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Abstract :

This paper considers the problem of fitting a finite Gaussian mixture with an unknown number of
components to interest rates provided by a sample of credit institutions. Indeed, mixture models are able
to represent arbitrarily complex probability density functions distributions, and hence outperform the usual
non parametric kernel density estimates in several ways. Therefore, this tool enables us to improve our
understanding of the credit market. The data are extracted from individual contracts and gathered on a
quarterly basis. They provide a loan-by-loan disaggregation of average rates at bank level available in the
monthly MIR reports. Loans to non-financial firms and to households are splitted up into eleven categories
defined by instrument and maturity of loans. Each category is analyzed separately. Two major econometric
issues are dealt with : how to estimate the number of components, and how to estimate the parameters
defining the model. Several techniques are compared, which allows us to show how the results may be
sensitive to the methodology used, especially when sample survey issues are properly taken into account
: for instance, the model is enhanced in order to include discrete components which arise from clusters in
the distribution. In a second step, this set-up allows us to estimate precisely the modes of the distribution.
Then, these modes are interpreted as resulting from the segmentation of the credit market. We illustrate
this topic through a kind of scoring of credit institutions based on ex-post probabilities for loans to be in the
neighborhood of a particular mode. Special attention is also paid to the upper side of the distribution, where
the usury law may affect the level of interest rates. The effect of the usury threshold on the distribution is
first analyzed from a theoretical perspective, through simulations using loans which are not subject to the
usury law. Then, for categories defined by the usury law, we provide a rough estimate of the proportion of
loans which are not granted because of the threshold effect. Finally, introducing the time series dimension
shows that the the shape of the distributions (number and amplitude of modes) is generally not constant
over time. This instability raises another interesting issue, especially for short term analysis purposes. This
is left for future research.
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1 Introduction

Since January 2003, MFI interest rate (MIR) statistics provide a comprehensive picture of main deposit

and loan rates vis-à-vis households and non-financial corporations (NFC) in the euro area. Each month,

the BdF collects aggregated data relative to rates and amounts of new transactions from a sample of credit

institutions1 . After aggregation at the country level, one gets useful macroeconomic informations, especially

for monetary policy purpose. Indeed, these statistics allow to analyse the extent and the speed of the pass-

through of market rates to lending rates faced by households and NFC2 . Yet, these macro indicators mask

the heterogeneity of the banking system, especially concerning the credit market. A direct consequence of

this heterogeneity is already observed in the definition and the update of the samples of banks used for the

data collection. In order to meet the accuracy criterion defined by the regulation, it proved necessary to

include no less than 330 banks from a population of about 900. More specifically, the volatility of interest

rates appears to be quite high for loans granted to firms by specialized institutions.

In order to improve our understanding of this heterogeneity, we use another set of individual data obtained

from the same sample of respondents, defined on a loan-by-loan basis, and perfectly consistent with the

aggregated data used for MIR reports. Indeed, these data provide a disaggregation of monthly aggregates

per bank on a quarterly basis. More precisely, the credit institutions included in the sample are required

to transmit individual informations on loans every first month of a given quarter, including the amount,

the maturity, the type of rate (fixed or floating), the narrowly defined interest rate (designed, in French,

by the acronym TESE) and the overall effective rate (TEG) adding compulsory charges to the interest rate

component : administration, guarantees, credit insurances. These statistics are primarily used by the BdF

to calculate usury rates on loans to households and firms every quarter. All in all, our database is made up

of roughly 900000 loans for each quarter. Since this database is not a panel in the strict sense, the time series

dimension is difficult to undertake in our analysis : clearly, the longitudinal approach seems more fruitful.

In this work, we seek to investigate two problems:

Firstly, we aim to give the most precise description of the distributions of loan rates, particularly the number

of modes which can be identified. The distributions are not weighted by flows of new business, because

we want to disentangle interest rate effects and structural effects as much as possible in our analysis. The

presence of multimodality can be suggestive of more than one underlying unimodal interest rate distribution.

Indeed, these modes may be very informative if they can be associated to micro markets through the

identifications of banks and/or instruments which explain their occurrence. Secondly, we try to quantify the

various effects of the usury rate in the top of the distribution. In this respect, the recent period appears to

be very informative since the usury legislation has been modified in 2003 and 2005 in order to reduce the

1For the largest banks, included automaticaly in the sample, subsamples defined at the level of banking desks are used. This
facilitates the checking of data (creation of an audit trail).

2The impact of monetary policy on income flows is also analysed, through the collection of interest flows (debit and credit)
and associated average outstanding amounts. The corresponding interest rates are not analysed in this paper.
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perimeter of loans granted to firms subject to usury rates. To assess whether these decisions had a significant

effect on the distribution of interest rates is a main objective of the paper. Lastly, for loans to households,

the results are part of a set of background studies prepared by Bdf as an input for the reflections on potential

improvements of the usury rate mechanism fixation.

The rest of the paper proceeds as follows. The data set and the determination of the usury rates are

presented in section 2. The statistical framework is introduced in section 3, with a detailed account of the

methodology in section 4. The technical, but essential, question regarding the way the dataset used for the

estimation step is selected is dscussed section 5. Section 6 reports the main empirical results. Finally, some

technical developments and detailed results are given in the appendix. The estimations have been made with

the SAS
R°
V 8.2 software, module IML.

Notations :

� N
¡
m,σ2 |r1, r2

¢
stands for the normal law with parameters

¡
m,σ2

¢
, left and right truncated by r1

and r2 respectively; this is the law of Y = X×1{r1<X<r2} with X Ã N
¡
m,σ2

¢
.When the truncation

affects only the right side of the distribution, we write N
¡
m,σ2 |−∞, r2

¢
.

� #(A) is the cardinal of A.

� =⇒ means convergence in distribution when the size n of the sample (X1, . . . ,Xn) goes to +∞.

� U (a, b) is a random variable following the uniform law with support on [a, b]

2 Impact of the usury law on the credit market

For each category of loan, usury rates are defined in the following way : given the average effective rate rt−1

calculated for the previous quarter, the usury rate for the current quarter is :

rut =
4

3
rt−1 (1)

The average effective rate is a simple mean of the annualized percentage rates observed during the first

month of quarter t− 1. At this point, we emphasize that the calculations are in fact much more involved in
order to ensure the reliability of this estimate. Thus, the usury rate is in fact a highly non-linear function

of individual observations. Firstly, outliers are dealt with through the use of asymmetric trimmed means

which evolve over time, depending on the volatility of individual interest rates. Secondly, a kind of post-

stratification is applied to the estimator through a weighting system applied at the network level, and based

on flows of new contracts observed for the current quarter and outstanding amounts averaged over the past

three years.

Choosing a simple mean for the average interest rate over-estimates the actual cost of loans for costumers

as measured by MIR statistics. Indeed, if the amount of the loan is negatively correlated with the interest
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rates, a fact often reported in empirical studies, the usury rate is higher than it would be if it was indexed

on an average interest rate weighted by flows, the latter being more representative of economic activity.

Relaxing the usury regulation has not modified this definition nor the instruments included in the cate-

gories of loans as initially defined by law in 1989. In fact, the perimeter of the categories pertaining to firms

has been reduced in two steps. Firstly, the law n0 2003-721 of 2003 which has taken effect from April 2004

suppressed the usury rate for non financial corporations, with the exception of bank overdrafts. Secondly,

the law n0 2005-882 of 2005 suppressed the usury rate for individual enterprises, the bank overdrafts being

still excluded. This law has taken effect from October 2005.

For the sake of clarity, we summarize in table 1a below the content of each category, and the chronology

of the population targeted by the usury rate. We precise that the non-financial corporations include the

individual enterprises (IE), for loans granted for professional use, and the Non Profit Institutions Serving

Households (NPISH).

N.B : The numbering of the categories will be used throughout the paper in order to shorten the labelling

of the instruments included in each category. For instance, cat. 3 will always refer to "Personal loans and

other loans over 1524 euros".

Cat. Description ≺ 2004/04
Â 2004/04

≺ 2005/07
Â 2005/10

Consuming loans :
1 - Loans up to 1524 euros
2 - Bank overdrafts, loan account, instalment credits,

revolving credit over 1524 euros
3 - Personal loans over 1524 euros

Individuals

Housing loans: IE (personal use)

4 - Loans at fixed rate

5 - Loans at floating rate

6 - Bridging loans

Loans to NFC :
7 - Instalment credits

8 - Loans at floating rate with agreed maturity over 2 years
NFC, IE

NPISH

IE

NPISH
NPISH

9 - Loans at fixed rate with agreed maturity over 2 years

10 - Bank overdrafts
NFC, IE

NPISH

11 - Other loans with agreed maturity up to 2 years
NFC, IE

NPISH

IE

NPISH
NPISH

Table 1a

It should be noticed that bank overdrafts, revolving credit and other kinds of loans without agreed maturiy

are included in interest rates on outstanding amounts in MIR reports. Nevertheless, they are considered as
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new business according to the usury regulation, and the collected data refer to contractual interest rates

which apply within the authorized limits agreed between the credit institution and the customer. The

corresponding maximal amounts are then reported as amounts of loans in our database.

Our study is restricted to loans subject to the usury regulation, taking for reference the law in force

before 2002. The representativeness is quite satisfying for loans to households (around 90% of the total of

loans), and still correct for firms (70%) despite the fact that the loans with very high amounts, or associated

to specific instruments (leasing) are excluded.

The data used in this study concern the same month, October, over three successive years (2003, 2004

and 2005), and permit us to consider the three states of the usury regulation. The choice of a same month

allows us to ignore the impact of seasonality in the credit market which may induce additional variability in

the results. More importantly, we expect to interpret the differences in the distributions in the light of the

relaxing of the usury regulation.

We provide now some descriptive statistics about our dataset. The relative market share of each category

in the total of loans to households or NFC subject to the usury regulation is given in table 1b below. The

proportions are calculated without any weighting, or by weighting with the flows. As expected, housing

loans is the most important category, according to the weighting flow, of loans to households, although these

contracts make up only 6,4% of the total of credit lines. For firms, short and long term loans at fixed rate

appear to be prominent. For bank overdrafts, the high values of the percentages weighted by flows result

from the fact that the reported flows are measured by the maximum amount allowed by the credit institution,

and not by the effective amount that has been effectively drawn.

