) and the

Breteau index (BI - number of positive containers per 100 houses

inspected) [14]. Variations in sampling protocols are common and

can lead to significant variations in indices: e.g. sampling may be

carried out indoors or outdoors only, or at both locations; the

presence of cryptic breeding sites may lead to under-sampling or

complete omission of certain sites; failure to distinguish Aedes aegypti/

albopictus from other common mosquito species, or from each other,

may lead to overestimates. Little is known about the relationship

between differing proportions of the various sampled larval instars

and the accuracy of these data as proxy measures of adult mosquito

abundance [17]. Finally, although ovitraps (water-filled pots in

which Aedes aegypti lay their eggs) are widely used as a simple

sampling tool, Focks [15] showed very convincingly that their

reliability is limited to indicating vector presence or absence.

Despite these doubts, many dengue control authorities worldwide

routinely collect vector population data based on these indices,

although the mathematical relationship between any of the indices

and dengue transmission is far from clear. Thresholds indicating

dengue outbreak risk for House and the Breteau indices (HI = 1%,

BI = 5) have been used for many years [18,19], even though these

values were developed for yellow fever many decades earlier. Simple

thresholds may be valid in some situations [20], but a universal

critical threshold applicable across many contexts, has never been

determined for dengue. In pursuing the goal of identifying dengue

thresholds, Scott & Morrison [21] defined the fundamental

knowledge gaps as: 1) what is an acceptable level of dengue risk?;

2) what are the mosquito densities necessary to achieve that goal?; 3)

what is the best way to measure entomological risk?; 4) at what

geographic scale are the components of dengue transmission

important? While a number of mathematical models have explored

the value of thresholds or rates of change in the vector population

for the prediction of dengue outbreaks [22,23], these knowledge

gaps remain and continue to hinder progress [24]. For convenience,

dengue outbreaks are often defined as periods when dengue

incidence is equivalent to the mean plus 2 standard deviations

during the same month of the previous year [25].

Effective dengue surveillance and early warning systems, using

information from multiple epidemiological sources, are an

important goal for numerous countries worldwide. To determine

the value of vector surveillance for such systems, the findings of a

systematic review examining the evidence for a relationship

between mosquito indices and dengue cases are reported here.

Methods

Objectives
The aim of the study was to evaluate the potential value of

vector or entomological survey data for dengue surveillance by

examining the evidence from studies that investigated quantita-

tively the relationship between vector indices and dengue cases.

The specific objectives were:

1. To identify vector surveillance methods and indices used for

the routine monitoring of Aedes aegypti or Aedes albopictus

populations in any geographic location.

2. To examine how entomological indices correlated with dengue

incidence.

3. To examine the effectiveness or accuracy of vector surveillance

in predicting dengue outbreaks and consider how this might be

improved.

Search Strategy
A review protocol was established and agreed upon by all

authors. Guidelines from the Cochrane Handbook for Systematic

Reviews and the PRISMA Group were followed as standard

methodologies [26,27]. The databases WHOLIS, PubMed,

EMBASE, LILACS and Web of Science were searched using

the Medical Subject Heading (MeSH) ‘‘dengue’’ followed by the

Boolean operator ‘‘and’’ combined with one of each of the

following ‘free text’ terms in succession: ‘entomological surveil-

lance’, ‘oviposition trap’, ‘house index’, ‘container index’, ‘Breteau

index’, ‘pupal index’, ‘pupal survey’, ‘adult collection’, ‘sticky trap’,

‘aspirator collection’, ‘resting collection’, ‘landing collection’,

‘vector density’. The reference list of each of the included studies

was also searched, and ‘‘grey literature’’ was sought by commu-

nication with authors for cited unpublished documents.

Results were collated in EndNote (EndNote X5, Build 7473)

where abstracts were reviewed in accordance with agreed

inclusion and exclusion criteria. Full text review was completed

using ‘Papers’ (Papers 2, version 2.2.10). No limits were placed on

year of publication, language or location.

Inclusion and Exclusion Criteria
The criteria for inclusion or exclusion of individual studies were

set in advance (Table 1) and were used to assess each abstract and/

or the full text.

