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Abstract. The Antarctic temperature changes over the past

millennia remain more uncertain than in many other conti-

nental regions. This has several origins: (1) the number of

high-resolution ice cores is small, in particular on the East

Antarctic plateau and in some coastal areas in East Antarc-

tica; (2) the short and spatially sparse instrumental records

limit the calibration period for reconstructions and the as-

sessment of the methodologies; (3) the link between iso-

tope records from ice cores and local climate is usually

complex and dependent on the spatial scales and timescales

investigated. Here, we use climate model results, pseudo-

proxy experiments and data assimilation experiments to as-

sess the potential for reconstructing the Antarctic tempera-

ture over the last 2 millennia based on a new database of

stable oxygen isotopes in ice cores compiled in the frame-

work of Antarctica2k (Stenni et al., 2017). The well-known

covariance between δ18O and temperature is reproduced in

the two isotope-enabled models used (ECHAM5/MPI-OM

and ECHAM5-wiso), but is generally weak over the differ-

ent Antarctic regions, limiting the skill of the reconstructions.

Furthermore, the strength of the link displays large variations

over the past millennium, further affecting the potential skill

of temperature reconstructions based on statistical methods

which rely on the assumption that the last decades are a good

estimate for longer temperature reconstructions. Using a data

assimilation technique allows, in theory, for changes in the

δ18O–temperature link through time and space to be taken

into account. Pseudoproxy experiments confirm the bene-

fits of using data assimilation methods instead of statistical

methods that provide reconstructions with unrealistic vari-
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ances in some Antarctic subregions. They also confirm that

the relatively weak link between both variables leads to a lim-

ited potential for reconstructing temperature based on δ18O.

However, the reconstruction skill is higher and more uniform

among reconstruction methods when the reconstruction tar-

get is the Antarctic as a whole rather than smaller Antarc-

tic subregions. This consistency between the methods at the

large scale is also observed when reconstructing temperature

based on the real δ18O regional composites of Stenni et al.

(2017). In this case, temperature reconstructions based on

data assimilation confirm the long-term cooling over Antarc-

tica during the last millennium, and the later onset of an-

thropogenic warming compared with the simulations without

data assimilation, which is especially visible in West Antarc-

tica. Data assimilation also allows for models and direct ob-

servations to be reconciled by reproducing the east–west con-

trast in the recent temperature trends. This recent warming

pattern is likely mostly driven by internal variability given

the large spread of individual Paleoclimate Modelling Inter-

comparison Project (PMIP)/Coupled Model Intercomparison

Project (CMIP) model realizations in simulating it. As in

the pseudoproxy framework, the reconstruction methods per-

form differently at the subregional scale, especially in terms

of the variance of the time series produced. While the poten-

tial benefits of using a data assimilation method instead of

a statistical method have been highlighted in a pseudoproxy

framework, the instrumental series are too short to confirm

this in a realistic setup.

1 Introduction

Over the last few decades, the Antarctic Peninsula and West

Antarctica have experienced a strong warming, while no sig-

nificant temperature trend has been recorded in East Antarc-

tica (Nicolas and Bromwich, 2014; Jones et al., 2016). The

attribution of the causes of these changes is complicated by

the large interannual to multi-decadal variability that charac-

terizes the Antarctic climate (Schneider et al., 2006; Goosse

et al., 2012; Jones et al., 2016), stressing the importance of

considering a longer period to put the recent changes in a

wider perspective. This is not possible using the instrumen-

tal record that generally only goes back to the late 1950s in

Antarctica (Nicolas and Bromwich, 2014; Jones et al., 2016).

Nevertheless, temperature information on a longer timescale

can be inferred from stable isotope ratios of oxygen and hy-

drogen recorded in ice cores (e.g., Dansgaard, 1964; Jouzel,

2003; Masson-Delmotte et al., 2006).

However, the spatial coverage of high-resolution (annual

to decadal) cores is uneven with a very small number of

cores in dry regions such as the central East Antarctic plateau

(Stenni et al., 2017), and in some coastal areas such as

Adélie Land (Goursaud et al., 2017). In addition to the lim-

itations related to the number and distribution of the cores,

there are several sources of uncertainty in reconstructions

based on these data. The period available to calibrate the

records is very short due to the limited availability of in-

strumental records. In addition, it has been long established

that the relationship between isotopes and surface tempera-

ture may differ spatially and temporally (e.g., Jouzel et al.,

1997) as a result of changes in the origin of moisture, at-

mospheric transport pathways (e.g., Schlosser et al., 2004),

or precipitation seasonality (e.g., Sime et al., 2008; Masson-

Delmotte et al., 2008; Sodemann and Stohl, 2009). Finally,

non-climatic noise related to postdepositional effects associ-

ated, for instance, with wind scouring and water vapor also

adds to the challenge of interpreting the ice-core signals (e.g.,

Ekaykin et al., 2014; Ritter et al., 2016; Casado et al., 2016).

Thus, individual ice-core records may be affected by non-

climatic, very local processes. Combining individual records

in a given location or region has the potential to improve the

signal-to-noise ratio (SNR). This was done at the continen-

tal scale in Goosse et al. (2012), where a composite of last

millennium Antarctic temperature was presented. This com-

posite is based on the average of seven temperature records

derived from isotope measurements in ice cores, and shows

a weak multi-centennial cooling trend over the preindus-

trial period followed by a warming after 1850 CE. A sim-

ilar last millennium cooling is observed in the reconstruc-

tion of the PAGES 2k Consortium (2013) which is based

on a composite-plus-scaling (CPS) approach (e.g., Schnei-

der et al., 2006), using 11 records, although no clear recent

warming is observed in this reconstruction.

Those continental-scale trends based on a limited num-

ber of records actually mask important spatial variations as

shown in Stenni et al. (2017). Using a new database compiled

in the framework of the PAGES Antarctica2k working group

that contains 112 isotopic records, Stenni et al. (2017) pro-

duced temperature reconstructions over the last 2 millennia

on both regional and continental scales. Those reconstruc-

tions confirm the last millennium cooling over Antarctica,

which is strongest in West Antarctica, and show no evident

warming during the last century at the continent scale, de-

spite the significant positive temperature trends observed in

the Antarctic Peninsula, the West Antarctic Ice Sheet (WAIS)

and coastal Dronning Maud Land (DML).

In contrast, climate model simulations performed in the

framework of the third phase of the Past Model Intercom-

parison Project (PMIP3; Otto-Bliesner et al., 2009) and the

fifth phase of the Coupled Model Intercomparison Project

(CMIP5; Taylor et al., 2012) show a general twentieth cen-

tury warming over Antarctica due to anthropogenic forcing

(Goosse et al., 2012; PAGES 2k-PMIP3 group, 2015). As

pointed out by Jones et al. (2016), this model–data mismatch

at the continental scale suggests that the CMIP5 models over-

estimate the forced response, that the forced changes in the

real world are overwhelmed by natural variability, or a com-

bination of both of these factors. Part of the disagreement

may also be due to observational gaps and uncertainties in

regional temperature estimates.
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To complement the limited information available from di-

rect temperature observations, it is necessary to extract as

much reliable temperature information as possible from ice-

core water stable isotope records. In this context, our goal

here is to assess the robustness of Antarctic temperature re-

constructions over the last 2 millennia presented in Stenni

et al. (2017), focusing on the potential impact of spatial and

temporal changes in the δ18O–surface temperature relation-

ship on the reconstruction skill. This is achieved by means

of model results analysis, pseudoproxy experiments and data

assimilation.

As our study is based on model results, it is important

to first characterize the similarities and differences between

simulated, reconstructed and observed temperature over the

last millennium, at the regional scale. The simulated temper-

ature products are derived from model simulations follow-

ing the PMIP3 and CMIP5 protocols (Schmidt et al., 2011;

Taylor et al., 2012), and from simulations from two isotope-

enabled climate models, ECHAM5/MPI-OM (Werner et al.,

2016) and ECHAM5-wiso (Werner et al., 2011). These sim-

ulated temperatures are compared to the regional tempera-

ture reconstructions from Stenni et al. (2017), and to the

instrumental-based reconstruction produced by Nicolas and

Bromwich (2014), covering the recent period from 1958 CE,

and defined at a 60 km resolution.

The potential for reconstructing surface temperature based

on water stable isotopes is then assessed in two stages. First,

via the study of the stability of the relationship between

these two variables in the model world over the last mil-

lennium using the results of the ECHAM5/MPI-OM and

ECHAM5-wiso models, and second, using pseudoproxy ex-

periments. Pseudoproxy experiments consist of utilizing cli-

mate model results to evaluate the performance of paleo-

climate reconstruction methods in a flexible and controlled

framework (e.g., Smerdon, 2012). The methodologies ap-

plied to obtain the paleoclimate reconstructions are applied

in the model world, where all variables are known, allowing

for the precise and quantitative assessment of the skill of the

reconstructions. The resulting findings may not be fully valid

for real-world implications, due to model biases, unrealis-

tic pseudoproxies or the dependency of the pseudoproxy on

the model from which they originate (Smerdon et al., 2016).

However, the lack of real-world data, especially in Antarc-

tica, limits the extent of (or even prevents) the evaluation of

reconstruction methods, emphasizing the advantages of us-

ing pseudoproxy experiments. The complexity of the δ18O–

temperature relationship, which potentially limits the recon-

struction skill, further stresses the importance of using such

experiments. Here, the pseudoproxies are derived from an

ECHAM5/MPI-OM simulation covering the 800–1999 CE

period (Sjolte et al., 2018). These pseudoproxies are used

as input data for the different statistical methods utilized in

Stenni et al. (2017) for reconstructing temperature based on

δ18O, as well as for data assimilation experiments.