Cat Flows Nb of loans

1 2 32,3
2 30,4 42,5
3 15,6 18,8
4 28,7 4,1
5 18,9 1,9
6 4,4 0,4

Total 100 100

7 1,2 1,8
8 7,5 3
9 26,1 15,3
10 38,5 10,9
11 26,7 69

Total 100 100

Table 1b : structure per category (in %)

We come back to some general time series considerations displayed in fig. 1c. During the period under

investigation (October 2003/October 2005), the average interest rates3 decreased, more for housing loans

than for consumer loans. In the meantime, loans to NFC did not exhibit any trend.

3Overall effective rate (TEG) for loans to households, and (narrowly defined) interest rates (TESE) for loans to NFC. These
data are flow weighted average of individual data, according to the MIR regulation.
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Fig. 1c

We proceed now with two basic indicators representing the distributions of loan effective rates (tables 1d

and 1e), mean and standard error weighted by sampling weights. The subscript "1" refers to the reference

month October 2003, whereas the index "2" refers to October 2004. We observe a lower dispersion for

housing loans across categories, and a higher dispersion for loans vis-à-vis NFC, especially for loans whose

duration up to two years. It can be noticed that both levels and volatility decreased between 2003 and 2004

for loans to households, whereas most categories of loans to NFC behaved differently.

Category mean1 std1 mean2 std2

1 14,1 4,3 13,8 4,7
2 10,4 4,6 9,9 4,3
3 6,9 1,9 6,3 1,7
4 4,9 0,8 4,9 0,7
5 4,4 0,8 4,3 0,6
6 4,8 0,8 4,5 0,8

Table 1d : individuals
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Category mean1 std1 mean2 std2

7 6,3 2,7 6,7 2,4
8 4,4 1,0 4,3 0,9
9 4,9 1,1 5,0 1,1
10 8,3 3,1 9,2 2,6
11 4,2 2,1 4,7 2,3

Table 1e : NFC

One important issue for our work is the homogeneity of the categories defined by the usury regulation.

Implicitly, an average interest rate makes sense if it really represents the whole distribution, for instance

when the dispersion of the individual interest rates is low. A preliminary examination of this question is

possible through the traditional approach based on variance analysis. Indeed, we calculate the (residual)

within variance (in % of the total variance) in a classical Anova analysis. We first consider a one-way analysis,

where we use the credit institution which issued the loan as an explanatory variable : the results are given

between brackets in table 1f below. Then, we consider a two-way analysis of variance with the inclusion of

the category of loan. We treat separately loans to households and to NFC.

oct. 2003 oct. 2004
Households (51)23 (52)21
NFC (75)43 (65)29

Table 1f : Within variance (in % of total variance)

The results indicate an important variability of interest rates within the categories of loan, and more

importantly, that this variability is still significant even when the credit institution is added as an explanatory

variable : the residual variance is stil around 20 to 30%. This is precisely the objective of this paper to

provide insights into the form of the underlying distribution of interest rates, in order to understand this

volatility.

The effects of the usury rate on the distribution of the overall effective rates will be deduced them from

a careful estimation of the probability density function of the distributions. Two situations may arise when

a distribution is right-censored.

� H1 : the usury rate has only a censoring effect: loans which bear interest rates beyond the legal

threshold are not granted, and the distribution shows a truncation effect measured by the proportion

p of rejected loans. This proportion is given by the shaded area in fig. 1g below.

� H2 : the usury rate induces a mode just under the threshold. In this case, there is an accumulation

of loans in the neighborhood of the usury rate, and the distribution is distorted (see fig. 1h). The
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distortion is not easy to interpret. Indeed, It may indicate that banks adjust their loans rates (for

instance, by cutting some of the charges included in the overall effective rates) in order to comply with

the legal requirements : some evidence support this hypothesis, like the negative correlation between

charges and interest rates observed for some categories of loans4 . But some credit institutions could

also systematically adjust their interest rates (corresponding to a specific instrument or particular

costumers) in the immediate vicinity of the usury rate.

Fig. 1g : distribution f(x) under H1

Fig. 1h : distribution f(x) under H2

Of course, both hypotheses are not mutually exclusive : we could observe simultaneously an important

truncation of the distribution (H1) and an significant mode near the usury rate (H2) if the demand for loans

is highly constrained on the supply side.

Once the distribution has been estimated, it is possible to estimate the eviction rate, i.e, the proportion

of rejected loans (corresponding to interest rates larger than the usury rate) in the total population of loans.

At this point, it is worth emphasizing an important side effect of formula 1, namely the use of truncated

mean for the definition of the new threshold. In particular, even if the distribution of interest rates is

4 I thank E. Gervais for pointing out this fact to me.
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constant over time, the eviction rate p is time dependent, p ≡ pt because in this particular case, the usury

rate is a decreasing sequence; one could imagine a extreme situation where the usury rate rut → 0 so that

pt → 1. With time dependent distributions, complex (and unexpected) dynamics could arise. In order to

illustrate this point, we apply the usury methodology to a category of instruments not covered by the current

regulation : leasing for NFC, over the period october 2003-january 2006. In doing so, we build two fictitious

sequences of usury rates and the associated eviction rates5 . In the first sequence (broken line in fig. 1i), the

usury rate is computed with all the available observations; in the second sequence (solid line), we use the

truncated distribution as according to 1. The gap between the two curves measures the impact of truncation

on the dynamic of the usury rate.

Fig. 1i

The two series of eviction rates diverge apart, with a ’natural’ eviction rate fluctuating around 15%,

whereas the ’truncated’ eviction rate ranges from 40 to 60% at the end of the period. The spread between

the two series of usury rates reflects this gap, with a maximum of 300 bp.

One may conclude that uncontrolled dynamics in the trajectory of usury rates can be avoided by cancelling

the truncation effects, which means taking into account the unobserved part of the distributions in the

calculation of the usury rates. Precisely, the methodology developped in the paper provides such opportunity,

although publishing legal rates partially based on econometric estimations of interest rates larger than the

usury rate does not seem conceivable.

3 Statistical framework

A basic filtering of the data has been conducted in order to remove credit lines for which either the interest

rate or the amount of the loan was unmistakably an outlier. For the moment6 , we suppose that, for any

5pt is estimated with the usual non-parametric estimator of the c.d.f (see 2).
6We postpone the discussion of this hypothesis to section 5.
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category of loans considered in the study, the overall effective rates can be considered as drawn independently

from some unknown law X, hence forming a sequence of i.i.d variables denoted by (X1, . . . ,XN ). The c.d.f

and p.d.f of X are denoted by F (x) and f (x) respectively, the argument x taking its values in the range of

values of the interest rate. Finally, a mode of the distribution is simply a local maximum of f.

3.1 Non parametric estimation

The basic tool is the non parametric estimation of both the c.d.f and the p.d.f. For the c.d.f, F (x) , the

estimator is simply the empirical distribution function:

bFn (x) =
# observations ≤ x

n
(2)

It is well known that bFn (x) is (uniformly) consistent for F (x) .
Unfortunately, the situation is more complicated for the p.d.f f (x). The standard estimator is of the

kernel type (see e.g Silverman (1986))7 :

bfn (x) =
1

nh

nX

k=1

K

µ
x−Xk

h

¶
(3)

It is commonly recognized that the choice of the kernel can be considered as a secondary issue (Silverman,

(1986)) since it does not affect much the properties of bfN (x) . Then we focus on the Gaussian kernel:

K (x) = ϕ (x) =
1√
2π
exp

µ
−x

2

2

¶
(4)

The bandwidth parameter h drives the smoothness of the curve bfN and depends on N . Indeed, it can be

shown that if h+ 1
nh → 0 when n→ +∞, bfn (x)→ f (x) in probability for all x. Moreover, minimizing the

asymptotic variance of bfn (x) allows to define an optimal bandwidth:

hn = C (K, f)n−
1
5 (5)

with C constant depending only on K and f which must be estimated, for instance according to the Sheather

and Jones (1991) plug-in method. In practice, the value of h used in the estimator is crucial, because even the

shape of the curve may be significantly altered when moving from one value of h to another one. In particular,

because the parameter C depends in a complicated way of the unknown distribution f , its estimation could

suffer from a lack of accuracy.

We can reformulate this point with a different perspective : when K is the Gaussian kernel, the number

of modes found in the distribution bfn is a decreasing function of h (Silverman (1981)). Choosing a high
value of h is then equivalent to estimate a very smooth distribution with very few modes (only one in an

extreme case). On the contrary, as h approaches 0, the curve become more and more irregular.

7The kernel K is an even, positive function which attains its maximum at zero, K = 1, and K decreases rapidly to zero
as x→ ±∞.
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We illustrate these considerations with estimations pertaining to category 6 for the reference month

October 2003 (fig. 2a). The three estimators bfn (x) differ only by the value of h, with the optimal h given
by (5) associated to the solid line. We observe that the main characteristics of the distribution are identical

within the three estimates, but local analysis clearly depends on the value of h.

Fig. 2a.

Besides, the choice of the method used to estimate the parameter C in (5) is also important. For the category

1, we show fig. 2b the curves obtained from three classical approaches : Sheather & Jones, Silverman and

"Simple Normal Reference". In this case too, we observe that the informations delivered by the curves

beyond the overall shape of the distribution may be quite different.

Fig. 2b.

These drawbacks of the non parametric methodology are problematic for our study because we are partic-

ularly interested in the details of the distribution, especially for high values of interest rates. Moreover, we

want to assess the number of modes for each category of loans. For this reason, we turn now to another

approach, based on parametric tools. The price we have to pay is to put more constraints on the common

law of the Xk.
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Remark : the statistic h (M) allowing exactly M modes in the distribution estimated by (3) can be used

for a test of the unimodality hypothesis against two modes (Cheng and Hall (1999)). Unfortunately, this

test has not yet been extended to the general case of M modes against the alternative of M
0

modes, with

M
0

>M. It is therefore of little value for our study.

3.2 Modelling a truncated Gaussian law

Before tackling complicated models, we verify in this section that the distribution of interest rates is neither

normal nor log-normal before truncation by the usury rate, whenever it applies. Under the hypothesis of

normality, the distributions are obviously unimodal, and the eviction rates could easily be estimated. We

then test whether the sample of data, or its logarithm, comes from the distribution N
¡
m,σ2 |−∞, ru

¢
, where

ru is the usury rate. For a category of loans outside the scope of the usury law, we test the adequation to

the standard normal law, which is equivalent to set ru = +∞ in the developments below. In particular, for

the reference months October 2004/2005 and the categories 7,8,9 and 11, we don’t take into account the

truncation effect which may result from the residual perimeter of loans still subject to the usury law. In

other words, we maintain ru = +∞ in such cases.