Author Summary

Routine sampling of mosquito vector populations is
common in dengue-endemic countries worldwide despite
doubts about methods used or the correlation between
vector density and dengue transmission. This systematic
review examined the published evidence investigating
associations between vector indices and dengue cases.
From a total of 1205 papers identified in database
searches, 18 were included for review. A range of designs
were seen, particularly in spatial sampling and analyses,
and all but 3 were classed as weak study designs. Thirteen
studies investigated associations between vector indices
and dengue cases: 4 reported positive correlations, 4
found no correlation and 5 reported ambiguous/unreliable
associations. Of 7 studies that measured the Breteau Index,
6 reported dengue transmission at levels below the
currently accepted threshold of 5. There was little evidence
of quantifiable associations between vector indices and
dengue transmission that could reliably be used to predict
outbreaks. Furthermore, appropriately designed studies
are required to elucidate the relationship between vector
abundance and dengue transmission. Recommendations
include: standardizing study designs, particularly with
respect to spatial heterogeneity; vector surveillance
programs should sample adult mosquitoes; global values
of the Breteau Index are not reliable universal dengue
transmission thresholds; and better knowledge of vector
ecology is required.

Systematic Review of Vector Indices and Dengue Transmission
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Table 1. Criteria for inclusion or exclusion of studies.

Inclusion Criteria Exclusion Criteria

Any study where entomological surveillance of Aedes spp. was undertaken
for .3 months (or for the duration of a dengue outbreak) in conjunction
with number of reported dengue cases

Studies with only one outcome of interest (entomological surveillance
OR dengue cases);

Any study type with all empirical data gathered within the same time period Opinion papers; review articles; retrospective analyses comparing data
generated at different time points

Confirmed and/or probable dengue cases identified using WHO standard case
definition and/or serology

Qualitative dengue reports

doi:10.1371/journal.pntd.0002848.t001

Figure 1. Search Tree. Diagram of searches performed and the number of articles returned and examined at each stage.
doi:10.1371/journal.pntd.0002848.g001
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Definitions
The following definition was used for the term ‘vector

surveillance’: ‘‘Any ongoing surveillance of entomological indices,

including larval indices (House Index (HI), Container Index (CI),

Breteau Index (BI)), pupal indices (Pupal Productivity Index (PPI)

and other variations), oviposition trap data and data from adult

mosquito collections (methods include sticky, traps, CO2, odor-

baited, visual or other traps, resting catches, human landing

catches), used in relation to dengue outbreak/control.’’

Quality Assessment
Given the strict nature of the inclusion criteria, study design was

assessed at the data extraction stage using the Quality Assessment

Tool for Quantitative Studies (QATQS) [28]. QATQS provides a

recognized standardized method to assess study quality by

assigning scores based on possible selection bias, study design,

confounders, data collection methods, intervention integrity and

statistical analyses. This ensured each study could be ranked

qualitatively. The study design classes were intervention, case-

control and longitudinal. If clarification was required, authors

were contacted for any missing data or information.

Data Extraction and Assessment
The information extracted included first author, year of

publication, year of study, population size, study design, indices

and case definitions, study objectives, duration of study, frequency

of data collection, results and conclusions (as viewed by all

reviewers; Table S1). A table of bias was created to help identify

the strengths and weaknesses of each study (Table S2).

Ethics Statement
No ethical review was required for this systematic literature

review.

Results

A total of 1205 potentially relevant studies were identified in the

database search. After reviewing abstracts, 102 were selected and

retrieved for full text evaluation, of which 18 were considered to

have satisfied all inclusion and exclusion criteria and explored in

detail (Figure 1) [20,29–45].

Regarding the 84 studies excluded, the most common reasons

for exclusion were: study duration less than 3 months (22

studies); absence of a reliable dengue case definition (21 studies);

use of datasets that did not correspond temporally or spatially

(19 studies). Note that although such dislocated spatial compar-

isons were not captured by the exclusion criteria originally

defined (simply because it had not been expected), exclusion at

this point was considered to be valid. Other reasons for exclusion

were: measurement of only one outcome (i.e. vector or dengue

cases only: 9 studies); opinion or review articles (8 studies); use of

incomplete datasets – where only ‘selected’ portions of all of the

data available during the study period were used (5 studies).

Again, although the latter reason was not captured by the

original criteria, exclusion of studies where this occurred was

considered to be valid. Full details of the 18 studies reviewed are

summarised in the supporting data files (Checklist S1, Table S1,

Table S2).

The origin of the data used in analyses differed between studies.