When applied to paleoclimatology, data assimilation aims

at combining information from model results and proxy-

based reconstructions to find estimates of past climate

changes (e.g., Widmann et al., 2010; Hakim et al., 2016).

Reconstructing temperature based on δ18O data using a data

assimilation method potentially has several advantages com-

pared with using statistical methods. First, data assimilation

does not rely on a constant and stable relationship between

δ18O and surface temperature, unlike the statistical methods

used in Stenni et al. (2017). Second, data assimilation takes

the spatial dependency of temperature into account which is

not the case for the reconstructions of Stenni et al. (2017).

Third, if a skilful reconstruction can be achieved, climate

variables other than temperature can be reconstructed with-

out any spatial or temporal gap, which may help interpret the

signals present in ice-core records, although this falls outside

of the scope of the present study.

After the assessment of the statistical and data assimilation

methods in the light of the pseudoproxy experiments, the real

temperature reconstructions over the last 2 millennia based

on the new δ18O database presented in Stenni et al. (2017)

are compared. Comparing the output of the different recon-

struction methods allows for an assessment of how robust the

reconstructions are, and how sensitive they are to the speci-

ficities of the methods. Particular focus is placed on whether

the simulated spatial pattern of recent temperature trends and

the measured and observed trends can be reconciled through

data assimilation, or whether there is a fundamental discrep-

ancy between model and data in this regard.

This study is structured as follows. The climate model sim-

ulations, the water stable isotopes records and the different

reconstruction methods are described in Sect. 2. The simu-

lated and reconstructed last millennium temperature changes

are analyzed in Sect. 3, and compared to instrumental records

over the recent past. The potential for reconstructing surface

temperature based on water stable isotopes is assessed in

Sect. 4, focusing on the δ18O–surface temperature relation-

ship and pseudoproxy experiments. Finally, the temperature

reconstructions based on various reconstructions methods are

presented and discussed in Sect. 5, followed by the conclu-

sion.

2 Data and methods

2.1 Climate model simulations

Simulations performed with two isotope-enabled general cir-

culation models (GCMs), ECHAM5/MPI-OM (Werner et al.,

2016) and ECHAM5-wiso (Werner et al., 2011), are an-

alyzed and used as a basis for the data assimilation ex-

periments. ECHAM5/MPI-OM is a fully coupled ocean–

atmosphere–sea-ice–land surface GCM. The simulation used

in the present study covers the 800–1999 CE period with a

horizontal resolution of 3.75◦ × 3.75◦ (Sjolte et al., 2018).

It is driven through the past millennium by both natural and

www.clim-past.net/15/661/2019/ Clim. Past, 15, 661–684, 2019
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anthropogenic forcings as described in Sjolte et al. (2018).

ECHAM5-wiso is an atmosphere-only GCM. The run em-

ployed in this study was performed by Steiger et al. (2017)

and spans the years from 1871 to 2011 CE at 1.125◦ spa-

tial resolution. It is forced through this period by monthly

historical sea ice and sea surface temperatures (SST) from

the Met Office Hadley Centre’s sea ice and sea surface

temperature data set (Rayner et al., 2003). The evaluation

of these simulations against recent observations (Global

Network of Isotopes in Precipitation, GNIP, IAEA/WMO,

2018) shows a relatively good agreement between simu-

lated and observed oxygen ratios in precipitation regard-

ing various diagnostics, including spatial patterns, magni-

tude of the changes, and δ18O–surface temperature relation-

ships (Werner et al., 2016; Steiger et al., 2017). Focusing

on Antarctica, ECHAM5/MPI-OM and ECHAM5-wiso sim-

ulate similar absolute values and spatial patterns of δ18O

(Fig. S1 in the Supplement) to another ECHAM5-wiso simu-

lation nudged with ERA-Interim atmospheric reanalyses data

(Dee et al., 2011) over the 1979–2013 CE period (Goursaud

et al., 2018). This latter simulation was extensively studied in

Goursaud et al. (2018), where they concluded that, despite an

overall underestimation of isotopic depletion by ECHAM5-

wiso compared with a collection of water stable isotope mea-

surements, the model correctly captured the spatial gradient

of annually averaged δ18O data; this justifies the use of the

model to study water stable isotopes in Antarctic precipita-

tion, and gives confidence regarding the use of the longer

simulations from ECHAM5/MPI-OM and ECHAM5-wiso

for our analysis. In this study, model outputs are processed

to calculate precipitation-weighted δ18O at the temporal res-

olution of the corresponding analysis for comparison with

ice-core records.

In addition to ECHAM results, last millennium temper-

ature fields simulated by six models following the PMIP3

(Otto-Bliesner et al., 2009) and CMIP5 (Taylor et al., 2012)

protocols are analyzed in Sect. 3. Details on models used in

this study are listed in Table 1. See Klein et al. (2016) for a

description of the forcings driving these simulations.

2.2 Water stable isotope records

The data used in this study to assess and constrain model re-

sults consists of composites of water stable isotopes for seven

climatically distinct regions covering the Antarctic continent:

the East Antarctic plateau, Wilkes Land coast, Weddell Sea

coast, the Antarctic Peninsula, WAIS, Victoria Land–Ross

Sea and DML coast (Stenni et al., 2017). These regions,

which are described in detail in Stenni et al. (2017), display

relatively homogeneous characteristics in terms of regional

climate and snow deposition processes, and were validated

and refined by spatial correlation of temperature using the

instrumental-based reconstruction of Nicolas and Bromwich

(2014). The regional composites are based on 112 individ-

ual ice-core water stable isotope records compiled in the

framework of the PAGES Antarctica2k working group. Most

of these records are oxygen isotope ratios, and those that

are deuterium isotopes (δD) have been converted to a δ18O

equivalent by dividing by 8, which represents the slope of the

global mean meteoric relationship of oxygen and deuterium

isotopes in precipitation (Stenni et al., 2017).

Most individual records have a data resolution ranging

from 0.025 to 5 years. In order to limit the influence of non-

climatic noise induced by postdepositional processes (e.g.,

Münch et al., 2017; Jones et al., 2017; Laepple et al., 2018),

they were all 5-year averaged for reconstructing the last

2 centuries and 10-year averaged for reconstructing the last

2 millennia. This lower temporal resolution also limits the

potential influence of small age uncertainties. The spatial dis-

tribution of the individual records is strongly heterogeneous

(Stenni et al., 2017). To avoid an overrepresentation in the

composites of the areas with a relatively higher density of

ice-core networks compared with other regions, the number

of records was reduced based on a 2◦ latitude × 10◦ lon-

gitude grid in which multiple records falling into the same

grid cell were averaged. This cut the number of individual

series down to 40 with the following distribution: 15 for the

East Antarctic plateau, 2 for the Wilkes Land coast, 1 for the

Weddell Sea coast, 4 for the Antarctic Peninsula, 10 for the

WAIS, 3 for the Victoria Land–Ross Sea sector and 5 for the

DML coast. In Stenni et al. (2017), different methods were

used to produce the seven composites from the preprocessed

data, including a simple average per subregion, and weighted

averages based on the temperature regressions of each site

and the relevant region. Here, the composites using the latter

method are used. However, all methods give consistent δ18O

trends and variability.

2.3 Data assimilation method

The data assimilation method used to perform the temper-

ature reconstruction is based on a particle filter (e.g., van

Leeuwen, 2009) that is applied off-line, meaning that data

assimilation makes use of an existing and fixed ensemble of

simulated climate states. Off-line data assimilation methods

contrast with online methods where the ensemble is gener-

ated sequentially, depending on the analysis made via the

data assimilation process on the previous time step. An on-

line method can theoretically outperform an off-line method

if the state of the system at one particular time significantly

influences its subsequent evolution between two assimila-

tion steps, as it allows the propagation of the information

forward in time (Pendergrass et al., 2012; Matsikaris et al.,

2015). This has been highlighted in Goosse (2017) where

the oceans predominate. It also has the advantage of pro-

viding reconstructions that are consistent with changes in

forcing as the temporal consistency is kept. However, online

methods are computationally very expensive, which limits

the ensemble size especially when using complex and high-

resolution models. Furthermore, previous studies have shown
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Table 1. Modeling centers, parameters and references of the climate models used in this study. “Past1000” and “Historical” refer to

PMIP/CMIP experiments covering the 850–1850 CE and 850–2005 CE periods, respectively.