Let Φ (x) be the c.d.f for the standard normal law. Under our null hypothesis, the c.d.f. of the observations

is:

F (x) =

½
Φ
¡
x−m
σ

¢ ±
Φ
¡
ru−m
σ

¢
if x ≤ ru

1 if x > ru
(6)

We use two goodness of fit tests which appear to be well-designed for our purpose:

� Kolmogorov-Smirnov (K-S):

KSn =
√
n× sup

x≤ru

¯̄
¯ bFN (x)− F (x)

¯̄
¯ (7)

� Anderson-Darling (A-D):

ADn = n

Z ru

−∞

n
bFN (x)− F (x)

o2

F (x) {1− F (x)}
dF (x) (8)

These tests reject the hypothesis of normality for high values of the statistic. While K-S is able to detect

departures from normality in the middle part of the distribution, A-D does by design a better job in the

extreme parts. It is advisable to consider one supplementary test of the Anderson-Darling type, designed

for a weaker hypothesis : testing for normality by restricting ourselves to the upper side of the distribution.

To achieve this task, we define the modified A-D statistic:

ADn = n

Z 1

F (θ)

n
bFN (x)− F (x)

o2

1− F (x)
dF (x) (9)

The threshold θ is fixed according to θ = 3/4 × ru, which is exactly the average interest rate used for

the calculation of the usury rate. It is important to note that these tests are not performed directly on the
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whole set of available data, but only on a subsample : details are provided later in section 5. Moreover,

the distributions of the test statistics are estimated from bootstrap techniques; a detailed account of the

methodology is provided section 9.1.

The tests are performed for both levels and logarithms of interest rates. Results (test statistics and 95%

quantiles) are given in tables 3 and 4. An asterisk "*" identifies the categories for which the truncation is

not taken into account.

Cat. log level

KS q95 AD q95 AD q95 KS q95 AD q95 AD q95

1 6,05 1 ,0 3 56,44 1 ,2 1 24,75 0 ,5 7 3,7 0 ,8 7 16,27 0 ,7 1 5 0 ,2 4

2 5,82 1 ,0 2 46,53 1 ,2 1 7,11 0 ,4 9 5,92 0 ,9 66,4 0 ,7 5 21,92 0 ,1 9

3 4,95 1 ,0 6 41,76 1 ,2 5 22,97 0 ,6 9 3,17 0 ,8 5 29,95 0 ,7 2 23,48 0 ,3 1

4 11,56 1 ,1 235,96 1 ,3 5 127,53 0 ,7 7 3,46 1 ,0 2 29,78 1 ,4 9 11,48 0 ,6 3

5 11,77 1 ,1 4 253,38 1 ,5 6 136,19 0 ,8 3 4,47 1 ,0 9 45,36 1 ,8 4 18,39 0 ,7 9

6 8,84 1 ,0 8 132,99 1 ,3 5 70,83 0 ,7 4 3,05 0 ,9 8 17,4 1 ,2 5,9 0 ,4 7

7 6,85 1 ,0 4 54,53 1 ,2 11,89 0 ,6 3 6,89 0 ,8 6 67,82 0 ,7 1 23,45 0 ,2 7

8 5,49 1 ,0 5 57,47 1 ,2 5 25,14 0 ,7 1 2,33 0 ,9 4 9,82 0 ,9 9 4,15 0 ,7 1

9 5,61 1 ,0 5 72,6 1 ,2 6 28,05 0 ,7 1 2,3 0 ,8 8 14,95 0 ,7 4 5,64 0 ,2 9

10 8,1 1 ,1 3 105,83 1 ,5 7 8,17 0 ,6 4 2,61 0 ,8 4 7,3 0 ,7 6 3,22 0 ,3 7

11 8,57 1 ,0 8 93,34 1 ,3 9 12,26 0 ,5 2 7,82 0 ,8 8 106,33 0 ,7 1 28,49 0 ,1 5

Table 3 : October 2003

Cat. log level

KS q95 AD q95 AD q95 KS q95 AD q95 AD q95

1 5,06 1 ,0 5 28,33 1 ,2 1 7,35 0 ,5 8 3,34 0 ,8 4 19,53 0 ,7 3 9,08 0 ,3 1

2 5,65 1 ,0 3 52,34 1 ,2 3 7,54 0 ,4 7 5,94 0 ,8 8 107,27 0 ,7 2 36,18 0 ,2 1

3 4,93 1 ,0 5 48,29 1 ,2 2 23,6 0 ,6 5 2,36 0 ,8 4 24,12 0 ,7 2 14,72 0 ,2 9

4 11,15 1 ,1 229,12 1 ,3 8 122,7 0 ,8 4 4,46 1 ,0 4 52,89 1 ,5 3 20,16 0 ,7 4

5 21,17 1 ,1 2 252,15 1 ,4 3 138,76 0 ,8 4 5,93 1 ,1 2 80,91 1 ,9 6 37,53 0 ,9 7

6 7,83 1 ,0 8 119,56 1 ,2 7 61,13 0 ,7 1 3,3 0 ,9 8 18,47 1 ,1 9 4,72 0 ,4 7

7* 5,45 0 ,9 3 48,12 0 ,7 6 7,04 0 ,2 6 6,82 0 ,9 1 55,75 0 ,7 6 4,74 0 ,3 1

8* 1,83 0 ,9 2 5,84 0 ,7 9 1,11 0 ,2 8 2,46 0 ,9 3 7,69 0 ,7 7 3,14 0 ,3

9* 3,69 0 ,9 1 29,07 0 ,7 6 10,62 0 ,3 4 1,53 0 ,9 1 5,92 0 ,7 4 3,52 0 ,3 2

10 3,07 1 ,0 5 13,44 1 ,2 4 7,27 0 ,7 2,14 0 ,8 4 4,88 0 ,7 1 1,47 0 ,3 3

11* 4,17 0 ,9 1 16,32 0 ,7 5 5,44 0 ,1 9 7,03 0 ,9 1 71,78 0 ,7 4 9,7 0 ,2 3

Table 4 : October 2004

For both periods, all the statistics are highly significant. For loans to households, especially housing

loans, the specifications in log are massively rejected. For loans to firms, we can notice a slight decrease of

the test statistics between 2003 and 2004, perhaps a side effect of the usury reform. Finally, this preliminary

study provides clear evidence that the distributions of retail interest rates do not belong to the Gaussian

world.
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4 Parametric estimation

4.1 The model

The univariate variable X follows aM component finite Gaussian mixture model if its probability density

function can be written as:

f (x) =
MX

k=1

πkϕk (x) (10)

where
PM

k=1 πk = 1, πk ∈ ]0, 1[, and ϕk (x) is the p.d.f of the normal law N
¡
mk, σ

2
k

¢
:

ϕk (x) =
1

σk
ϕ

µ
x−mk

σk

¶
(11)

ϕ is defined by (4), M is the smallest integer for which f (x) can be written as in (10), and the couples
¡
mk, σ

2
k

¢
are all distinct. The model has a simple interpretation : for k = 1, . . . ,M, X is drawn with

probability πk from the normal law with expectation mk and variance σ
2
k.

We can always suppose that the sequence (mk) is increasing, which entails that mM is potentially the

value closest to the usury law. We note that the model is invariant to any re-ordering of the regimes. Then,

the parameters are defined only up to a permutation of the indexes {1, 2, · · · ,M}. However, these conditions

are generally not sufficient to ensure the identifiablity of model (10). We do not discuss further this issue,

which is largely beyond the scope of this paper, and suppose in the sequel that all the technical requirements

needed for the identifiability of the whole set of parameters are satisfied (see Mc Lachlan & Peel (2000) for

a detailed discussion of this issue).

The model (10), (11) is very general for our concerns. It is regarded as a flexible tool which is able to

approximate any continuous distribution, provided the number of componentsM is large enough. Generally,

we obtain M modes in the distribution located at (mk) . The shape of each mode depends of the values

of πk and σ2k. However, the number of modes can be reduced, especially when two values of mk are close.

In the case we observe one single mode, the model allows a parsimonious description of departures from

normality such as skewness and excess of kurtosis. The distribution in fig.5. illustrates this point, with

M = 2, m1 = 0,m2 = 0.5, π1 = 0.7, π2 = 0.3, σ
2
1 = 1 and σ

2
2 = 0.04:

Fig. 5.
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Our interpretation of the results will focus on modes rather than regimes. Indeed, we believe that

modes are easier to interpret than regimes because they can be related in more straightforwardly to market

segmentation issues. The statistical model is just a black-box which allows us to obtain the more accurate

description of the p.d.f. of the data.

4.2 Estimation

The parameters to be estimated are the number of regimes,M, then θM =
¡
π,m,σ2

¢0
with:





π =(π1, . . . , πM−1)
m =(m1, . . . ,mM)
σ2 =

¡
σ21, . . . , σ

2
M

¢

We suppose thatM is bounded from above,M ≤Mmax. We note the density f (x) : f (x;θM) . For a given

number of regimesM, the model is estimated by maximum likelihood. The log-likelihood is:

ln (θM) =
nX

j=1

log

Ã
MX

k=1

πkϕk (Xj)

!
(12)

There exists a sequence of local maximizers of the likelihood which is consistent and asymptotically normal

(Bickel and alii, (1998)). However, as it is well known in this kind of model, a major difficulty arises from

the fact that the likelihood diverges to +∞ when at least one variance σ2j approaches zero, i.e for values

of the parameters converging to the bounds of the parameter space (Mc Lachlan & Peel (2000)). The

estimation becomes challenging : instead of searching for a global maximum, we must identify an efficient

local maximum. Besides, estimates near to zero for a subset of the variance parameters may occur in some

particular situations, for instance when clusters of interest rate exist in the data, that is, a significant number

of observations for which Xj = cste. To prevent the estimation procedure from converging to pathological

values, we combine two additional procedures: the first one will be discussed later on section 5.2, and consists

in a preliminary analysis of the data. The second one concerns the optimization of the likelihood, which is

completed by the following constraints, derived from Hathaway (1985):

·
(A) : ∀j : σj > 10−4 and σj < 10× σ
(B) : ∀j : πj ≥ 5× 10−3 (13)

σ is the standard error of the observations (Xi) ; the constraints prevent the algorithms from converging

to the bounds of the parameter space. Through the global maximization of ln (θM) under the constraints

(13), we get a consistent estimate 8 of θM.