Some generated novel data as an integral part of the study, thus

ensuring complete or independent control over the quality of the

data obtained, while others obtained existing or retrospective data

from external sources, including local surveillance data (e.g. local

government records, private companies, hospitals or health

centers, independent physicians and self-reported data). Twelve

studies generated vector data [30–32,34–40,42–44], five generated

dengue case data [29,30,35,36,38], four of which generated both

vector and dengue case data [30,35,36,38].

Study Design
Fourteen studies were longitudinal, two were case-control, one

was an ecological study (as defined by the unit of analysis) and one

was a vector control intervention. Applying QATQS [28], fifteen

studies [20,30–33,35–41,43–45] scored 3 (defined as a weak

study), two studies [29,42] scored 2 (a moderate study design) and

one study [34] scored 1 (a strong study design)(Annex 2). In the

latter study, Chadee and colleagues [34] used controls matched on

age and sex from a neighboring community, although the report

did not state whether or not this process was randomized.

Vector Sampling
Details of the sampling protocols used in each study are shown

in Table 2. Eleven of eighteen studies generated indices for

immature stages of the vector and collected combined larval and

pupal numbers to calculate either the CI, HI or BI [20,29–

32,34,35,37,40,42,43]. One of these [37] combined Ae. aegypti

and Ae. albopictus data. Four studies sampled only larvae

[33,36,44,45].

Thirteen studies reported the location of the immature stage

mosquito samples: six studies sampled both indoor and outdoor

containers [30,34,35,40–42], while seven searched indoor con-

tainers only [20,29,31,32,36,37,39]. Thus, where reported, all

studies included indoor sampling.

Pupal indices were reported in two studies [20,35]. Adult

mosquitoes were sampled in three studies [38,39,43].

Relationship between Entomological Indices and Dengue
Cases

Thirteen studies examined the association between entomolog-

ical indices and dengue, using a range of different statistical

approaches. Seven studies calculated regression coefficients

[36,37,39,40,43–45], two calculated rate ratios [31,38], one

calculated odds ratios [29] and two calculated the G-test for

significance [32,36]. One study used only specificity, sensitivity

and positive and negative predictive values [20].

The spatial unit of analysis, an important consideration in

dengue epidemiology (see Discussion) varied considerably across

studies, with units ranging from individual houses, housing blocks

and clusters to neighborhoods and even large municipalities

(Table 2).

Four studies reported statistically significant positive relation-

ships between entomological indices and dengue incidence [29–

31,39]. Of these, only one sampled adult mosquitoes (33% of

those studies that sampled adults) [39] while the remainder

sampled immature stage mosquitoes (20% of all those that

sampled immatures) [29,30,31](Table 2). These are discussed in

detail here.

Evidence for Positive Correlation between Vector Indices
and Dengue Cases

Sanchez (2006) [29] conducted a case control study using two

geographical units for analysis, blocks (units of approximately 50

houses) and neighborhoods (each containing approximately 9

blocks). Any block or neighborhood with at least 1 confirmed case

was considered positive, while a control was defined as a block or

neighborhood without confirmed cases. HI and BI mean values

were ‘‘consistently, substantially and significantly higher’’ in blocks
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with dengue cases compared with control units. An odds ratio

(OR) of 3.49 (p,0.05) for dengue transmission was associated with

the presence of a single positive container in a block; fifteen of the

seventeen dengue cases recorded lived in a neighborhood where at

least 1 block had a BI.4.

In Trinidad, Chadee (2009) [30] compared retrospective

routine entomological household data with concurrent entomo-

logical data taken from confirmed dengue households, using a

cardinal points approach (i.e. the ‘index’ house plus the four

adjacent houses at its cardinal points). Chadee found that

significantly more (P,0.001) immatures were collected during

dengue case investigations than during the routine inspection and

treatment cycles. The report also stated that pupae per person

indices were higher and significantly more adults emerged (as a

function of total pupae count collected from household containers)

at locations where dengue was confirmed at the index house,

compared with routine investigations.

Pham et al. [31], examined monthly dengue case data, vector

larval indices and meteorological data from central Vietnam,

between 2004 and 2008. They found significant associations

between all entomological indices and dengue cases by univariate

analysis but only the HI and ‘‘household mosquito index’’ (not

defined in the paper), temperature and rainfall were significant

after multivariate analysis.

In Venezuela, Rubio-Palis et al. [39] used a simple regression

analysis to investigate correlations between vector indices, climatic

variables and dengue incidence for the period 1997–2005.