Model name Institution Atmos. reso. Ensemble members Period Reference

Isotope-enabled models

ECHAM5/MPI-OM Max Planck Institute for Meteorology 48 × 96 1 800–1999 Werner et al. (2016)

ECHAM5-wiso Max Planck Institute for Meteorology 160 × 320 1 1871–2011 Werner et al. (2011)

PMIP/CMIP models

Past1000 Historical

CCSM4 National Center for Atmospheric

Research

192 × 288 1 6 850–2005 Gent et al. (2011)

CESM1 National Center for Atmospheric

Research

96 × 144 10 10 850–2005 Otto-Bliesner et al. (2016)

GISS-E2-R NASA Goddard Institute for Space

Studies

90 × 144 1 6 850–2005 Schmidt et al. (2014)

IPSL-CM5A-LR Institut Pierre-Simon Laplace 96 × 96 1 5 850–2005 Dufresne et al. (2013)

MPI-ESM-P Max Planck Institute for Meteorology 96 × 192 1 2 850–2005 Stevens et al. (2013)

BCC-CSM1-1 Beijing Climate Center, China Meteo-

rological Administration

64 × 128 1 3 850–2005 Wu et al. (2014)

that off-line methods can be adequate and provide skilful data

assimilation-based reconstructions using various kinds of

data, for instance surface temperature-related, hydroclimatic-

related or even sea surface temperature-related data (e.g.,

Steiger et al., 2014; Hakim et al., 2016; Klein and Goosse,

2018; Steiger et al., 2018). Moreover, Steiger et al. (2017)

recently performed successful off-line data assimilation ex-

periments based on Kalman filtering (Kalnay, 2003) using

δ18O in ice-core records. Finally, an off-line data assimi-

lation method (in this study) allows for the use of the re-

sults from the isotope-enabled ECHAM5/MPI-OM (Werner

et al., 2016) and ECHAM5-wiso (Steiger et al., 2017) models

(see Sect. 2.1), which explicitly simulate the δ18O in precip-

itation, leading to a straightforward and direct comparison

in the data assimilation process. This is a clear advantage

over inferring the model δ18O based on a linear-univariate fit

with local temperature as done, for instance, in Goosse et al.

(2012), given the nonlinearity and nonstationarity of the link

between stable oxygen ratios and surface temperature (e.g.,

Masson-Delmotte et al., 2008).

There are two types of off-line data assimilation meth-

ods which differ in the way the model ensembles are pro-

duced. They can be referred to as transient and stationary

off-line methods. In transient methods (e.g., Goosse et al.,

2006; Bhend et al., 2012; Matsikaris et al., 2015), an ensem-

ble of simulations is first generated by performing several

simulations with one model driven by realistic estimates of

the forcing. The ensemble of states used for the data assim-

ilation (i.e., the prior) is time-dependent and changes at ev-

ery assimilation step, as the model results and the data must

correspond to the same time (generally the same year). As

for online methods, transient off-line methods have the ad-

vantage of providing reconstructions that are consistent with

changes in forcings. However, obtaining skillful reconstruc-

tions depends on the range of the ensemble, which must be

wide enough to capture the full complexity included in the

data network. This is directly related to the ensemble size,

which is strongly limited in transient off-line methods by

the computational constraints on performing ensemble sim-

ulations. In stationary off-line methods (e.g., Steiger et al.,

2014; Hakim et al., 2016; Steiger et al., 2018), the ensem-

ble of states used for the data assimilation is obtained by

selecting not only the time in the simulations correspond-

ing to the data assimilation time step (and thus the observed

changes) but also other simulated time steps. This allow for

the ensemble size to be increased by several orders of mag-

nitude and thus potentially increases the skill of the recon-

structions. However, as the prior includes years with many

different forcings, the resulting reconstructions may be in-

consistent with changes in the forcing history. This is still

valid when internal variability dominates over the forced re-

sponse, as is the case with hydroclimate-related variables at

local scale for instance (e.g., Klein and Goosse, 2018). If the

fingerprint of the forcing is large, the data assimilation pro-

cedure can also select for reconstructing a specific year, only

simulated years characterized by forcings similar to the target

year. However, it is also possible that the forcing contribution

is underestimated in the reconstruction due to the selection of

the prior, inducing some different teleconnections to the tele-

connections observed, challenging the interpretation of the

reconstructed patterns.

Here, as only one respective simulation exists for

ECHAM5/MPI-OM and ECHAM5-wiso, the ensembles are

fixed and produced in both cases by selecting all simu-

lated years of these single simulations; this results in ensem-

bles containing 1200 members for ECHAM5/MPI-OM and

141 members for ECHAM5-wiso. The particle filter used

(Dubinkina et al., 2011) is implemented in the same way as

www.clim-past.net/15/661/2019/ Clim. Past, 15, 661–684, 2019
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in Klein and Goosse (2018); it is also detailed in their pa-

per, so only a short description follows. For each assimila-

tion time step (yearly, see Sect. 2.4), every member of the

ensemble of simulated climate states is compared to data.

The model–data comparison is performed using anomalies

over the whole period covered by the simulations in order to

remove any potential model biases and to focus on the vari-

ability. Based on this comparison, the likelihood, a measure

of the ability of the different members to reproduce the sig-

nal recorded in the data, is computed the uncertainties of the

data taking into account. A weight proportional to the likeli-

hood is then attributed to each member, which allows for the

computation of the weighted mean for each assimilation time

step and provides the reconstruction.

2.4 Experimental design for data assimilation

experiments

The potential for reconstructing the Antarctic surface tem-

perature based on the assimilation of the seven subregional

composites of δ18O is first assessed in a controlled frame-

work using pseudoproxy experiments. In this case, pseudo-

proxies are generated to match the real data of Stenni et al.

(2017) as closely as possible, described in Sect. 2.2. First,

ECHAM5/MPI-OM δ18O results over the grid cells contain-

ing real ice-core records are extracted. As some records fall

within a same grid cell, the total number of independent se-

ries is reduced from 112 to 52. The precipitation-weighted

annual means of δ18O are then computed from these time se-

ries, over which a Gaussian white noise is added in order to

end up with SNRs of 0.5. This value is commonly used to

produce pseudoproxies (Smerdon, 2012), although it reaches

the upper range of an average annual mean proxy (Wang

et al., 2014). However, as the noise is applied directly to the

measured quantity (δ18O) and not to the climatic interpre-

tation inferred from proxy (temperature), it seems adequate.

To match the real data temporal resolution, the time series

are 10- and 5-year averaged over the 800–1800 and 1800–

2000 CE periods, respectively. The 52 time series are then as-

signed to one of the seven regions and a weight, proportional

to the observed surface temperature relationship of the indi-

vidual record with the corresponding region, is attributed to

each pseudoproxy, in the same way as in Stenni et al. (2017).

A weighted average by subregion is then performed to pro-

duce the seven pseudoproxy composites. Lastly, a temporal

mask is applied to the seven time series to match the same

time coverage as the reconstructions of Stenni et al. (2017).

The most natural choice would be to apply the same

10- and 5-year averaging procedure to the model results.

However, this drastically reduces the ensemble size and

thus the range of possible climate states, limiting the data

assimilation-based reconstructions skill. Hence, the pseu-

doproxies are linearly interpolated at the annual resolution

which allows for the assimilation frequency to be set to an-

nual and thus uses all available individual years in the two

models to build the ensembles, as mentioned in the previ-

ous section. The assimilation process is carried out sepa-

rately for the two model ensembles. The ensembles consist

of the seven subregional time series for each year of the sim-

ulations, produced by averaging the precipitation-weighted

annually averaged results in every grid cell of each region.

Note that in the case of the assimilation of pseudoproxies

derived from ECHAM5/MPI-OM using the ECHAM5/MPI-

OM model ensemble, the model result corresponding to the

same year as the assimilated pseudoproxy is excluded from

the ensemble at each data assimilation step.

Data assimilation requires an estimate of observation un-

certainties. In the case of the pseudoproxy experiments, the

uncertainty of the seven time series corresponds to the vari-

ance of the noise added in the generation of those data, rang-

ing from 0.15 ‰ for the East Antarctic plateau to 0.47 ‰ for

the Weddell Sea coast. Unfortunately, it is not possible to ac-

curately determine the uncertainty associated with real data.

Several experiments have been performed using different es-

timates of observational errors to assess the sensitivity of our

results to this parameter. For instance, the error has been

assumed to be spatially coherent (using values of 0.15 ‰,

0.25 ‰ or 0.50 ‰), estimated as being proportional to the

data series variances, inversely proportional to the number of

individual data series contained in a same model grid cell, or

a combination of the above. These different estimates of the

data uncertainty have an impact on the results, but, as shown

in the Sect. S2 in the Supplement, this impact is limited in

our experiments. Consequently, a temporally and spatially

constant estimate for the data uncertainty equal to 0.25 ‰

is preferred over more complex choices that may be hard to

justify given the subjective considerations implied.

2.5 Statistical reconstruction methods

In Sects. 4.2 and 5, the data assimilation-based temperature

reconstructions are compared to the statistical reconstruc-

tions presented in Stenni et al. (2017), including the pre-

vious Antarctica2k temperature reconstruction published by

PAGES 2k Consortium (2013) based on the CPS approach.

Each of these reconstruction methods is applied to the same

input data, whether it be the pseudoproxy or the real data

consisting of the ice-core records collection of Stenni et al.

(2017).

The reconstruction methods developed in Stenni et al.

(2017) are based on linear regressions of ice-core δ18O with

local surface temperature on the regional average products.

In the first method, the regional isotope composites were

scaled based on the annual δ18O–temperature slopes inferred

from a ECHAM5-wiso simulation nudged with ERA-Interim

atmospheric reanalyses data (Goursaud et al., 2018), over the

1979–2013 CE period. Given the limited length of the simu-

lation, Stenni et al. (2017) considered annual mean anoma-

lies to compute the slopes and applied these slopes to the 5-

and 10-year binned composites. In the second approach, the
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Figure 1. Changes in 10- (left panels) and 5-year averaged (right panels) surface temperature over the 850–2000 CE period over (a) Antarc-

tica, (b) West Antarctica and (c) East Antarctica (for a definition of the regions see Stenni et al., 2017). The model results are shown using

the colored lines, the average of the three statistical reconstructions of Stenni et al. (2017) is shown using a dashed black and white line,

and the reconstruction based on instrumental records (Nicolas and Bromwich, 2014) is shown using a white line (in the right panels only).