Another route to deal with these constraints is the use of the penalized likelihood advocated by Hamilton

(1991). Unfortunately, in our framework, results (not reported in this paper) indicate that this procedure

does not preclude the possibility to get bad estimates of σj and πj .

8Obviously, the true value of the parameter is supposed to satisfy these conditions.
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The model is not complete without the constraint of right censoring associated to the usury rate9 . With

this constraint, the p.d.f f of X is:

f (x) =
f (x)R ru

−∞ f (t) dt
for x ≤ ru

The log-likelihood of the observations is then:

ln (θM) = ln (θM)− n log

(Ã
MX

k=1

πkϕk (r
u)

!)
(14)

Instead of a direct numerical optimization of (14) which appears to be a quite formidable task, we proceed

as follows.

� Maximization of the complete likelihood (without censoring) ln (θM).

We use here the E-M algorithm (see the appendix for a synthetic description, and Mc Lachlan &

Peel (2000) for a comprehensive survey). Starting from some initial guess for the parameter, θ
(0)
M ,

the algorithm builds up a sequence of estimations θ
(j)
M such that, after any iteration, ln

³
θ
(j+1)
M

´
≥

ln

³
θ
(j)
M

´
. A fixed point of the algorithm (noted bθM

h
θ
(0)
M

i
to keep in mind the dependency on the

initial condition) is a local maximum of the likelihood. Because we seek to obtain a global maximum,

we then iterate this algorithm for a set of initial values designed to spread the space of admissible

values of the parameters. Let ΘM be this set. The final estimator is then:

bθM [ΘM ] = argmax
θ
(0)
M
∈ΘM

lN

³
bθM

h
θ
(0)
M

i´
(15)

Let Ln (M) be the log-likelihood at the optimum bθM [ΘM ] . Each run of E-M is stopped when at least

one of the following conditions is true : a) one of the constraints (13) is not satisfied, b) the number

of iterations exceeds 600, c) the convergence criterion is met:

max

(¯̄
m
(j+1) −m(j)

¯̄
¯̄
m(j)

¯̄ ,

¯̄
σ2(j+1) − σ2(j)

¯̄
¯̄
σ2(j)

¯̄ ,
¯̄
¯π(j+1) − π(j)

¯̄
¯
)
≤ ε = 10−4 (16)

� Maximization of the likelihood with censoring ln (θM)

This step uses a numerical algorithms for the maximization, with the optimal value (15) resulting from

the previous step used input for initialization. Unfortunately, this procedure provided deceptive results.

Indeed, it didn’t improve the likelihood in a significant way, unless parameters were allowed to vary

freely, without the constraints imposed to ensure interpretable values. The huge amount of parameters

explains certainly the problems we encountered. We will work thereafter with the estimation obtained

from the E-M methodology, bθM [ΘM ].

9We neglect left-censoring issues arising from the positivity of interest rates.
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� Choice of initial values.

The determination of ΘM being an important ingredient of our strategy, we provide a detailed account

of the way it is built. Let x0 = infXi and xM+1 = supXi. Three strategies are used:

1. Partial random initialization :

Calculate h (M), smallest bandwidth for which the non-parametric estimator (3) has exactlyMmodes,

x1, . . . , xM. Then, there exists for M > 1, M − 1 local minima (the antimodes) ∈ ]x0, xM+1[ noted

z1, . . . , zM−1, with:

zk ∈ ]xk;xk+1[

We set the end-points z0 = x0 and zM = xM+1. Now, define for k = 1, . . . ,M, the initial values:

m
(0)
k = xk

π
(0)
k =

# observations Xi ∈ [xk−1;xk]
n

σ
(0)
k = σ ×

s
U

µ
1

10
, 2

¶

For the first initialization, we also use:

σ
(0)
k =

q
Vemp (Xi ∈ [xk−1;xk])

A limited simulation experiment indicates that this procedure provides plausible starting values for π

and m.

2. Full random initialization:




m
(0)
k = U (x0, xM+1)

π
(0)
k =

π
(0)
k

M
k=1 π

(0)
k

with eπ(0)k = U (0.05, 0.95)

σ
(0)
k = σ ×

q
U
¡
1
10 , 2

¢

3. Use of bθM+1 [ΘM+1]

When estimators for the mixture with M + 1 components are available, we can identify among these

components the pair of nearest neighbours (k1, k2) in the sense of Kullback contrast (Figueiredo et alii

(1999)). Then, it is possible to calculate the values of the parameters
³
mk, σ

2
k

´
for the new component

resulting from the merging of k1 and k2, that is, such that:

πk1
πk1 + πk2

ϕk1 (x) +
πk2

πk1 + πk2
ϕk2 (x)

∼= ϕk (x) (17)

We then get a set of initial values for the model withM components:




π = {(π1, . . . , πM+1) \{πk1 , πk2,}} ∪ {πk1 + πk2}
m = {(m1, . . . ,mM+1) \{mk1 ,mk2,}} ∪

©
mk

ª

σ2 =
n¡
σ21, . . . , σ

2
M+1

¢/n
σ2k1 , σ

2
k2,

oo
∪
n
σ2k

o
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Finally, we use 100 set of initial values obtained from strategy 1 and 2 when M = Mmax, and 50 when

M <Mmax. For these values ofM, strategy 3 is used as a complementary source, with one initialization10 .

4.3 ChoosingM

4.3.1 Formal test

We define forM = 1, 2, . . . ,Mmax − 1, the sequential tests:
H
M
0 : f hasM mixtures

H
M
a : f hasM+ 1 mixtures

The sequence stops whenHM
0 can not be rejected for forM = fM. Then one can concludes that cM = fM.

The test statistic for testing HM
0 against HM

a is the likelihood-ratio:

LRn (M|M+ 1) = −2 {Ln (M)− Ln (M+ 1)} (18)

Remark:

The test procedure is ascending, starting from low values of M. Alternative procedures may be used, such

as, descending procedure, testing M against Mmax mixtures. In these two methods, we need to estimate

models with large values of M, which is a quite problematic task (see the discussion below). For this reason,

we maintain the ascending scheme for our tests.

The statistic does not follow the usual Chi-2 asymptotic because under HM
0 , the parameters of one

regime are not identified, which implies that the likelihood and its derivatives do not depend on their

values11 (Hansen (1996)). Despite this drawback, the asymptotic law of LRn has been obtained (Dacunha-

Castelle and Gassiat (1999)), but unfortunately this limit distribution is defined in a very implicit way and

depends in a quite intricate way of nuisance parameters related to the law of (Xi) .

The results of Andrews (1999, 2001) could be used, but their practical implementation appear quite

demanding. For this reason, we will use subsampling techniques for the estimation of the quantiles of this

limit law (Politis and Romano (1994), Politis et alii (1999), see the appendix for a brief summary). This

approach relies upon estimations on B subsamples esb, b = 1, . . . , B drawn from es (here, B = 500). Closely

related to the bootstrap, but valid in a much more general context, this technique should be used whenever

the theoretical validity of the bootstrap has not yet been established, or when it is known that bootstrap

analysis doses not work. The main drawback of subsampling is that the subsamples must have a reduced size

nb < n. More precisely, nb /n → 0 when n→ +∞. As a consequence, in empirical studies, these techniques

are relevant only when the amount of data is very important, which is precisely our case.

For the estimation step, the initial values θ
(0)
M are obtained in the same way as before, completed by

θ
(0)
M = bθM [ΘM ], the estimated value of the parameter for the the "master" sample : we work with a total

of 10 initial values.
10For M = 1, the estimation is trivial, and we need only one initial value.
11However, the likelihood is always increasing with the number of regimes.
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Once the quantiles qn (1− α) of the limit law of LRn (M|M+ 1) are estimated from the estimations

performed on each subsample, we are able to reject HM
0 at level α when:

LRn (M|M+ 1) > qn (1− α)

4.3.2 Information criteria

We introduce in this section an alternative approach based on the use of Information Criteria. In our context,

these criteria belong to the "Minimum Message Length" family. They are used in the field of pattern and

speech recognition:

MML1 (M, n) =
Ln (M)

n
− (3M− 1)

2
×
logn

n
(19)

MML2 (M, n) = Ln(M)
n − M−1

2 × logn
n − 1

n

PM
k=1 lognπk

= Ln(M)
n − (3M−1)

2 × logn
n − 1

n

PM
k=1 log πk

MML1 is similar to the usual BIC criterion; the add value of MML2 stems from the factor nπk (instead

of n), which is the number of observations really useful for the theoretical estimation of the component k

of the mixture. on the other hand, the M − 1 parameters πk are estimated with the complete data. This
criterion is asymptotically equivalent to MML1 and uses a smaller penalty designed to correct the tendency

for MML1 to underestimateM in finite sample, as reported by for instance by Figueiredo and alii (1999).

An ultimate version of this criterion, still equivalent to MML1 has been proposed by Figueiredo and Jain

(2002): this is the one used in our empirical work.

MML3 (M, n) =
Ln (M)

n
− 1

n

MX

k=1

log
³nπk
12

´
−M
2n

n
log

n

12
+ 3
o

(20)

M is finally estimated from the values taken by the criterion according to the rule:

cM3 = argmax
1≤M≤Mmax

MML3 (M, n) (21)

When n goes to +∞, cM3 →M in probability (Keribin (2000), Gassiat (2002)). In empirical applications,

this method appears to deliver reliable results (see for instance the simulation experiments reported by

Psaradakis and Spagniolo (2002) in the related context of Markov-Switching models).

However, these two approaches suffer from the same drawback: estimation of models with high values

ofM can potentially generate trivial components with σk ≈ 0 and/or πk ≈ 0. We know already that when
σk → 0, the likelihood diverges and it is easily seen thatMML3 also diverges towards infinity when πk → 0

: in both cases, an over parametrized model might ermerge from the selection process, even though the

true value of M is smaller. The constraints (13) don’t really solve the problem because it is likely that

despite using numerous initial values, it won’t be possible to get at least one final estimate fulfilling these

constraints. Thus, ifM > 5, or when the variable is taken in log, it is quite common to observe numerical
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problems during the iterations of the EM algorithm (more specifically, we can’t prevent σk to converge to

0). In addition, these difficulties are amplified in the subsampling experiment, because the size of the sample

is dramatically reduced. Intuitively, the number of régimes we are really able to identify decreases, and the

risk of obtaining spurious estimates whenM is large increases. We can even obtain non-increasing sequences

of log-likelihood when the number of regimes is increasing !