Analyses indicated a significant relationship (R2 = 0.9369) between

the numbers of dengue cases, Ae. aegypti abundance (both

immatures and adults) and rainfall. Acknowledging the retrospec-

tive nature of the study, the authors expressed caution in the

predictive value of the findings. Moreover, another limitation was

that entomological data were derived only from actual homes and

neighbouring houses of confirmed dengue cases but no data were

collected from ‘control’ houses.

Value of Vector Indices for Advance Warning of Dengue
Outbreaks

Within these four studies was some additional evidence that

observed changes in vector indices might be useful for the

prediction of impending dengue transmission or outbreaks. In

Cuba, Sanchez (2006) [29] reported that blocks with BImax

(defined as the highest or ‘maximum’ block level BI in a

neighborhood) values greater than 4 were significantly more likely

to record positive cases in the following month, and had a 3–5

times greater dengue risk in comparison with control blocks. The

report concluded that BImax.4 and neighborhood BI.1 during

the preceding 2 months provided ‘‘good predictive discrimina-

tion’’. In northern Venezuela Rubio-Palis et al. [39] found the most

significant correlation between rainfall levels and the appearance

of dengue cases two months later, indicating that the magnitude of

outbreaks might be predictable to some extent following periods of

rainfall. Pham et al. [31] confirmed an association between dengue

transmission and periods of higher rainfall and mosquito

abundance in the central highlands of Vietnam, but did not

indicate whether this could be used in advance of transmission as a

predictive tool.

Unreliable or Absence of Correlation between Vector
Indices and Dengue Cases

A further five studies [34,37,40,43,44] reported ambiguous

evidence of associations, both positive and negative, between

entomological data and dengue cases. In Belo Horizonte, Correa et

al. [43] found a 5–7 fold increase in mean monthly dengue

incidence where the ‘infestation rate’ (defined as house index) was

‘‘between 1.33% and 2.76% and equal to or higher than 2.77%

when compared to areas showing 0.45% or less’’, although it was

unclear whether or not this was statistically significant. They

reported a moderate but significant correlation between adult Aedes

spp. infestation rates and numbers of dengue cases (R = 0.67) even

Figure 2. Range of Breteau indexes reported during dengue transmission. Dotted line indicates a BI value of 5, which has been considered
a transmission threshold for dengue [21,45,52]. Note: Includes all data where available, whether statistically significant or insignificant.
doi:10.1371/journal.pntd.0002848.g002
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though HI and dengue cases were only weakly correlated

(R = 0.25 at the municipal level; R = 0.21 and R = 0.14 at the

district and village level). Sulaiman et al. [37] reported a significant

correlation between BI and HI and dengue cases in certain areas

of Kuala Lumpur, but not in others. In Trinidad, Chadee et al.

[34] found that 75% of DHF cases were located in areas where BI

was greater than 10, although BI and dengue infections were

rarely correlated. An additional two studies reported either very

low correlations between vector indices and dengue [44], or

utilized highly variable inter-annual data precluding such analyses

[40].

Four studies, from Malaysia [36], Brazil [35] and Colombia

[35,45] found no statistically significant relationships between

entomological indices and dengue cases. Foo et al. [36] observed a

positive but non-significant association between dengue cases and

HI and BI, which they suggested may have been influenced by the

small sample size, the presence of Ae. albopictus and socio-

demographic factors. Honorio et al. [38] found no significant

associations between recent dengue cases and Ae. aegypti densities

and proposed that infections received outside the home were

responsible. In Colombia, Romero-Vivas and Falconar [35]

reported distinct positive temporal correlations between the larval

density index and pupal density index (p,0.005) and a negative

association between the larval density index and egg density index

(p,0.01); however, they found no correlation between any of the

larval, pupal or adult indices with either rainfall or dengue-like

cases. The spatial model of Arboleda et al. found no indication that

the BI was in any way correlated with the dengue cases or those

areas predicted as ‘suitable’ [45].

In the remaining studies [20,32,33,41,42] a variety of mixed,

inconclusive or weak associations were reported. Gurtler et al.

conducted analyses on the effect of a given intervention on

mosquito indices but not on dengue cases [32]. Although Katyal et

al. [33] did not present any statistical analysis, they reported the

observation that over a five year period, a fall in cases was visually

correlated with a fall in indices. However, they conceded that ‘‘an

increasing trend of cases was observed [in 2001] in spite of a

further declining HI trend’’, and concluded that HI had no

predictive value at the ‘macro’ level. Despite the absence of

statistical analysis, Chaikoolvatana et al. [41] reported a suggestive

link between dengue haemorrhagic fever (DHF) during peak

annual rainfall months and high abundance of mosquitoes.