The number of ensemble members for each model is given in brackets after the labels. The colored shading represents the mean ±1 standard

deviation of the corresponding ensemble. The reference period is 1500–1800 CE for the left panels, and 1960-1990 CE for the right panels.

The mean slopes (in degree/100 years) over the 850–1850 and 1958–2010 CE periods are shown to the right of each panel; slopes propor-

tional to the numbers are also displayed. When the trends of all available members are significantly different from zero according to F tests

(p < 0.05), the mean slope values are followed by an asterisk (∗).

normalized records were scaled to the instrumental period

temperature variance at the regional scale, computed over

the 1960–1990 CE period for the 5-year-binned averages and

the 1960–2010 CE period for the 10-year-binned averages.

Here, in the pseudoproxy framework, the scaling is based on

the pseudoproxy of temperature only over the 1950–2000 CE

period for both averages.

A similar scaling is used in the CPS method to that uti-

lized in the PAGES 2k Consortium (2013) and applied to the

larger Antarctic ice-core database in Stenni et al. (2017). The

CPS regional reconstructions consist of weighted averages of

the normalized records falling in the subregions: the weights

are based on the correlation between the records and the cor-

responding regional temperature time series over the 1961–

1991 CE period. The composites are then scaled to the mean

and the variance of the observations over the same period.

Compared with the two previous statistical approaches, the

CPS method has the limitation of discarding more than half

of the records (62 out of 112), because it is limited to the

sites where there is an overlap between the δ18O records and

direct temperature observations.

Each of these reconstructions rely on the assumption that

the instrumental period is representative of longer-term cli-

mate variability, which is not the case in data assimilation.

These reconstructions are hereafter referred to in this paper

as the “statistical reconstructions”.

3 Reconstructed and simulated last millennium

temperature changes

At the continental scale, PMIP/CMIP models show a long-

term cooling in Antarctica between the beginning of the

last millennium and 1850 CE (Fig. 1), which is consistent

with the results of previous model-based (Goosse et al.,
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2012; PAGES 2k-PMIP3 group, 2015) and observation-

based (Goosse et al., 2012; PAGES 2k Consortium, 2013;

Stenni et al., 2017) studies. The decrease in temperature in

the reconstructions of Stenni et al. (2017) between 850 and

1850 CE reaches −0.62 ◦C (based on the linear trend, signif-

icantly different from zero, p < 0.05, according to a F test)

on average over the three proposed reconstructions, which is

in the range of the PMIP/CMIP models where the simulated

cooling lies between −0.01 ◦C (not statistically significant)

for GISS-E2-R and −0.72 ◦C (significant) for BCC-CSM1-

1. ECHAM5/MPI-OM is the only model that does not simu-

late this last millennium cooling but rather a weak, although

statistically significant, warming over the period.

The last millennium cooling trend is followed from the

mid-nineteenth century by a relatively strong warming trend

until present-day (Fig. 1). As discussed in Abram et al.

(2016), climate models systematically simulate the onset of

an anthropogenic warming in the mid-nineteenth century,

which is consistent with paleoclimate records in the Northern

Hemisphere but not in the Southern Hemisphere where the

warming is delayed. This model–data mismatch is observed

in Antarctica using the reconstructions of Stenni et al. (2017),

especially in the western part of the continent where the de-

lay in the reconstructions compared to models reaches about

100 years (Fig. 1b). For the recent period, when instrumen-

tal observations are available (1958–2012 CE), PMIP/CMIP

models and the reconstructions slightly overestimate the ob-

served warming: an increase in temperature of 0.82 ◦C for

the model mean, an increase of 0.90 ◦C for the mean of the

reconstructions based on ice-core records, and an increase of

0.52 ◦C for instrumental observations (Fig. 1). Note, how-

ever, that the majority of the trends over this period are

not statistically significant at the 0.05 level, given that the

short period and the temporal resolution of the 5-year mean

strongly limit the number of degrees of freedom. In contrast

to other models and observations, ECHAM5/MPI-OM shows

a weak, nonsignificant cooling trend over the past 50 years.

Much of the recent warming over Antarctica in the recon-

struction based on instrumental observations is due to the

strong increase in temperature in West Antarctica, while the

East has only weakly warmed over the last 50 years. This

east–west difference is also present in the statistical recon-

structions, but not in the model mean, which shows a uni-

form warming over both regions due to anthropogenic forc-

ing (Fig. 2a). The model mean can be seen as the forced re-

sponse, as the natural variability is removed due to the fact

that the ensemble size is large enough. Consequently, based

on a similar diagnostic, Smith and Polvani (2017) attributed

the spatial pattern to natural variability, using the model

simulations from 40 CMIP5 models. The large spread be-

tween the models and particularly between ensemble mem-

bers of the same model confirm the role of natural variabil-

ity in driving the recent temperature trend. For instance, one

of the CESM1 simulations shows a significant increase in

temperature of more than 2 ◦C in West Antarctica over the

1958–2005 CE period, while another shows a cooling trend,

although nonsignificant, for the same period. As a conse-

quence, some individual runs of CESM1, and also of IPSL-

CM5A-LR and GISS-E2-R, simulate a differential warming

in Antarctica that resembles the observed warming, with a

larger temperature increase in West Antarctica than in East

Antarctica; this shows that apparent model–data differences

for the recent warming pattern in Antarctica do not imply a

fundamental inconsistency between models and data. How-

ever, despite these important variations within the individual

simulations, most of the runs still simulate an overly homo-

geneous response over Antarctica compared with instrumen-

tal observations.

It is worth noting that the values of the slopes are sen-

sitive to the interval chosen. Shifting the period by 5 years

forward and backward can lead to a difference, although the

conclusions drawn from the values of the slopes hold (not

shown). In contrast, this behavior changes when the longer

period from 1850 to 2005 CE is taken into account (Fig. 2b).

In this case, which is consistent with one of the two statistical

reconstructions, almost all individual realizations of the mod-

els are situated on the diagonal line representing equal trends

in eastern and western Antarctica, with a much reduced

spread. However, with the exception of ECHAM5/MPI-OM,

all models overestimate the warming in both regions com-

pared with the statistical reconstructions. Unfortunately, the

period covered by the instrumental record is too short to con-

firm or reject this uniform warming.

The next step involves investigating whether the uniform

response shown by the majority of the models during the

observation period (1958–2005 CE) is related to a general

overestimation of the correlations between the Antarctic re-

gions compared with the reconstructions based on instrumen-

tal data. In order to have a more comprehensive analysis of

the link between Antarctic regions, the seven subregions de-

fined in Stenni et al. (2017) are considered here in addition to

the wider eastern and western Antarctica domains. In the re-

construction based on instrumental data, the link between an-

nual mean surface temperature over East Antarctica and West

Antarctica is relatively weak – although statistically signifi-

cant – with a correlation coefficient reaching 0.39 (Fig. 3).

This is consistent with the difference observed in trends. The

lack of a strong relationship is mainly due to the Antarctic

Peninsula, incorporated in West Antarctica, which appears

isolated from the rest of Antarctica. This is also the case, al-

though to a lesser extent, for the Weddell Sea coast, which is

included in East Antarctica.

The simulated link between eastern and western Antarc-

tica is rather consistent for each model and similar to the

observed link, as deduced from the mean of the correlation

coefficients computed for each ensemble member. There is

one exception with respect to the BCC-CSM1-1 model that

clearly overestimates the correlation, partly due to a very

strong and homogeneous warming over the Antarctic, with

BCC-CSM1-1 simulating the highest increase in temperature
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Figure 2. Comparison between the reconstructed, simulated and observed surface temperature slopes (in ◦C/100 year) in West Antarctica

(y axis) and in East Antarctica (x axis), over the (a) 1958–2005 CE and (b) 1850–2005 CE periods.

over the last 50 years. CCSM4 and CESM1, which contain

6 and 10 ensemble members, respectively, show a relatively

wide range among members that contain the observed values,

with correlation coefficients between both regions varying

from 0.30 to 0.65 and from 0.11 to 0.69, respectively. In con-

trast, all six individual members of IPSL-CM5A-LR simulate

quite similar relationships between temperature over eastern

and western Antarctica, ranging from 0.45 to 0.62.

The correlations between the other subregions are gener-

ally of the same magnitude in the models and the observa-

tions. Only one clear bias is observed in the link between

the Weddel Sea coast and Antarctica as a whole, with the

relationship being overestimated by all of the individual sim-

ulations of the climate models. This is related to a simulated

warming in this region, whereas the reconstruction based on

instrumental observations shows no clear trend. Out of the

eight models used, only BCC-CSM1-1 and ECHAM5/MPI-

OM are systematically biased, with an overly homogeneous

or overly heterogeneous surface temperature over Antarctica,

which is partly related to their overestimated and underesti-

mated recent warming, respectively.