At last, we could avoid the problem by reducing the value ofMmax. However, the diversity of the lending

market in France is a well established stylized fact : the population of credit institutions is quite heterogeneous

and numerous instruments coexist in the categories of loans under investigation. As a consequence, we should

maintain a high value for Mmax, typically Mmax=8. The counterpart of this choice is that the procedure

(4.3.1) is extremely time consuming from an IT perspective.

The difficulties reported in this section are quite serious, and may obliterate the overall significance of

the results. That’s the reason why we proceed now to an alternative methodology which is in our view more

efficient, although it doesn’y belong to the traditionnal econometric toolbox. The two previous methods will

be used for illustration purpose withMmax=5, a value for which the estimation remains feasible.

4.4 A combined approach

We propose to estimate simultaneously M and the parameters of the mixture, an approach which is com-

monly used in pattern recognition, as advocated by Figueiredo and Jain (2002). It relies on a learning

algorithm which permits to decrase progressively M during the learning, according to a "top to bottom"

scheme. Starting from Mmax regimes and some initial guess θ
(0)
Mmax

, we iterate the EM algorithm as in

(13), but with a improvement in the M-step which consists in setting to zero the πk which appear to be

no significant. In other words, the M-step performs component annihilation through an explicit rule for

moving from the current value ofM to a smaller one. The significativity of πk is assessed from the posterior

probabilities for a loan j to be produced by a given component. More precisely, we use the criterion below

(the superscript "t" refers to the loop in the iteration of the EM algorithm):




nX

j=1

P (t) (j comes from regime k) < 1



 =⇒ π

(t+1)
k = 0

The components for which πk = 0 become irrelevant because they do no longer contribute to the log-

likelihood. The number of regimes fluctuates during the iterations of the EM algorithm : let M
(t)
0 be this

variable. The algorithm is stopped if the following condition is true:
¯̄
¯MML3

³
M

(t+1)
0 , n

´
−MML3

³
M

(t)
0 , n

´¯̄
¯

¯̄
MML3

¡
M(t), n

¢¯̄ ≤ ε = 10−6 (22)

Once the convergence has been achieved, we obtain an estimate for the number of components, say M0,

and for the parameters, θM0 : this ends step "0". Turning now to step "1", we repeat exactly the same
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operations, starting from M0 − 1 regimes, and an initial value θ(0)M0−1 obtained from the merging of the

two closest components in θM0 in the sense of criterion (17). Then, the convergence of the EM algorithm

provides the estimates:

M1 ≤M0 − 1 and θM1

We iterate until step "S" which provides only one regime as an input of the next loop, that is:

MS = 1

Therefore, we have obtained a set of estimated values for parameters, each set being associated to a specific

value ofM : (θM0 , . . . ,θMS ). The "best" model
³
M, bθM

´
is then chosen according to theMML3 criterion,

after elimination of models for which the constraints12 are not fulfilled (13). The final result depends of course

of the first initialization used at the beginning of the loop. We recall this dependence in the following compact

notation: ³
M, bθM

´
= g

³
θ
(0)
Mmax

´

The whole procedure is repeated for different set of initial values, and we obtain the set of "final" estimates:

n³
M, bθM

´o
= g

³
θ
(0)
Mmax

¯̄
¯θ(0)M ∈ ΘM

´

Again, we routinely select the best model according to the MML3 criterion and the constraints (13). The

final model corresponding to the initialization withMmax regimes is then:
µ
M(1), bθ(1)M

¶
= g (Mmax) (23)

Now, the procedure is entirely repeated withMmax − 1,Mmax − 2,. . . , 1 initial regimes; it yields:
µ
M(p), bθ(p)M

¶
= g (Mmax − p) pour 0 ≤ p ≤Mmax − 1 (24)

The number of initial values depends on the value of p: we consider 21 initial values if p ≥ 3, 10 for 2 regimes,
and 2 for one regime.

4.5 Level and logarithm

The estimation procedure described in the previous sections is performed for the level and the logarithm

of the interest rate. We next have to choose between these two specifications. Obviously, both models are

encompassed in the Box-Cox specification:

Xλ − 1
λ

Ã f (x;θM)

λ ∈ [0, 1] . The limit case λ = 0 corresponds to log (X), and λ = 1 corresponds to X because:

X − 1Ã f (x;θM)⇔ X Ã f
¡
x;θM

¢

12 In the worst case, no model fulfills the constraints, and we retain by default the best model in the sense of MML3 .

21



with θM ≡ θM except for m=(m1 + 1, . . . ,mM + 1) .

The joined estimation of λ and θM by maximum likelihood appears to be a quite impossible task; indeed,

the EM algorithm lacks simplicity because numerical optimizations would be required in each iteration, for

both E and M steps. For this reason, we will restrict ourselves to a comparison between the MML criteria of

the two models constraints by λ = 1 and 0 respectively. Let LN (λ = 1) and LN (λ = 0) be the corresponding

log-likelihood for each model. The log-likelihood for λ = 0 is calculated as follows: the p.d.f of the variable

in level, X, fn (x;θM) is related to the p.d.f of logX, fl (y;θM) by:

fn (x;θM) =
fl (log x;θM)

x
(25)

Thus,
LN (λ = 0) =

Pn
k=1 log fn (Xk;θM)

=
Pn

k=1 log fl (logXk;θM)−
Pn

k=1 logXk

The first factor in the r.h.s. is simply the log-likelihood (12) when the input variable is logX : this is the

result of the optimization procedure. Then, we calculate the standard BIC (MML0 in our notations), because

we believe that the refinements introduced in the definition of MML2 and MML3 are certainly not pertinent

for the estimation of λ.

MML0 (λ, n) =
Ln (λ)

n
− (3Mλ − 1)×

logn

n
(26)

This approach is purely empirical: the analysis of the theoretical properties of the implied estimator of λ is

largely beyond the scope of this paper.

4.6 Some simple indicators

We introduce in this section several indicators pertaining to the hypothesis we want to investigate. They

will allow us to quantify the potential concentration of loans in the upper side of the distribution. Let κl for

l = 1, . . . ,M− be the modes obtained from fn (x;θM) for the model in level, and from (25) for the model

in log. Generally, M− ≤M. If ru is the usury rate for the category under investigation, it is possible to

observe κM− > ru, especially when the usury regulation is relaxed : this is the case for categories 7,8,9 and

11 in October 2004 and 2005. In the other cases, an estimated mode may be slightly larger than the usury

rate. In order to facilitate the temporal comparisons, we will restrict our attention to modes smaller, or in

the immediate vicinity of the usury rate. This condition reads as follows:

κl ≤ 1, 1× ru (27)

The largest mode satisfying (27) is then κM− .

1. The eviction rate : it is given for the model in level by:

p = 1− F (ru;θM) (28)
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with

F (x;θM) =
MX

k=1

bπkΦ
µ
x− bmk

bσk

¶
(29)

For a model in logarithm, F is estimated from logX and:

p = 1− F (log ru;θM) (30)

It is worth noting that for loans to NFC in October 2004 and 2005, some observed interest rates are

larger than usury rates, thanks to the new regulation. In October 2005, only loans to NPISH are still

subject to the usury law; then, p is simply the proportion of loans whose interest rates exceed the

usury rate. However, for the sake of simplicity, we will still use the same designation for p.

2. The posterior probabilities that any given interest rate xi (not necessarily included in the sample

used in the estimation step) comes from the jth normal component of the mixture can be achieved as

follows. Let Iij = 1 if xi comes from component "j”, 0 otherwise:

P (j |xi ) = P (Iij = 1 |xi ) =
πjϕj (xi)PM
l=1 πlϕl (xi)

(31)

We set Iij = 1 when P (Iij |xi ) > 0, 5. The "market share" of each component is defined through the

proportion of loans such that Iij = 1:

θj =

P
i,Iij=1

PimiP
i Pimi

(32)

mi is the amount of loan "i" and Pi its sampling weight. Thus θM measures the economic weight of

the regime close to the usury rate. In the same spirit, this indicator can be calculated at the bank

level h, such as:

θh (j) =

P
i∈h Pi ×P (j |xi )P

i∈h Pi
(33)

PM
j=1 θh (j) = 1 and ”i ∈ h" means that the loan "i" was granted by bank "h". However, the regimes

have above all a statistical interpretation. When the distributions are clearly multimodal, we favour

interpretations based on modes rather than mean values across regimes. That’s the reason why we

associate to each mode κl for l = 1, . . . ,M− a set K (l) of components k in accordance with the

following criterion13 :
λ = 1 : |mk − κl| ≤ 1
λ = 0 :

¯̄
exp

¡
mk − σ2k

¢
− κl

¯̄
≤ 1 (34)

By doing so, we define a mapping between regimes and modes. When a regime k is associated to

several modes l, we select the mode which minimize the distance |mk − κl| . Regimes which can’t be

associated to at least one mode are gathered in K (0). Finally, we obtain K (l) for l = 0, . . . ,M−−,

13 exp mk − σ2k is the mode of a log-normal distribution with parameters mk, σ
2

k
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withM−− the effective number of modes connected to at least one regime. The modes are supposed

to be sort in ascending order:

κ1 < κ2 < . . .

The pseudo posterior probabilities that an interest rate xi comes from mode l = 0, . . . ,M−− is then

defined by:

P (l |xi ) =
X

j∈K(l)

πjϕj (xi)PM
l=1 πlϕl (xi)

(35)

The aggregation of these M−− + 1 indicators for each bank h provides an new indicator similar to

(33):

θh (l) =

P
i∈h Pi ×P (l |xi )P

i∈h Pi
(36)

PM−−
l=0 θh (l) = 1: this distribution provides a summary of the situation of the bank on the credit

market.

We may also define an indicator similar to (32) :

θ−− =

P
i,Ii,M−−=1

Pimi
P

i Pimi
(37)

with

Ii,M−− = 1 if P (M−− |xi ) > 0, 5, zero otherwise (38)

The relative importance of mode κM−− is given from the theoretical mixing parameters πj by:

π−− =
X

j∈K(M−−)

πj

This quantity may be estimated with a larger dataset with:

π−− =

P
i,Ii,M−−=1

Pi
P

i Pi
(39)

Remark : The indicators π−−, θ−− become spurious when the distribution is unimodal, and may be very

difficult to analyse when the distributions are unstable over time. Indeed, in the latter case, lack of persistence

in the structure and amplitude of modes would ruin the potential use of such indicators for short-term analysis

purposes.