Chadee et al. observed ambiguous associations, with BI partially

correlating with dengue fever cases for two out of three years [42].

As in their earlier study at the same Cuban location [29], Sanchez

et al [20] reported that while BImax$4 was a useful predictor for

outbreaks at the block level, sensitivity during outbreaks ranged

between 62% and 81.8% and specificity between 71.9% and

78.1%.

Use of Vector Indices as Transmission Thresholds
The Breteau Index (BI) was used as an outcome measure in

seven studies [29–31,34,36–38] and BImax threshold was consid-

ered in three (Table 2) [20,29,40]. Here, BI values ranged from 1

to 66 during periods when dengue transmission was recorded

(Figure 2). In other studies, both recent [46] and historic [47],

dengue transmission was recorded when BI values were lower than

the widely accepted transmission threshold of 5. Notably, in a

study in Trinidad, ‘high’ transmission (25–40 cases for 75% of

sample ‘cycles’) took place in areas with relatively ‘low’ abundance

(,BI,5) while, conversely, a consistently higher BI of 5.4 in

neighbouring areas did not result in dengue cases [34]. In Rio de

Janeiro, the BI did not correlate with dengue incidence and

transmission occurred in association with a wide range of BI levels

(range 3.30–20.51) [38].

Discussion

With worldwide dengue transmission levels at an all time high,

predicting dengue outbreaks in advance of their occurrence or

identifying specific locations where outbreak risks are highest is of

critical importance. This review considered the evidence that

changes in vector populations can be correlated with dengue virus

transmission and whether or not monitoring fluctuations in vector

indices might be employed to provide reliable advance warning of

impending dengue outbreaks.

Eighteen studies that had the potential to provide evidence of

any association between vector indices and dengue incidence were

identified and examined. Notably, only 4 studies utilized new data

on both vector indices and dengue cases collected de novo as an

integral part of the study. More common was a reliance on local

government-level records for the dengue case data, a practice that

potentially introduces error or bias for number of reasons. First,

hospital reports are prone to selection bias, as asymptomatic/

inapparent infections may not be recorded and the actual number

of cases may have been significantly underreported. Second, there

can be a considerable delay between the times of onset of infection

and reporting which, if the infection date is not calculated, would

result in a temporal mismatch of vector and case data. Third,

differences between the geographic location of the vector and

dengue case data, or between the spatial units from which each

was originally calculated, would result in a geographic mismatch

or mask potential relationships, respectively.

The latter point is of particular significance not only from the

point of view of these studies, but also when considering the design

of future investigations. A growing body of evidence indicates that

the distribution of dengue cases typically is highly clustered in both

time and space. In various studies, post-dating those reviewed, the

size of such clusters ranged from 800 m [48] to less than 100 m

[49]. The effective area of such key ‘pockets’ or ‘hotspots’ is likely

to be determined by dispersal of the vector [49,50] which itself can

vary over time [51], and is influenced by house density [52] and by

human movement within and beyond the infection cluster [53].

Consequently, in studies attempting to correlate vector indices

with dengue transmission, and where the geographical unit is too

large, high vector densities in key dengue hotspots might be diluted

by inclusion of neighboring areas with low densities, thus masking

any true relationships [see 38].

Indeed, human movement potentially confounds dengue vector

data that derive from residential areas alone as increasingly,

evidence indicates that only a proportion of dengue infections are

transmitted in the individual’s own home, with many infections

(possibly the majority) resulting from bites by virus-infected

mosquitoes at other houses, schools, workplaces or numerous

locations remote from the home [53,54]. Clearly, this presents a

serious challenge when considering the use of vector data for

surveillance and highlights a need for inclusion of data from public

locations [55] in addition to residential areas, in any surveillance

program.