Therefore, there are generally no clear and systematic bi-

ases in the magnitude of the simulated correlations between

subregions of Antarctica. Some models show differences

with data, but there is no common rule towards an over-

estimated or underestimated link; however, virtually all in-

dividual model representations show a more homogeneous

trend in eastern and western Antarctica compared to data

over the 1958–2005 CE instrumental period (Fig. 2a). Ob-

viously, there is a link between correlations between subre-

gions and the similarity of the simulated trends. For instance,

the highest (lowest) correlation coefficients between East

Antarctica and West Antarctica simulated by BCC-CSM1-

1 (ECHAM5/MPI-OM) coincide with the highest (lowest)

trend values. Moreover, the wide range of trends simulated

by the ensemble members of CESM1 results in a wide range

of correlations between the two regions. However, this be-

havior is not straightforward and is highly model-dependent,

rejecting the idea that the spatial coherency of the simulated

trends over Antarctica can be explained by the common in-

terannual variability of temperature among Antarctic regions

alone.

4 Potential for reconstructing surface temperature

based on water stable isotopes

4.1 Relationship between δ18O and surface

temperature in models over the last millennium

The potential for reconstructing surface temperature based

on water stable isotopes is first assessed by examining the

correlation coefficients and the slopes between δ18O and sur-

face temperature variations over the periods covered by the

isotope-enabled models used. In order to resemble the tem-

poral resolution of the data while also having a statistically

significant analysis, the relationship between δ18O and tem-

perature is studied using 5 year bins. At the continental scale,

the correlation coefficient between δ18O and surface temper-

ature simulated by ECHAM5/MPI-OM reaches 0.57 and the

slope is 0.78 ◦C ‰−1 over the 800–1999 CE period (Fig. 4,

no. 10). The δ18O–surface temperature relationship is not

spatially homogeneous. The Antarctic Peninsula and the Vic-

toria Land–Ross Sea sectors are characterized by particularly

low correlation coefficients, with values of 0.43 and 0.45, re-

spectively. In contrast, the East Antarctic plateau shows the

strongest relationship with the correlation between both vari-

ables reaching 0.66. The mean slopes over the last millen-

nium are more uniform among regions with values ranging

between about 0.7 and 0.9 ◦C ‰−1, with the exception of

the Victoria Land–Ross Sea region where the slope drops to

0.43 ◦C ‰−1.

The δ18O–temperature link varies greatly through time as

can be seen when considering 100-year intervals (Fig. 4). At

the continental scale, there is a strong decline of the δ18O–

temperature link between 1600 and 1700 CE, where the cor-

relation coefficient drops to 0.18 (not significant at the 0.05
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Figure 3. Simulated and observed Pearson correlation coefficients between mean annual surface temperature over the 1958–2005 CE period

in 10 different subregions covering Antarctica (East Antarctic plateau – referred to as “Plateau”, Wilkes Land coast, Weddell Sea coast,

Antarctic Peninsula, WAIS, Victoria Land–Ross Sea, DML coast, West Antarctica, East Antarctica and Antarctica as a whole). The order

displayed for the models and the observation values is shown below the main panel. The number of ensemble members for each model is

indicated in parentheses. For each model, the mean of the correlations over all the members is shown, along with the value of the ensemble

member that has the highest (max) and the lowest (min) correlation. The presence of a white circle represents combinations for which the

null hypothesis of no correlation can be rejected at the 0.05 level. In the case of the mean value, there is the white circle if the majority of the

ensemble members are statistically significant. The observation is the reconstruction based on the instrumental observations of Nicolas and

Bromwich (2014).

level). The other centuries of the millennium are character-

ized by correlation coefficients varying from 0.52 to 0.69 for

the 1000–1100 CE and 1200–1300 CE periods, respectively.

A similar variability is observed for the slopes, with values

between 0.12 ◦C ‰−1 in 1600–1700 CE and 1.21 ◦C ‰−1 in

1200–1300 CE. This variability in the diagnostics does not

seem to be linked to the mean climate in a systematic way,

but rather appears to be random.

The temporal variability in the correlations and the slopes

is even higher at the regional scale. For Antarctica, each

subregion has experienced both centuries with nonsignifi-

cant relationships and centuries characterized by a strong

δ18O–temperature link over the past millennium. The rela-

tive temporal variation of the slopes and the correlation coef-

ficients over the last millennium strongly differ among re-

gions, suggesting no clear imprint of the forcings on the

δ18O–temperature link. Sime et al. (2008) showed that the

δ18O–temperature relationship is reduced when the climate is

warmer on Antarctica, based on CO2 increase simulations us-

ing the isotope-enabled version of the HadAM3 model. This

is not observed in the results in this study, which showed a

last century in the range of what is simulated over the past

millennium by ECHAM5/MPI-OM, but this was expected

given the very limited recent warming shown by the model

(Fig. 1).
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Figure 4. Upper panels: evolution of 5-year averaged δ18O in precipitation (blue) and surface temperature (red) over the 800–1999 CE period

in ECHAM5/MPI-OM and over the 1871–2011 CE period in ECHAM5-wiso (lighter colors). Lower panels: Pearson correlation coefficients

(black) and slope (in ◦C ‰−1, in green) between the two variables in ECHAM5/MPI-OM (horizontal solid bars) and in ECHAM5-wiso

(horizontal dashed bars). The lengths of the bars correspond to the period over which the diagnostics are computed. The black bars filled

with white represent that the correlation is not statistically significant at the 0.05 level. The diagnostics were only computed over the 1900–

2000 CE period for ECHAM5-wiso. The crosses represent the correlation coefficients and the slopes (in ◦C ‰−1) between the same variables

based on another ECHAM5-wiso simulation, over the 1979–2013 CE period, using annual mean values (Stenni et al., 2017).
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Over the twentieth century, the simulated δ18O–

temperature links of ECHAM5/MPI-OM and ECHAM5-

wiso are of the same order of magnitude at the continental

scale, with correlation coefficients of 0.69 vs. 0.60 and slopes

of 0.57 ◦C ‰−1 vs. 0.52 ◦C ‰−1, respectively. However,

the δ18O–temperature link becomes strongly different at the

regional scale, with generally higher correlation coefficients

and slopes simulated by ECHAM5-wiso. These values

cannot be directly compared to those obtained using another

simulation of ECHAM5-wiso nudged with ERA-Interim

atmospheric reanalyses data from 1979–2013 CE (Goursaud

et al., 2018), which was utilized in Stenni et al. (2017),

given the different time coverage and resolution (1-year

mean instead of 5-year mean). However, it is striking that

the slopes are systematically higher in the latter simulation.

This is especially notable in the Wilkes Land coast and

Antarctic Peninsula regions, where the slopes reach 1.91 and

2.50 ◦C ‰−1, respectively, in the ECHAM5-wiso simulation

used in Stenni et al. (2017), compared with corresponding

values of 0.57 and 0.41 ◦C ‰−1 for ECHAM5/MPI-OM and

0.78 and 1.51 ◦C ‰−1 for the ECHAM5-wiso of Steiger

et al. (2017). This clearly shows the sensitivity of the

δ18O–temperature relationship.

It is not possible to provide the precise reason explain-

ing the differences observed between models. One element

that may contribute is the time resolution over which the

slopes and the correlation coefficients are computed. Indeed,

the relationship between δ18O and surface temperature is de-

pendent – although weakly – on the smoothing applied to

the time series. Considering 1- or 10-year averages instead

of the 5-year averages used here provides slightly differ-

ent results (Fig. S2). These differences are minimal at the

continental scale, but this masks variations between regions.

Some regions, such the Victoria Land–Ross Sea area, show

a decrease of the correlation coefficient and the slope if the

bin size over which the averages are performed increases,

whereas others, such as the DML coast area, show the op-

posite. However, the differences in the δ18O–temperature be-

tween 1-, 5- and 10-year averages are generally small. Be-

sides the fact that the diagnostics could not be computed ex-

actly the same way due to model simulation coverage, the

differences in model resolution, as well as the influence of

natural variability, may play a role in the differences ob-

served between the simulated δ18O–temperature link

These results show that the well-known covariance be-

tween δ18O and surface temperature is relatively weak, and

that it changes over time in ECHAM5/MPI-OM with no ap-

parent link to forcings. Furthermore, it is model simulation-

dependent and to some extent smoothing-dependent, but not

in a systematic way. If this is a real characteristic applicable

to Antarctic isotopes, then this can limit the skill of tempera-

ture reconstructions based on statistical methods that rely on

a calibration period which may be too short to be representa-

tive. Thus, it is instructive to test a data assimilation method

which has the potential advantage of being able to take the

temporal changes in the link between temperature and stable

isotopes into account and thus reduce the uncertainties.

4.2 Pseudoproxy experiments

This section deals with the potential for reconstructing sur-

face temperature from water stable isotopes, based on pseu-

doproxy experiments. Using such a controlled framework al-

lows us to precisely assess the performance of the different

reconstruction methods via a series of diagnostics including

the root mean square error (RMSE) and the correlation co-

efficients between the reconstructions and the model target

(model simulations from which the pseudoproxies are de-

rived), the coefficient of efficiency (CE) of the reconstruc-

tions, and the standard deviation of the model truth and the

reconstructions. The CE (Lorenz, 1956), which is classically

used to measure the skill of reconstructions (e.g., Steiger

et al., 2014; Klein and Goosse, 2018), is defined for a time

series including n samples as follows:

CE = 1 −

∑n
i=1(xi − x̂i)

2

∑n
i=1(xi − x)2

, (1)

where x is the “true” time series, x is the “true” time series

mean, and x̂ is the reconstructed time series, i.e., the output

after data assimilation or after the statistical reconstruction.