1. Test of constancy of the eviction rate between 2003 and 2004, or 2004 and 2005 against

the alternative of an increase (or a decrease) of p:

H0 : p2 (θM2) = p1 (θM1)
Ha : p2 (θM1) Q p1 (θM1)
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For loans to NFC, we expect, all things being equal and under hypothesis H2, an increase of p between

2003 and 2004:

p2 > p1

By contrast, if H1 is true, but H2 is not, then we should observe:

p2 ' p1

We use a Wald test whose implementation is easy in our context since bθ1 and bθ2 are independent. Let
us introduce:

p (θ1, θ2) = p2 − p1

The test statistic is:

Wn = n
n
p
³
bθ1,bθ2

´o2
×

Ã
2X

k=1

∂

∂θ
0

k

p
³
bθ1,bθ2

´
bVasym

³
bθk
´ ∂

∂θk
p
³
bθ1,bθ2

´!−1
(40)

under H0, Wn has the usual χ2 (1) asymptotic.

Remark : n is defined without any ambiguity since the size of our samples is fixed for each quarter (see

section 5 below).

This test can be easily cast in the subsampling framework, since the subsamples provide an alternative

way to estimate the variance of p
³
bθ1,bθ2

´
: all we need is p (θ∗b1, θ

∗
b2) for each couple of sub-samples (esb1, esb2),

for b = 1, . . . , B. Next:

bVasym
h
p
³
bθ1,bθ2

´i
= Vemp

n√
nb

h
p (θ∗b1, θ

∗
b2)− p

³
bθ1,bθ2

´io
(41)

It remains to replace the expression between brackets in (40) by (41) to obtain the modified test statistic:

W∗
N = n× p

³
bθ1,bθ2

´2
×
³
bVasym

h
p
³
bθ1,bθ2

´i´−1
(42)

5 Selection of the data

We discuss in this section some theoretical and practical problems closely connected to the huge amount of

information at our disposal for estimation purposes. Paradoxically, a potentially severe problem comes from

the large number of observations which appears to exceed the capacities of the econometric routines available

in our IT system : for each category, 2000 observations appear to be an upward limit for the quantity of

information we are able to process within reasonable time execution constraints. It means that we have to

work with a subsample denoted by es extracted from our database s = (xi)1≤i≤n. It is important to note

that this subsample should be representative of the whole population of loans granted during the reference

period. Of course, although the whole population is not observed, it can be extrapolated from s through the
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sampling weights Pi. Consequently, it is easily seen that our subsample es of size en should be drawn from s

with replacement according to a proportional to size scheme given by the probabilities of inclusion pi defined

as:

pi =
PiP
i∈s Pi

We fix en = 2000 for each quarter. It is easy to verify that es = (X1, . . .Xn) is representative of the global

distribution of interest rates. Indeed, let X and σ2X be the mean and variance calculated from es. We still
denote14 by xi the interest rate for the loan i in s. Conditionally on s, the Xi are i.i.d, and:

E (Xi |s ) =
X

i∈s
pixi

It yields:

E
¡
X |s

¢
=

P
i∈s PixiP
i∈s Pi

= br

br is the standard estimator of the average non-weighted interest rate which is obtained from the ’master’

sample s. We get similarly:

σ2X =
1

en− 1
nX

j=1

¡
Xj −X

¢2

Standard manipulations yield finally:

E
¡
σ2X |s

¢
=
X

i∈s
pi (xi − br)2 =

P
i∈s Pi (xi − br)

2

P
i∈s Pi

We find, as expected, the empirical variance of the interest rate x in the population of loans, estimated from

the sample s. Therefore, we can conclude that, on average, the sample es mimics some basic features of this
population.

5.1 Use of replications

Our methodology makes the results strongly dependent on the particular drawn subsample es. We propose
to avoid this drawback by averaging the results across a significant number H of independent sub-samples,

in the spirit of Monte-Carlo techniques: this should significantly improve the accuracy of our estimator.

However, the estimation of the key parametersM and λ will be kept outside the loop, due to computational

constraints: we impose the values obtained from es(0) = es. The different steps of the estimation methods can
now be described as follows:

1. For h = 0, . . . ,H, draw H + 1 independent sub-samples es(h) from s.

2. With es(0): perform the tests presented in sections 4.3 and 4.5 and get the (final) estimates of cM and

bλ.
14Lower cases always refer to the "master" sample s.
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3. For h = 1, . . . ,H, estimate the model constrained by cM and bλ and obtain the parameters bθ(h)M and the

indicatorsM− and p, ... described §4.6.

4. Get the final Monte-Carlo estimates of the parameters (including p) and their asymptotic variances:

bθmc

M =
1

H

HX

h=1

bθ(h)M (43)

var
³
bθmc

M

´
=

1

H2

HX

h=1

µ
bθ(h)M − bθmc

M

¶µ
bθ(h)M − bθmc

M

¶0

(44)

We now justify briefly these results. For each h, we have:

√
n

µ
bθ(h)M − θM

¶
=⇒ Yh (45)

with

Yh Ã N (0,Σθ) (46)

Because the sample s(h) are independent, the bθ(h)M inherit this property, and the random variables Yh

are i.i.d. Therefore:
√
n
³
bθmc

M − θM
´
=⇒

n→+∞

PH
h=1 Yh
H

= Y (47)

with:

Y Ã N

µ
0,
Σθ
H

¶

Finally:
√
nH

³
bθmc

M − θM
´
=⇒

n→+∞
N (0,Σθ) (48)

Until this point, we just need n→ +∞. On the other hand, the estimation of the asymptotic variance

Σθ imposes H → +∞ after n → +∞ (sequential limit as defined by Phillips & Moon (1999), see

appendix 9.4 for more details). We get:

bΣθ =
n

H

HX

h=1

µ
bθ(h)M − bθmc

M

¶µ
bθ(h)M − bθmc

M

¶0

(49)

It yields the effective variance given in (44).

5. Final estimation of the eviction rate:

pmc =
1

H

HX

h=1

p(h) and var (pmc) =
1

H2

HX

h=1

³
p(h) − pmc

´2
(50)

6. Test of constancy of p : we use pmc
1 and pmc

2 , then:

W∗
N = nH × (pmc

1 − pmc
2 )

2 ×
³
bVasym [pmc

1 − pmc
2 ]
´−1

(51)

bVasym [pmc
1 − pmc

2 ] = nH × {var (pmc
1 ) + var (pmc

2 )} (52)
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5.2 Introduction of discrete components

The mixture model is designed for continuous distributions. However, a significant number of observations

in s, not necessarily belonging to a single bank, appear to be strictly equal. This is especially the case for

consuming loans issued by specialized financial institutions, for which the setting of prices appears to be

standardized. The existence of clusters is then amplified by the sampling weights Pi used for the drawing of

es from s.

Hence, we enlarge slightly model (10) in the following way:

f (x) =
MX

k=1

πkϕk (x) +
M+DX

k=M+1

πkδxk (x) (53)

PM+D
k=1 πk = 1 and δxk (x) is the Dirac mass at xk.

The estimation of the parameters of the discrete part {πk, xk; k =M+ 1, . . . ,M+D} is done as follows:

1. Identification of interest rate x satisfying:

p (x) =

P
{i∈s and xi=x} PiP

i∈s Pi
> 0, 05

The threshold 5% is arbitrary : we seek only to identify the main clusters. From this preliminary

search, we obtain D, the xk end the empirical frequency πk, for k =M+ 1, . . . ,M+D :

πk = p (xk)

Conditionally on s, these estimators have zero variance.

2. Extract from s all the data corresponding to the xk (∼ 50000 lines): we get a new sample, sd (∼ 300000
lines). Define the new sampling probabilities pi for each loan in sd.

3. Draw the sample es from sd, and use es to estimate model (10):

fd (x) =
MX

k=1

πd,kϕk (x) (54)

4. Calculate the final probabilities πk for k ≤M associated to the continuous part of the distribution:

bπk = bπd,k


1−

M+DX

j=M+1

πj


 (55)

5. Finally, the discrete components can be seen as limit cases of continuous distributions : it suffices to

note that δxk (x) ≈ N (xk, ε) with (say) ε = 10−5. With this convention, we don’t need any longer

to distinguish continuous and discrete components for the calculation of indicators : we shall consider

that the distribution is continuous, withM+D regimes.

28



For each reference period, the clusters identified through this filter are given in the tables below. We also

indicate the corresponding values of the usury rate. Some (but not all) clusters are very close to the usury

rate, which gives for the corresponding categories some credit to our hypothesis H2. In 2005, thanks to the

new usury legislation, we observe that one cluster is higher than the usury rate.

Category 1 1 1 2 2 7 7 7 10 10 11 11 11
xk 20,94 18,0057 14,5 16,6 16,81 3,447 3,439 2,858 8,6 6,6 2,15 7,1 2,13

πk 0,08 0,08 0,05 0,12 0,05 0,07 0,05 0,05 0,06 0,05 0,14 0,10 0,06

ru 21,25 21,25 21,25 16,84 16,84 8,72 8,72 8,72 11,19 11,19 8,73 8,73 8,73

Table 6a : October 2003

Category 1 1 1 2 2 7 7 10 10 11 11
xk 15 18,0057 20,06 16,16 16,18 3,70 3,42 11,27 10,1 3,15 4,58

πk 0,11 0,07 0,07 0,14 0,05 0,07 0,05 0,17 0,07 0,07 0,06

ru 20,13 20,13 20,13 16,21 16,21 8,55 8,55 11,27 11,27 8,2 8,2

Table 6b : October 2004

Category 1 1 1 2 7 7 7 10 10 10 10
xk 15 18,43 18,93 16,53 3,66 3,96 9,35 6,9 9,1 10,1 11,55
πk 0,06 0,08 0,08 0,12 0,07 0,08 0,05 0,05 0,06 0,07 0,07
ru 19,76 19,76 19,76 17,44 8,99 8,99 8,99 11,55 11,55 11,55 11,55

Table 6c : October 2005

5.3 How informative are aggregated data ?

A direct and simple way to handle the various problems raised in the previous section (execution time,

granularities in the distribution) could be to resort to aggregated data at the bank level. However, the loss

of information might be severe, especially if the within banks variance is high. In this case, average interest

rates can’t be fully representative of the individual distribution. We will deal with this issue through an

estimation of the mixture model on aggregated data, according to the same methodology than that we used

for our individual database. By doing so, we hope to obtain a fair comparison between the two distributions,

and notably the eviction rates.

Thanks to the reduced number of observations in each category (between 80 and 100), we set Mmax = 4

and use exclusively the combined approach described section 4.4 (subsampling techniques are prohibited with

such small samples). The average interest rate are aggregated by weighting them with the related amount

of the new contracts, thus making them consistent with the MIR methodology and providing an interesting

connection with macroeconomic indicators used for monetary policy purposes.