Returning to the studies examined in this review, the fact that

there was no clear indication of any consistent association between

vector indices and dengue cases is not unexpected, given the

diverse and mostly weak study designs. One study found there was

no apparent increase in vector indices coinciding with what was

the largest increase in dengue fever cases of all areas studied [40],

while in another, dengue transmission remained low despite

exceptionally high vector indices [44]. In studies where correla-
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tions were calculated for HI, BI and dengue cases, regression

coefficients ranged from weak/moderate non-significant (R = 0.43

and R = 0.35 respectively; p.0.05) [38], to moderate significant

associations (R = 0.61 and R = 0.60 respectively, but only in the

urban centre; p,0.05) [37].

Only two studies calculated pupal indices, even though fifteen of

the eighteen studies reviewed were published more than three

years after WHO acknowledged that the traditional Stegomyia

indices were inadequate for the measurement of dengue vector

abundance [56]. In the two studies included in this review that

calculated pupal indices, only one reported increases in the pupal

index, but its relationship with dengue cases was not statistically

significant, possibly due to the low numbers of pupae recorded

[30,35]. A major problem with pupal surveys is the difficulty in

locating breeding sites and the potential existence of important or

key but cryptic breeding sites (e.g. overhead tanks on houses or

underground water reserves such as sewers or wells) that may

harbor significant proportions of the vector population [57,58].

Clearly, calculation of adult female Aedes aegypti indices is the

most direct measure of exposure to dengue transmission [15]. Of

the four studies reviewed that reported some correlation between

vector indices and dengue cases, two [31,39] recorded adult vector

data. The adult population of Aedes aegypti is rarely sampled, partly

due to the erroneous but commonly held belief that carrying out

such sampling is time-consuming, difficult or expensive [59].

Sampling adult female Aedes aegypti is a relatively simple task,

though it can be limited by the fact that mosquito numbers often

remain low during outbreaks [60]. Nonetheless, it is possible to aim

to sample adult mosquitoes as a routine procedure with minimal

additional training and resources. A number of novel sampling

devices [61–63] offer the potential to monitor vectors during

outbreaks [64] and at the spatial scale required to accurately sample

populations of Ae. aegypti [65]. Simple affordable low-tech tools that

enable localized sampling of adult Ae. aegypti and other mosquito

vectors are available, with initial studies demonstrating their ease

and effectiveness in comparison with older methods [66,67]. In

Brazil, routine sampling of Ae. aegypti adults with gravid traps

deployed at relatively low densities was used to identify high risk

localities which were then targeted for vector control [68,69]. This

‘Intelligent Dengue Monitoring’ system was reported to have

prevented over 27,000 dengue cases over two ‘dengue seasons’

between 2009 and 2011 with considerable reductions in cost burden

to the communities where it was deployed [70].

None of the studies reported on viral infection rates in the

vector. This perhaps is not surprising given that techniques

suitable for application in routine surveillance, such as PCR or

NS1, have not been available until recently, that vector infection

rates with dengue virus are of the order of 1% even in areas where

transmission is ongoing [64,70–72] and the cost of running the

large numbers of tests to detect meaningful infection levels could

be considered prohibitive for many authorities. Nonetheless,

routine screening for dengue virus of trapped adult female Aedes

aegypti is possible and has been incorporated into the routine

surveillance program in Belo Horizonte, Brazil [73]. The relative

low dispersal rates of Ae. aegypti as compared with the high mobility

of humans as they commute daily from the home to the workplace,

school, etc., means that virus-infection rates in the vector

potentially could provide an accurate or epidemiologically valid

indicator of dengue risk in any particular locality, thus informing

vector control. Clearly, elucidating the relative value of such an

index would require substantial research investment, while

integrating it into routine surveillance programmes would demand

significant sustained investment, but the importance of metrics like

the sporozoite or entomological inoculation rates used in malaria

epidemiology [59] already indicate the potential.

This review has also demonstrated the unreliability of accepted

vector thresholds for dengue transmission. A number of studies

reported dengue transmission at BI levels below the currently

accepted threshold of 5 (Figure 2) [29,34,36–38] or when the HI

was below 1% [74,75]. Elsewhere, Focks proposed a pupal

productivity index of 0.25 as a threshold for dengue transmission

in Honduras [76], yet in Brazil dengue transmission occurred at

PPI levels of 0.15 [58]. While the desire for a single globally

applicable transmission threshold is understandable, it seems

unlikely that such a threshold exists, given the variety and

complexity of other parameters that potentially influence the risk

of outbreaks today [19,77,78]. Chadee concluded in 2009 that

dengue transmission occurs, not at a fixed entomologic figure/

quantity but rather at a variable level based on numerous factors

including seroprevalence, mosquito density and climate [30]. It is

becoming increasingly apparent that thresholds differ at different

locations and in different contexts, and while they must be

calculated independently at each location [19,79]. Moreover,

empirically defining thresholds, which must be expected to be

dynamic, rising and falling as the susceptibility of the local

population changes, will require comprehensive prospective,

longitudinal vector studies [80], with simultaneous monitoring of

the relationship between Ae. aegypti population densities and

dengue virus transmission in a spatially relevant human cohort.