The CE ranges from 1, corresponding to a perfect fit between

the “true” and the reconstructed time series, to −∞. It is neg-

ative when the mean of the “true” time series is a better es-

timate than the reconstructed time series, meaning that the

latter has no skill.

The input data for the reconstructions are δ18O pseudo-

proxies derived from the ECHAM5/MPI-OM simulation as

explained in Sect. 2.4. Statistical reconstruction methods re-

quire the use of the individual δ18O pseudoproxies (aver-

aged over a 2◦×10◦ grid) as input, whereas the related seven

Antarctic subregions composites are used as input in the data

assimilation experiments (see Sect. 2.4 for more informa-

tion). It is also possible to directly assimilate the individual

δ18O pseudoproxies. This gives relatively similar reconstruc-

tions, although slightly less skilful in our tests. As a conse-

quence, only the results with the assimilation of the seven

composites are shown here.

4.2.1 Data assimilation of δ18O

The assimilation of a δ18O pseudoproxy derived from

ECHAM5/MPI-OM allows one (as expected) to provide re-

constructions that are very close to the targets, i.e., the

ECHAM5/MPI-OM series without any noise added, both

when using ECHAM5/MPI-OM and when using ECHAM5-

wiso ensembles (Fig. 5). The RMSE with the model truth

reach values slightly lower than the errors of the pseudo-

proxies, which is the best result that can be achieved as-

suming no spatial propagation. The correlation coefficients
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Figure 5. Changes in δ18O in precipitation over the 800–2000 CE period in the model truth (ECHAM5/MPI-OM, from which the assimi-

lated pseudoproxies are derived, in black), and in the data assimilation-based reconstructions using the ECHAM5/MPI-OM (in green) and

ECHAM5-wiso (in violet) model ensembles. The results are 10-year averaged over the 800–1800 CE period and 5-year averaged over the

1800–2000 CE period. All series are anomalies using the whole periods as a reference. The uncertainty of the reconstructions is shown using

colored shading (±1 standard deviation of the model particles scaled by their weight around the mean). Diagnostics related to the skill of

the reconstructions are displayed on the right of each panel: the RMSE between the reconstructions and the model target (rmse, in per mill)

along with the pseudoproxy error estimates (the horizontal black lines), the correlation coefficients between the reconstructions and the model

target (r), the coefficient of efficiency of the reconstructions (ce), and the standard deviation of the reconstructions and the model target (SD).

and the coefficients of efficiency of the reconstructions ex-

ceed 0.90 and 0.70 in all regions, except in the Wilkes Land

coast and the Antarctic Peninsula, where a slight decrease

in the reconstruction skill is observed in the experiment us-

ing the model ensemble derived from ECHAM5-wiso. Thus,

overall, ECHAM5-wiso can reproduce the temporal and spa-

tial pattern of δ18O in Antarctica for the δ18O pseudoproxies

derived from ECHAM5/MPI-OM. Despite the very different

behaviors regarding temperature trends over the last century

shown by the two models (Sect. 3), there are no fundamental

inconsistencies between them. However, reconstructing δ18O

based on the assimilation of δ18O is only the minimum re-

quirement for skilful reconstructions of temperature.

4.2.2 Reconstruction of temperature

Considering Antarctica as a whole, the different methods

for reconstructing temperature based on δ18O pseudoprox-

ies perform similarly, with correlations with the model truth

ranging from 0.52 for the data assimilation-based reconstruc-

tion using the ECHAM5-wiso ensemble to 0.64 for the data

assimilation-based reconstruction using the ECHAM5/MPI-

OM ensemble (Fig. 6, all coefficients significant at the 0.05
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level). Thus, there is some potential for reconstructing the

Antarctic temperature based on δ18O data. However, the tem-

perature reconstruction skill is limited, and is much lower

than for the reconstruction of δ18O (Fig. 5), which once again

demonstrates the weak relationship between δ18O and tem-

perature (Sect. 4.1).

At the subregional scale, the reconstruction skill generally

decreases, and large differences between the reconstruction

methods arise. In this case, there is no discernible best re-

construction method, apart from data assimilation using the

ECHAM5/MPI-OM ensemble that provides the most skilful

reconstructions in all regions. This was expected as the δ18O

pseudoproxies used as input for the temperature reconstruc-

tions are derived from ECHAM5/MPI-OM, meaning that, in

this case, the model physics should be perfect. These recon-

structions using the ECHAM5/MPI-OM ensemble are skilful

in most individual regions with correlations with the temper-

ature model truth ranging from 0.37 in the Antarctic Penin-

sula to 0.65 in the WAIS, and positive coefficients of effi-

ciency (Fig. 6). Using the same model for producing both the

pseudoproxies and the ensemble of climate states used in the

data assimilation process is a strong simplification of reality,

which likely artificially inflates the skill of the data assimila-

tion approach (e.g., Smerdon et al., 2016; Klein and Goosse,

2018). Introducing biases in the model physics by selecting

model states from ECHAM5-wiso to reconstruct temperature

indeed shows decreased skill, with correlation coefficients

with the model truth ranging from 0.08 (not significant at the

0.05 level) in the Antarctic Peninsula to 0.48 in the WAIS.

The decrease in skill in this case is particularly visible when

using coefficients of efficiency, with five regions out of seven

characterized by negative coefficients. This is not related to

a problem in the variance but rather to issues in representing

the relative changes. Indeed, the standard deviation of the se-

ries is relatively similar in both data assimilation-based re-

constructions for each region, and is slightly underestimated

compared to the model truth.

The data assimilation reconstructions using the ECHAM5-

wiso ensemble are not systematically closer to the model

truth than the statistical reconstructions. They are even out-

performed in terms of correlation in the Antarctic Penin-

sula, and, to a lesser extent, in the DML coast region, which

may be related to inconsistencies in the model physics and

in the spatial structures compared with the pseudoproxy.

More generally, no reconstruction method tends to system-

atically outperform the others except for data assimilation

using the ECHAM5/MPI-OM model ensemble. Large dis-

crepancies between the methods’ skill are observed in all

subregions. They are mainly due to differences in the mag-

nitude of the temperature changes in statistical reconstruc-

tions , rather than to the relative variability, as is the case be-

tween both data assimilation-based reconstructions. For in-

stance, on the East Antarctic plateau, while the statistical

reconstruction that is scaled based on the variance of the

pseudoproxy over the 1950–2000 CE period has the second-

highest correlation with the model truth over the last millen-

nium (r = 0.57), it has the lowest coefficient of efficiency

(CE = −3.97) due to a much overestimated variance (stan-

dard deviation of the series of 0.53◦ compared with 0.20◦

for the target). This highlights the limits of the assumption

of the representativeness of a short calibration period over a

longer calibration period. Similar mismatches in variance are

observed in the other statistical-based reconstructions. The

statistical reconstruction based on the ECHAM5-wiso scal-

ing over the recent past overestimates the standard deviation

of the temperature series in the Wilkes Land coast by a factor

2 , in the DML coast by a factor 3, and in the Weddell Sea

coast and in the Victoria Land–Ross sea sector by a factor

1.5. As for the previous reconstruction, this can be related to

a calibration period not representative of the past, and also to

differences in the δ18O–surface temperature link in the simu-

lation used to scale the reconstructions and in the simulation

from which the pseudoproxies are derived. The CPS-based

reconstructions are in the range of the other reconstruction

methods in every subregion with respect to the different di-

agnostics. As for the data assimilation-based reconstructions,

this method can be considered to be relatively robust in this

case, as it does not provide any reconstructions with strongly

unrealistic variances, unlike the scaling methods.

5 Reconstructions based on real δ18O data

In the same fashion as for the pseudoproxy experiments, here

we first assess whether model results match the δ18O recon-

structions of Stenni et al. (2017) in the data assimilation ex-

periments. This is needed to potentially obtain skillful tem-

perature reconstructions. However, given the relatively weak

link between δ18O and temperature evidenced in Sect. 4.1

and 4.2, the skill of these temperature reconstructions is ex-

pected to be limited even if the data assimilation process

technically works well.

5.1 Data assimilation of δ18O

Generally, the data assimilation-based δ18O reconstructions

using both the ECHAM5/MPI-OM and ECHAM5-wiso

models follow the trends and the variability shown in the

seven regional time series of δ18O presented in Stenni et al.

(2017) well, as indicated by high correlation coefficients, low

RMSE values close to the data uncertainty, and clearly pos-

itive coefficients of efficiency (Fig. 7). As the data assimila-

tion method is built in such a manner that the model physics

are respected, a good match means that there are no incon-

sistencies between measured and simulated spatial patterns

and trends in δ18O in precipitation. Only the reconstructions

over the DML coast and the Weddell Sea coast regions show

a lower skill, particularly when the model ensemble is de-

rived from ECHAM5-wiso. This is mainly due to an under-

estimated variance at the decadal scale, related to a limited

ensemble size (only 141 model years available in this simula-
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Figure 6. Changes in surface temperature over the 800–2000 CE period in the model truth (ECHAM5/MPI-OM, from which the δ18O

assimilated pseudoproxies are derived, in black), and in the different data assimilation (in green and violet, see Sect. 2.3) and statistical (in

red, blue and beige, see Sect. 2.5) reconstructions based on the δ18O pseudoproxies (Fig. 5). The uncertainty of the data assimilation-based

reconstructions is shown using colored shading (±1 standard deviation of the model particles scaled by their weight around the mean). The

results are 10-year averaged over the 800–1800 CE period and 5-year averaged over the 1800–2000 CE period. All series are anomalies using

the whole periods as a reference. Diagnostics related to the skill of the reconstructions are displayed on the right of each panel: the RMSE

between the reconstructions and the model target (rmse, ◦C), the correlation coefficients between the reconstructions and the model target

(r), the coefficient of efficiency of the reconstructions (ce), and the standard deviation of the reconstructions and the model target (SD).