6 Empirical study

The eleven categories of credits are supplemented by two additional ones. Firstly, we consider in cat. 12

leasing (movables goods) for NFC. It is often acknowledge that lease and debt are substitutes, or that leasing

is used as a last resort soluton to increase the debt capacity of the firm. Indeed, leasing is not subject to the
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usury regulation. Therefore, relaxing the usury law should help firms with risky projects to obtain classical

loans instead of setting leasing agreement.

Secondly, we consider in cat.13, 2000 simulated observations generated according to the following distri-

bution:

F (x) =
4X

k=1

πkΦ

µ
x−mk

σk

¶

We use the numerical values: 



¡
π1,m1, σ

2
1

¢
= (0, 05 10 0, 1)¡

π2,m2, σ
2
2

¢
= (0, 2 5 0, 5)¡

π3,m3, σ
2
3

¢
= (0, 3 8 0, 4)¡

π4,m4, σ
2
4

¢
= (0, 45 2 1)

Through this simulated variable, we want to verify if the method we used for the estimation of the deep

parameters λ andM provides sound results. Obviously, this is a very limited exercise which is included in

this work only for illustration purpose15 .

Detailed results (estimations and standard errors) are given in appendix 9.5. In this section, we give a

synthesis of the main results, including the indicators introduced in §4.6. The distributions are gathered in

the appendix, section 9.6 (households) and 9.7 (non-financial corporations). For each category, the graphics

are ordered as follows : 2003 (top), 2004 (middle), 2005 (bottom). We represent (solid line) the density

bf (x) estimated from the mixture through (10), and extrapolated beyond the usury rate (broken line) when

the usury law applies to the category. In 2004 and 2005, for loans to NFC (other than bank overdrafts), we

observe interest rates higher than the usury rate, so we use a solid line for all values of x. For the sake of

comparability, we also represent the non-parametric estimator bfn (x) (3) obtained from the "master" sample
s(0) used for the estimation ofM and λ. Significant divergences between bfn (x) and bf (x) may indicate that
the particular sample s(0) was in fact not fully representative of the distribution. Finally, the vertical solid

(resp. broken) lines identify the modes obtained from the continuous (resp. discrete) part of bf. The dashed
area identifies the values of x higher than the usury rate.

N.B : in order to allow a fair comparison between the curves, we maintain the same scales for both horizontal

and vertical axis. Consequently, several peaks corresponding to small values of σk have been truncated.

6.1 The structural parameters

We present in tables 7a/7b the estimates of the discrete parameters16 λ andM for the individual and the

aggregated distributions. For the former, the number of modes arising from the continuous part of the

distribution 17 is given in tables 7c/d below, with, within brackets, the 90% confidence interval obtained

from the Monte-Carlo exercise, as explained in section 5.1.

15A complete simulation experiment would represent a quite impossible task in out current IT. .
16λ = N for the model in level, λ = L for the model in log.
17The clusters are not taken into account in this statistic.
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Category 2003 2004 2005
λ M λ M λ M

1 L 2 N 1 N 2

2 N 2 N 2 L 2

3 N 1 N 1 N 1

4 L 2 L 2 L 2

5 L 1 N 1 N 1

6 N 2 N 2 N 1

7 L 3 L 2 N 4

8 L 1 N 2 N 1

9 N 1 L 1 L 2

10 N 1 L 3 N 2

11 N 1 L 1 L 1

12 N 1 N 1 L 1

13 N 1 N 1 N 1

Table 7a : aggregated data

Category 2003 2004 2005
λ M λ M λ M

1 N 6 N 8 N 7

2 N 7 N 7 N 7

3 N 6 N 6 N 6

4 L 2 N 3 L 2

5 N 3 N 2 L 2

6 L 2 N 4 N 2

7 N 7 N 6 N 6

8 N 4 L 4 L 5

9 N 6 N 2 L 3

10 N 7 N 6 N 5

11 N 5 L 5 N 5

12 L 4 L 3 L 3

13 N 4 N 4 N 4

Table 7b : individual data
.

Category 1 2 3 4 5 6
M− [2003] 5 6 4 1 2 2

[5,6] [4,7] [3,5] [1,1] [1,2] [1,2]

M− [2004] 8 5 5 1 1 3

[7,8] [5,7] [4,5] [1,2] [1,1] [1,3]

M− [2005] 5 6 4 1 1 2

[5,6] [5,6] [4,5] [1,2] [1,2] [2,2]

Table 7c : Hou seholds : number of modes (ind.)
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Category 7 8 9 10 11 12 13
M− [2003] 6 4 4 5 4 2 4

[6,7] [2,4] [4,5] [4,5] [3,4] [2,2] [4,4]

M− [2004] 4 2 1 3 4 2 4

[4,5] [2,3] [1,1] [3,4] [3,4] [2,2] [4,4]

M− [2005] 5 3 3 3 4 2 4

[5,5] [2,4] [3,3] [3,4] [3,4] [2,2] [4,4]

Table 7d : NFC : number of modes (ind.)

Some interesting facts emerge from these results:

1. According to table 7b, one needs at least 6 régimes for the distributions of consuming loans. Similarly,

the value ofM appears to be high, but to a lesser extent, for loans to NFC. As expected, housing loans

admit more parsimonious representations (2 or 3 regimes). Most of the distributions appear to be in

level, and λ is constant over time for only 7 categories. Lastly, although the number of regimes is not

strictly constant, it appears to fluctuate moderately: more specifically, for loans to NFC, the relaxing

of the usury regulation has not been followed by a systematic decrease - or increase - of the number

of regimes, except for the of cat. 9 (loans at fixed rate with duration up to 2 years) between 2003 and

2004.

2. The results in tables 7c/7d show that the number of modes is generally smaller thanM and almost

constant, except for loans to NFC : for these categories, we observe a decrease from 2003 to 2004/2005.

3. For the data aggregated at bank level, table 7a indicates that the proportion of models in logarithm is

larger. The variability observed in table 7b/c (high values for the number of regimes/modes) is much

less pronounced here, except for two categories of loans to NFC : credit instalment (cat.7) and to a

lesser extent, bank overdrafts (cat. 10). In the other cases, the distributions are modelled with one or

two regimes18 : we will come back to this issue in § 6.2.3.

Turning now to the estimated p.d.f for individual data, we notice the following facts:

1. Results for the simulated variable (cat. 13) are rather promising because the procedure succeeded in

estimating the true values of M = 4 and λ = N. Moreover, the estimated distribution is very close

to its theoretical counterpart, especially in the upper side where there exists a mode with a very small

value of π (π1 = 0, 05). Interestingly, the kernel estimator is too smooth, and doesn’t discriminate

correctly the two largest modes.

2. For leasing agreements with NFC (cat. 12), the distributions appear quite stable over time, with two

well identified modes. Moreover, the largest mode seems less important in 2004 and 2005 than in 2003,

a finding which could confirm a return of firms with risky projects to classical loans.

18 In passing, we note that these results indicate that some of these aggregated distributions are normal or log-normal, although
this is not true for the individual distributions.

32



3. In spite of a relative stability of the number of modes, the shape of the curves are often very different

between the three reference months, with the notable exception of housing loans and leasing. This

evolutionary feature is also present in non-parametric estimators, although to a lesser extent. This

could result from the intrinsic variability of interest rate in each strata. In other words, the categories

of loans are heterogeneous, and the distributions change over time according to complex structural

effects. On the contrary, housing loans and leasing for NFC seem to constitute more homogeneous

categories, so that macroeconomic or statistical analysis of these data is not misleading.

4. Generally, non-parametric curves follow closely the parametric curves although they appear to be

smoother, as could be expected. However, we observe in a few cases some very important discrepancies

which indicate probably a strong dependence of the results on the particular sample s(0) used for the

estimation ofM. This drawback could not be avoided, since it is a limit inherent to our methodology.

5. For all categories of housing loans (cat. 4 to 6), the distributions are basically unimodal, excepted

for loans at floating rate in 2003 for which a mode is estimated in the bottom of the distribution19 .

Interestingly, the split of loans by maturity as defined in MIR reports does not translate into modes

in our distributions20 . Lastly, it is clear that the usury rate doesn’t distort the distribution, except for

bridging loans in 2004. On the whole, we can accept hypothesis H1.

6. Consuming loans (cat. 1 to 3) tell another story, with several concurrently features revealed by the

distributions : granular behavior (cat. 1 and 2), important distortion near the usury rate (particularly

for cat. 3). In addition, for cat. 1 and 2, the modes estimated from the continuous part are very close

to some clusters of the discrete part.

5. With regard to loans to NFC, we notice for cat. 8 the disappearance of a mode near the usury rate in

2004 and 2005, and simultaneously the appearance of a new mode whose magnitude is limited, larger

than the usury rate (in our notations, M_ =M − 1). For cat. 9, we observe a similar property in
2004 compared to 2003, but the distribution obtained for 2005 indicates again a mode near the usury

rate. Finally, cat. 11 shows a mode in the upper side of the distribution for all reference months, but

it is distant from the usury rate : hypothesis H1 seems to provide a good description of the data.

It is worth looking at the results we get from the alternative methods we had initially in mind (see §

4.3.1 and 4.3.2). The results are given in appendix 9.9 for October 2003 and 2004. As indicated previously,

the maximum number of regimes is set to Mmax = 5, but in practice, especially for models in logarithm,

we have reduced this value to Mmax = 4 or 3 in order to get rid of unreliable results. Implicitly, this

simplification of the procedure is biased in favour of models in level, for which numerical problems are less

19 It would be interesting here to verify if this mode arises because of one credit institution trying to win market shares.
20Nevertheless, one particular regime could be associated to a particular range of maturities.
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frequent. In passing, we notice that the combined approach is a particular elegant way to avoid numerical

problems through the annihilation of non-significant components.

The overall results for M and λ show that both alternative methods provide similar results to the

combined approach (see table 7b), with a tendency to estimate lower values ofM, whereas for λ, the results

are remarkably close. These methods seems promising, under the stringent condition that the sample is rich

enough, and that the number of regimes is reasonable.

Lastly, the combined approach provides as a by-product a set of estimates of the eviction rate p for

different values of M and λ. In table 7e below, we give the minimum and maximum values of p over this

set, for two reference months (Oct. 2003/2005). Estimations corresponding toM = 1 are discarded, thanks

to results of section 3.2.