Study Limitations
In spite of reference searches and use of grey literature,

publication bias will likely remain given the very nature of a

systematic review. However, we also sought to further limit the

effect of publication bias by placing no restriction on language,

and those languages encountered were: English, French, Portu-

guese, Spanish and Chinese.

Additionally, one should be cautious when interpreting these

data due to the study design of the 18 articles. As defined by

QATAS assessment methods, study design was often weak (15

studies), meaning that studies were prone to bias and confounding

factors, which may have skewed some of the reported associations.

In addition, most (n = 13) studies relied on dengue case data from

external sources, rather than obtaining study-generated data. With

the exception of vector sampling and generation of vector index,

there were few similarities in the approaches across the different

studies.

Conclusions and Recommendations
Despite the widespread practice of collecting vector population

data, the review has revealed that very few rigorous studies have

been undertaken to determine the relationship between vector

abundance and dengue transmission; of those that have been

published, few provide tangible evidence of such a relationship,

and therefore it is not possible to draw a firm conclusion. After

decades of vector surveillance in many countries and considering

the magnitude of the dengue threat today both in those and other

countries that have recently experienced major dengue outbreaks,

this is disappointing. Yet it is also indicative of the lack of basic

knowledge of dengue epidemiology, in particular with regard to

transmission. Clearly, this is a major knowledge gap that requires

attention with a degree of urgency and the following research

priorities are recommended:

N The relationship between vector population abundance and

dengue transmission remains unknown and should be

quantified. Studies should aim to collect new vector and
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clinical datasets carefully matched temporally and spatially.

Given that epidemiology will vary considerably between

different contexts and geographical localities, multiple loca-

tions should be investigated.

N The ideal and most powerful approach would be for a series of

coordinated studies, to be carried out in multiple locations

worldwide, as exemplified by recent examples [80]. To

facilitate such studies, and ensure higher power in individual

and combined datasets, the development of a standardized

study design and protocols is a priority.

N Individual locations are also strongly encouraged to investigate

the relationship independently. Many dengue-affected areas

(cities, districts or similar spatial units) are likely to have

substantial historic vector and dengue data that potentially

may be suitable for appropriate analysis.

N Spatial heterogeneity and transmission at sites other than the

home must be considered and carefully incorporated into any

study design.

N The utilization of single global values of the Breteau (BI) or

other vector indices as thresholds for dengue transmission is

unreliable and is not recommended.

N While the need for a standardized reliable definition of a

dengue outbreak has already been stated elsewhere [81],

research into the relationship between vector abundance and

dengue transmission should endeavor to develop a similar

approach to defining reliable locality-specific vector population

indices (e.g. thresholds, rates of increase, etc.) for use as early

warning signals for impending increases in dengue transmis-

sion.

N Adoption of adult dengue vector sampling by all vector

surveillance programs is urged. Various new trapping

methods, as well as a simple resting catch approach, should

be evaluated.

N Relationship between larval, pupal and adult stages of the

vector population and the factors influencing adult emergence

rates remain poorly understood. The paucity of fundamental

knowledge of the ecology of mosquito vectors generally and the

need for basic studies has been advocated elsewhere [82,83]

and is true for Ae. aegypti and Ae. albopictus. A greater

understanding of the ecology of dengue vectors is essential.

In the absence of definitive evidence that dengue vector

surveillance data can contribute to the prediction of dengue

outbreaks, it might be tempting to consider abandoning the

practice altogether. However, this would be a rash and premature

judgment. At the very least, this systematic review has demon-

strated that the potential of vector surveillance data has not yet

been evaluated. Indeed, its full potential will not be apparent until

its contribution to a complete predictive model incorporating all

other covariates influencing dengue epidemiology have been

considered. That will not be possible until multiple high quality

studies investigating the relationship between vector populations

and dengue transmission have been carried out.
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