Coefficient of efficiency values that are lower than −1 are displayed just above the label “ce”.
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tion). Nevertheless, even in this case, the reconstructions still

match the assimilated data reasonably well with significant

positive correlations and positive coefficients of efficiency.

From a technical point of view, the data assimilation pro-

cess works well (see Sect. S3 for technical information).

When data are available for assimilation, the uncertainty is

reduced meaning that the constraint is strong. When no δ18O

data are available, as is the case during the first millennium

in the Weddell Sea coast and the first 1500 years in the DML

coast, the uncertainty of the data assimilation-based recon-

structions, shown as ±1 standard deviation of the model par-

ticles with nonzero weight around the mean in Fig. 7, is al-

most as large as the uncertainty of the original model ensem-

bles (not shown). This indicates a very modest influence of

the neighboring regions that have available data on the re-

gions that lack data. This almost total absence of the spatial

propagation of the information contained in the assimilated

data may be related to weak covariances between some of

the regions. This seems to be the case at least for the Wed-

dell Sea coast, which is one of the most isolated Antarctic

regions in terms of interannual variability (Fig. 3). This is

consistent with the motivation of Stenni et al. (2017) to pro-

duce regional-scale reconstructions.

5.2 Reconstruction of temperature

At the continental scale, both the statistical and data

assimilation-based reconstructions show a weak warming

during the 0–500 CE period, followed by a long-term cool-

ing trend that ends at about the middle of the nineteenth cen-

tury (Fig. 8). The cooling over the 850–1850 CE period is of

the same order of magnitude in the different reconstructions,

with values slightly higher – but still in the range – of the

models. Only the reconstruction based on data assimilation

using the ECHAM5-wiso ensemble differs from the others,

with a weaker – but still statistically significant – cooling

over the last millennium, which may be related to the rela-

tively small size of the ensemble and thus the limited range

of possible atmospheric states. At this scale, the variance of

the different statistical and data assimilation reconstructions

is relatively similar over the 850–1850 CE period.

The main discrepancy between reconstructed temperatures

and model results without data assimilation is that the on-

set of the anthropogenic warming is too early, which is es-

pecially visible in West Antarctica (Sect. 3). Data assimila-

tion allows for the reconstruction of a later warming, which

is consistent with statistical reconstructions. After the mid-

nineteenth century, the reconstructed temperature series are

characterized by decadal-scale fluctuations with no clear

trends, until the mid-twentieth century when the rise in tem-

perature reaches a similar value to that in the reconstruction

based on instrumental observations. Over the last 50 years,

differences in the variance at the continental scale are ob-

served between the time series, but they are not systemati-

cally related to the type of reconstruction method.

Instrumental observations and models without data assim-

ilation also show differences regarding their spatial pattern of

the recent trend. The observations clearly display a stronger

recent warming in the west than in the east over the past

50 years, while the model mean displays a homogeneous

warming over Antarctica (Fig. 8, see Sect. 3 for more de-

tails). All reconstructions, including the data assimilation-

based reconstructions, match the observed contrast between

regions well. However, the difference in trend between both

regions is slightly underestimated in the statistical recon-

struction based on the ECHAM5 temperature scaling, and

in the data assimilation reconstruction using the model en-

semble derived from ECHAM5/MPI-OM. The latter case can

be explained by the low range of temperature changes cov-

ered by the simulated model states for this reconstruction,

despite the high number of particles available (Fig. 1). Nev-

ertheless, data assimilation allows the apparent disagreement

regarding the recent trends between the ECHAM5/MPI-OM

and ECHAM5-wiso models and the observations to be recon-

ciled. We use a stationary off-line data assimilation method.

This means that when all of the simulated years are analyzed,

the models can simulate a pattern resembling the observed

contrasting warming between eastern and western Antarc-

tica. This implies that a pattern such as this is consistent with

the model physics and that internal variability likely plays a

strong role in the observed pattern, as suggested by the anal-

ysis of all of the individual model realizations of the recent

trends (Fig. 2a) and of the recent link between the Antarctic

subregions (Fig. 4). However, due to our experimental de-

sign, there is no guarantee that the contribution of the forc-

ings is well accounted for. For instance, we cannot rule out

that, although the pattern is compatible with internal variabil-

ity, it may be totally masked in some models by an overly

strong response to the forcing, leading to an incompatibility

with observations.

Thus, at the large scale (when considering West Antarc-

tica, East Antarctica and Antarctica as a whole), there is no

strong nor systematic difference in trends, over the last mil-

lennium or over the recent past, when using a data assimila-

tion technique compared with the statistical methods applied

in Stenni et al. (2017) to reconstruct surface temperatures

based on water stable isotopes. Furthermore, the variance of

the time series produced by the assorted reconstruction meth-

ods are quite similar, although the data assimilation-based re-

constructions often show slightly lower values. This behavior

becomes different when considering a lower spatial scale –

the seven subregions (Fig. 9). In this case, the last millennium

trends of the different reconstructions remain relatively simi-

lar, although some differences exist, for instance, at the Wed-

dell Sea coast where the data assimilation reconstructions

disagree regarding the direction of the slope. Note that at this

spatial scale, the differences in the model resolution (3.75◦

latitude × 3.75◦ longitude for ECHAM5/MPI-OM and about

1◦ latitude × 1◦ longitude for ECHAM5-wiso) may play a

role in this disagreement. Unlike the trends, there are large
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Figure 7. Changes in δ18O in precipitation over the 0–2000 CE period in the data assimilated (Stenni et al., 2017, in black), and in the data

assimilation-based reconstructions using the ECHAM5/MPI-OM (in green) and ECHAM5-wiso (in violet) models. The results are 10-year

averaged over the 800–1800 CE period and 5-year averaged over the 1800–2000 CE period. All series are anomalies using the whole period

as a reference. The uncertainty of the reconstructions is shown using colored shading (±1 standard deviation of the model particles scaled

by their weight around the mean). Diagnostics related to the skill of the reconstructions are displayed on the right of each panel: the RMSE

between the reconstructions and the data assimilated (rmse, in per mill) along with the data error (the horizontal black lines), the correlation

coefficients between the reconstructions and the data assimilated (r), the coefficient of efficiency of the reconstructions (CE), and the standard

deviation of the data and the reconstructions over the period covered by the data (SD).

differences in the variance of the last millennium reconstruc-

tions. These differences are found between the data assimila-

tion and the statistical methods, but also among the statistical

methods alone, whereas the two data assimilation-based re-

constructions show similar variances in every subregion.

Regarding the past 50 years covered by instrumental

records, the agreement between the different methods is

strongly region-dependent. For instance, the East Antarc-

tic plateau is characterized by reconstructions with consis-

tent trends and variances, which show a relatively modest

warming and a weak variability. In contrast, in the Victo-

ria Land–Ross Sea sector, the reconstructions based on in-

strumental observations (Nicolas and Bromwich, 2014) and

on data assimilation display a recent warming, whereas the

statistical reconstructions show the opposite. There are also

differences among similar types of reconstruction methods.

For the Weddell Sea coast, for instance, the statistical re-

constructions do not agree on the sign of the recent trend.

This is also seen with both data assimilation-based recon-

structions in the Wilkes Land coast and the Antarctic Penin-

sula. Again, the difference in the model resolution may play

a role in this respect. Depending on the region, very large dif-

ferences in variances can also be found in the time series pro-

duced; nevertheless, neither the statistical-based reconstruc-
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Figure 8. Changes in 10- (left panels) and 5-year averaged (right panels) simulated and reconstructed surface temperature over the 0–

2000 CE period over (a) Antarctica, (b) West Antarctica and (c) East Antarctica. The model mean and ± one standard deviation of the

individual simulations are shown in black and shaded gray, respectively; the statistical reconstructions of Stenni et al. (2017) are shown in

yellow, beige and blue. Stat NBvariance uses a temperature scaling based on the temperature observations of Nicolas and Bromwich (2014)

over the 1960–2010 CE period (see Sect. 2.5 for more information), Stat ECHAMvariance uses a temperature scaling based on the simulated

δ18O–temperature link in a ECHAM5-wiso simulation over the 1979–2013 CE period (Goursaud et al., 2018), and Stat borehole also uses

a scaling based on the simulated δ18O–temperature link in ECHAM5-wiso, but the WAIS region is adjusted to match the temperature trend

between 1000 and 1600 CE based on borehole temperature measurements from Orsi et al. (2012). The data assimilation reconstructions

based on the ECHAM5/MPI-OM and ECHAM5-wiso model ensembles are shown in green and violet, respectively. The uncertainty of the

data assimilation-based reconstructions is shown using colored shading (±1 standard deviation of the model particles scaled by their weight

around the mean). The reconstructions based on instrumental records (Nicolas and Bromwich, 2014) are shown using a white line (in the right

panels only). The reference period is 1500–1800 CE for the left panels, and 1960–1990 CE for the right panels. The standard deviation and

the slopes of the series (in ◦C/100 years) are shown for the 850–1850 CE (or overlap period) and 1958–2010 CE periods; slopes proportional

to the numbers are also displayed. When the trends are significantly different from zero according to F -tests (p < 0.05), the slope values are

followed by an asterisk (∗).

tion method nor the data assimilation method provide recon-

struction where the variance is systematically closer to that of

the instrumental record-based reconstruction. However, one

should be careful in drawing conclusions from the analysis of

the last 50 years of the reconstructions, which correspond to

the period covered by the instrumental records. This period

is indeed very short, especially as only the 5-year mean re-

sults are considered, and the seven Antarctic subregions are

characterized by a strong variability, which often challenges

the significance of the trends.

Unlike in the large-scale analyses, there are large differ-

ences between the reconstruction methods at the subregional

scale, mainly in terms of variance, which highlights the un-

certainties related to the reconstruction method at this scale.

As the data assimilation technique used can take a change

in time of the δ18O–surface temperature slope into account,

and as this slope does seem to change strongly over time

(Fig. 4), there are, in theory, advantages to using data as-

similation over statistical reconstructions. However, whether

the variance is better represented in one reconstruction or an-

other cannot be verified given the limited length of the instru-

mental record. Finally, the main advantage of using a data

assimilation-based method is that beyond the target variable

at the locations where data are available, all variables of the

system are reconstructed at all of the locations available in

the models used. If the reconstruction is consistent with the

assimilated data, as is the case here, this allows for the causes

of the reconstructed changes to be studied, although this falls

outside the scope of the present study.
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Figure 9. Changes in 10- (left panels) and 5-year averaged (right panels) simulated and reconstructed surface temperature over the 0–2000 CE

period over the seven Antarctic subregions. The model mean and ± 1 standard deviation of the individual simulations are shown in black

and shaded gray, respectively; the statistical reconstructions of Stenni et al. (2017) are shown in yellow, beige and blue. Stat NBvariance

uses a temperature scaling based on the temperature observations of Nicolas and Bromwich (2014) over the 1960–2010 CE period (see

Sect. 2.5), Stat ECHAMvariance uses a temperature scaling based on the simulated δ18O–temperature link in a ECHAM5-wiso simulation

over the 1979–2013 CE period (Goursaud et al., 2018), and Stat borehole also uses a scaling based on the simulated δ18O–temperature link in

ECHAM5-wiso, but the WAIS region is adjusted to match the temperature trend between 1000 and 1600 CE based on borehole temperature

measurements from Orsi et al. (2012). The data assimilation reconstructions based on the ECHAM5/MPI-OM and ECHAM5-wiso model

ensembles are shown in green and violet, respectively. The uncertainty of the data assimilation-based reconstructions is shown using colored

shading (±1 standard deviation of the model particles scaled by their weight around the mean). The reconstructions based on instrumental

records observations from Nicolas and Bromwich (2014) are shown using white lines (in the right panels only). The reference period is

1500–1800 CE for the left panels, and 1960-1990 CE for the right panels. The standard deviation and the slopes of the series (in degree/100

years) are shown for the 850–1850 CE (or overlap period) and 1958–2010 CE periods; slopes proportional to the numbers are also displayed.

When the trends are significantly different from zero according to F tests (p < 0.05), the slope values are followed by an asterisk (∗).
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6 Conclusions

The goal of this study is to assess the robustness of Antarctic

temperature reconstructions published by Stenni et al. (2017)

covering the last 2 millennia using climate model results

and data assimilation experiments. The potential for recon-

structing surface temperature based on water stable isotopes

is first examined by characterizing the simulated relation-

ship between both variables through the last millennium in

ECHAM5/MPI-OM. The results show that the well-known

covariance between δ18O and surface temperature is rela-

tively weak on average. It is characterized by a strong spa-

tial heterogeneity, and changes over time with no apparent

link to forcings. Furthermore, the study of the relationship

in other isotope-enabled model simulations from ECHAM5-

wiso covering the recent past show that the link differs from

one model simulation to another, which may indicate the in-

fluence of natural variability in the δ18O–surface tempera-

ture link, in addition to the influence of the model resolu-

tion. If these simulated characteristics are real and applica-

ble to Antarctic isotopes, this limits the skill of temperature

reconstructions based on statistical methods which rely on

the hypothesis that the last decades (the observation period)

provide a good estimate for longer temperature reconstruc-

tions. Thus, using a data assimilation method to reconstruct

temperature based on δ18O potentially has advantages over

statistical methods, as it does not rely on a constant δ18O–

temperature link through time and space.

Pseudoproxy experiments confirm the benefits of using a

data assimilation method, but also show the relatively weak

link between both variables, leading to a limited potential for

reconstructing temperature based on δ18O. No reconstruc-

tion method stands out compared with the others in terms

of relative variability; however, the statistical methods pro-

vide reconstructions with unrealistic variances in some sub-

regions, when the calibration period is too short to provide

an adequate estimate of the long-term changes of the δ18O–

temperature link. In contrast, data assimilation always pro-

vides reconstructions with a variance in agreement with the

model truth. In general, the skill in reconstructing surface

temperature based on δ18O data is limited, even in an opti-

mistic framework where the model physics are assumed to

be perfect (when assimilating the pseudoproxy derived from

ECHAM5/MPI-OM into a model ensemble constructed from

ECHAM5/MPI-OM). It is, however, higher and more uni-

form among reconstruction methods when the reconstruction

targets are the bigger regions – West Antarctica, East Antarc-

tica, and Antarctica as a whole – rather than the seven indi-

vidual subregions.

Applying the data assimilation method to the real δ18O

regional composites of Stenni et al. (2017) demonstrates that

there is no fundamental model–data inconsistency in terms of

temporal and spatial δ18O changes as the output of the assim-

ilation processes using ECHAM5/MPI-OM and ECHAM5-

wiso model ensembles match the data assimilated over the

seven Antarctic subregions. As with the statistical recon-

structions, the resulting temperature reconstructions confirm

the long-term cooling over Antarctica during the last millen-

nium, and the later onset of anthropogenic warming com-

pared with the simulations without data assimilation, which

is especially visible in West Antarctica. Furthermore, data as-

similation allows for models and instrumental observations

to be reconciled by reconstructing the observed east–west

contrast of the recent temperature trends. In instrumental ob-

servations, much of the recent warming over Antarctica is

indeed due to the strong increase in temperature in West

Antarctica, whereas East Antarctica has only weakly warmed

over the last 50 years. In contrast, the PMIP/CMIP model

mean and the mean of the ensemble members of individual

PMIP/CMIP models show a uniform warming over both re-

gions following the anthropogenic forcing. Both reconstruc-

tions with data assimilation show the observed contrast, indi-

cating that this pattern can be represented by climate models.

Furthermore, the large spread of individual model realiza-

tions without data assimilation regarding the spatial pattern

of the recent warming suggests that internal variability likely

plays a major role in driving this heterogeneous recent warm-

ing. The internal variability is found to be especially large in

West Antarctica, particularly in the Peninsula. The results of

data assimilation experiments and the analysis of individual

model simulations show that the apparent model–data dif-

ferences for the recent warming pattern in Antarctica do not

imply a fundamental inconsistency between models and data.

Still, most model simulations show an overly homogeneous

recent trend compared to data over the continent, but this is

not related to an overly strong link between regions, with

the models being able to simulate correlation coefficients be-

tween regional temperature changes of the same order as the

observed ones.

Consistent with the results of pseudoproxy experiments,

the temperature reconstructions using the different meth-

ods are relatively similar over the three large regions (West

Antarctica, East Antarctica and Antarctica as a whole). At

this large scale, there is no large and systematic difference in

past and recent trends, nor in the magnitude of the variability.

This gives credibility to these large-scale temperature recon-

structions, but it is important to keep in mind that only the

uncertainty related to the reconstruction method is assessed

here, and not the potential problems related to the spatial dis-

tribution of ice-core records, the accuracy of their age scales,

and the noise associated with post-deposition processes. The

picture is different for the seven subregions, where the vari-

ance of the last millennium reconstructions produced by the

different methods are different. Although, in theory, there are

advantages to using data assimilation over statistical recon-

structions that have been confirmed with the pseudoproxy

experiments, the instrumental series are too short to confirm

this in a realistic setup.

As a perspective, we would like to stress the importance of

moving towards the use of a range of climate sensitive proxy
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records instead of only considering δ18O, given the limited

temperature signal present in oxygen isotopes. Assimilating

second-order isotopic parameters such as deuterium excess,

along with accumulation rates and δ18O would, for instance,

certainly give more insight not just into temperature changes

but also into moisture transport characteristics, which would

help reconstruct hydroclimate variations. However, it seems

extremely challenging today as it would require a proper

estimation of the observational error for all proxy records,

which is difficult to provide. Furthermore, isotope-enabled

model simulations covering the last millennium are still rare,

despite growing interest in the modeling community (e.g.,

Werner et al., 2011, 2016; Roche, 2013); furthermore, the

skill of isotope-enabled models is difficult to assess over the

last millennium given the limited availability of instrumen-

tal records. Future studies dealing with δ18O data assimi-

lation experiments should take advantage of ensembles of

simulations instead of individual runs, in order to provide

a larger range in the simulated states and improve the data

assimilation-based reconstructions skill. More generally, an

ensemble of simulations would be useful to any future study

involving model–data comparisons of oxygen isotopes over

the last millennium, to help distinguish the forced response

from natural variability.
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