Category 1 2 3 4 5 6 7 8 9 10 11
pmin [2003] 0,5 3,5 5,0 1,1 0,9 0,3 1,4 2,4 4,3 13,8 1,9

pmax [2003] 2,4 5,5 8,2 1,3 1,3 1,0 5,2 4,1 5,8 16,8 3,1

pmin [2005] 0,1 0,0 1,9 1,5 0,5 1,1 16,6 3,6 9,9 8,0 2,8

pmax [2005] 3,9 6,2 9,1 2,0 0,7 2,1 18,9 5,4 15,9 14,9 8,5

Table 7e : Eviction rate

For consuming loans and loans to NFC, the range of values of p is large. This justifies ex-post the need

for a careful description of the distribution of interest rates. For housing loans, the conclusion is somewhat

different because of a smaller number of regimes available in our final estimates making the range of values

of p much more narrow.

6.2 Detailed results

6.2.1 Loans to households

We recall briefly the meaning of the statistics given in table 8a below:

� ru. : usury rate, and p : eviction rate; within brackets : the 90% confidence interval for p resulting from

the Monte-Carlo simulations (see §5.1).

� θ−− (%) : relative share (weighted by amount of new contracts) of loans associated to the largest mode

of the distribution (including the discrete part). When several modes are very close to the largest

one, they are "aggregated" together for the calculation of θ−−. When the distribution is close to

unimodality, θ−− ≈ 100% and we do not report the value.

� π−− : probability of the largest modes used for determination of θ−− (relative share, without any

weighting)

� Test of stability of the eviction rates (42) between 2003 and 2004 : the p-value are provided in table

8b
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t Cat ru p (%) θ−− (%) π−−
1 21,25 1,1 [0,4-1,0] 12,8 0,08
2 16,84 4,6 [4,3-5,4] 17,9 0,27

2003/10 3 9,96 5,0 [3,4-7,6] 3,3 0,05
4(*) 6,88 1,3 [1,1-1,7] - -
5(*) 6,4 1,2 [1,3-2,1] - -
6(*) 7,12 0,3 [0,3-0,9] - -

1 20,13 0,2 [0,2-0,4] 19,2 0,14
2 16,21 3,8 [3,5-4,8] 16,7 0,25

2004/10 3 9,12 4,7 [2,6-3,9] 4,0 0,06
4(*) 6,56 1,4 [1,4-2,2] - -
5(*) 5,85 0,5 [0,4-0,6] - -
6(*) 6,68 1,4 [0,4-1,3] - -

1 19,76 0,1 [0,1-0,4] 6,1 0,05
2 17,44 2,6 [1,9-3,8] 1,3 0,05

2005/10 3 8,33 3,8 [3,0-5,0] 5,5 0,07
4(*) 5,87 2,0 [1,7-2,5] - -
5(*) 5,48 0,5 [0,7-1,3] - -
6(*) 5,72 1,1 [0,9-1,3] - -

Table 8a

Category 1 2 3 4 5 6
W∗

n 220,82 107,78 138,67 102,69 1251,57 32,97
p-value <10−6 <10−6 <10−6 <10−6 <10−6 <10−6

Table 8b

The eviction rates range from 3% to 5% for categories 2 and 3, and appear stable around 1% to 2%

for housing loans. For category 1, the eviction rate is particularly law, smaller than 1% in 2004 and 2005.

Moreover, the unweigthed share of the most expensive loans (column π−−) is around 10% for consuming

loans (with a maximum of 15-20% attained for cat. 2 in 2003 and 2004).

Between 2003 and 2005, the eviction rates decrease steadily for consuming loans, as witnessed by the

confidence intervals. Despite of the low values of interest rates (levels and volatilities), the usury rate seems

to have played a role of secondary importance, probably because of the competitive interactions which took

place among lenders during the period. In other words, the distribution moves to lower values faster than the

usury rate. The constancy of p is always largely rejected by the formal test, a result which is not surprising

since the Monte-Carlo estimates have mechanically very low variances (see 50). However, the conclusions are

supported21 by a non-parametric rank test of Wilcoxon22 directly based on the Monte-Carlo distributions.

21The results are not reported here, but are available from the author upon request.
22The null hypothesis is the constancy of the p.d.f of p between 2004 and 2003 : f2 (x) = f1 (x) . Under the alternative, there

is a shift between the two densities : f2 (x) = f1 (x− δ). If δ > 0, the distribution is shifted to the right in 2004, from which it
follows that p is likely higher in 2004 than in 2003.
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Looking at market shares of consuming loans, we notice that weighted indicators (column θ−−) are

smaller than their unweigthed counterparts (column π−−) for cat. 2 and 3 : this result is in line with the

well-documented correlation between interest rates and amount of loans. However, this empirical finding

doesn’t hold for small loans : indeed, θ−− > π−− for all reference months.

At first sight, this result may seem puzzling because it is expected that small loans are primarily concerned

by the threshold defined by the usury rate. A more refined analyse based on a specific examination of the

sub-category of loans up to 500€ doesn’t support this intuition : these loans are in fact not concentrated in

the top of the distribution, except perhaps for instalment credits.

We conclude this analysis with the distribution for housing loans taken as a whole. This posterior p.d.f.

is estimated from Bayes’ rule (fk is the distribution estimated previously for category k), and plotted fig. 9.

Its expression is given by:

f (x) =
6X

k=4

P (loan ∈ cat .k) fk (x) (56)

The market share P (loan ∈ cat .k) is estimated by its empirical counterpart, using all the data available in
our master sample s, i.e, not only the dataset used for the estimation of (fk):

qk =

P
i∈cat .k PiP

i∈cat .{4,5,6} Pi
(57)

Fig. 9 : housing loans

The aggregated distribution (solid line) remains unimodal, because the distance between the ’floating rate’

curve and the ’fixed rate’ one is moderate. However, the distribution appears skewed, and its tails are rather

thick. These departures from normality confirm that interest rates spread over a wide range of values on

either side of the modal value.
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6.2.2 Loans to NFC

t Cat ru p (%) θ−− (%) π−−
7 8,72 1,4 [1,4-3,1] 5,2 0,05
8 6,49 2,4 [3,3-4,1] 15,7 22,6

2003/10 9 6,79 4,6 [4,4-5,5] 1,4 0,02
10 11,19 13,8 [13,6-19,6] 0,7 0,06
11 8,73 2,2 [1,9-2,5] 16,1 0,11
12 - - 22,8 0,27

7 8,55 11,2 [16,4-18,9] 43,8 0,39
8 6,08 4,0 [2,8-4,1] - -

2004/10 9 6,47 7,8 [7,4-8,8] - -
10 11,27 24,1 [11,6-26,0] 4,1 0,17
11 8,2 4,4 [3,6-4,7] 20,7 0,18
12 - - 21,0 0,36

7 8,99 16,6 [17,0-20,0] 26,4 0,27
8 5,52 4,5 [4,1-5,5] - -

2005/10 9 6,01 9,9 [9,1-11,8] 18,0 0,22
10 11,55 11,1 [7,3-13,3] 1,1 0,18
11 7,75 5,6 [4,4-5,8] 23,9 0,23
12 - - 11,4 0,25

Table 10a

Category 7 8 9 10 11
W∗

n 15197,15 5,90 2327,73 149,45 1574,37
p-value <10−6 0,02 <10−6 <10−6 <10−6

Table 10b

1. From table 10a, the main finding is the increase of the (pseudo) eviction rates between 2003 and 2005

across almost all categories of loans concerned by the new regulation (cat. 8,9 and 11, as well as

cat. 7 between 2003 and 2004). This pattern is confirmed by the massive rejection of the constancy

test as reported table 10b (the same conclusion holds when a Wilcoxon test is used). This result

indicates a possible normalization of the distributions, with a reallocation of loans beyond the usury

rates. However, this result tells us nothing about a possible increase in the volume of new contracts

granted by banks due to the relaxing of the usury law.

2. For leasing, the strong decrease of θ−− between 2003 and 2005 confirm the visual inspection of the

distribution : the largest mode appears less significant in the recent period, a fact in line with the

emergence of loans with high interest rates in the other categories. Otherwise, for cat. 9 and 11, θ−−

has increased strongly between 2003 and 2005, a fact which indicates that there is still many loans

with interest rates near the usury rate.
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6.2.3 Individual vs aggregated

Given the strong divergence between the number of components estimated from individual and aggregated

data, it is not surprising to observe quite different distributions for consuming loans and loans to NFC. For

instance, in oct. 2004, the aggregated distributions are unimodal for cat. 1,3 and 11, whereas the underlying

individual distribution is highly multimodal (fig. 11a). Furthermore, these aggregated distributions aren’t

distorted near the usury rate, which entails that our interpretation of the effect of the usury rate on the

distribution of interest rate is contingent upon the level of aggregation. However, we must keep in mind that

the correspondence between these distributions is rather complicated:

� Aggregated data are weighted by amount of new business and sampling weights while individual data

are only weigthed by sampling weights : therefore, the two theoretical underlying distributions have

different means and variances.

� Aggregated distributions are based upon all available data, since the initial sample s is used to calculate

interest rate at bank level. By contrast, we use independent samples drawn from s to estimate the

parameters in the Monte-Carlo step of the analysis.

Fig. 11a
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Fig. 11a (cont.)

Sometimes, the curves are very close from each other, and we can conclude that the information provided

by the aggregated data are sufficient. For instance, this appears to be the case for cat. 9 (loans at fixed

rate with duration over 2 years) in Oct. 2004 (fig. 11b, left). It is worth noting that this property is not

structural : it doesn’t extend over subsequent reference months, as we can see in Oct. 2005 (fig 11b, right) :

Fig. 11b : cat. 9 (Oct. 2004 & Oct. 2005)
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For housing loans, we expect the results to be quite close. However, the aggregation process may induce

some minor distortions, which can be observed in fig. 11c below:

Fig. 11c : cat. 4 (Oct. 2004) & cat.5 (Oct. 2005)

This analysis confirms the empirical findings reported previously in this paper: when the within banks

variance is high, individual data convey valuable information, especially for descriptive analysis purposes.

More precisely, our methodology allows us to define homogeneous categories, or, in other words, categories

for which data collection processes could remained at an aggregate level. Otherwise, the collection of indi-

vidual data is clearly a more elegant (and efficient) way of dealing with the issues of heterogeneity than the

introduction of supplementary breakdowns (per counterpart, duration, instruments) in the report.

We conclude this analysis with an overview of eviction rates measured with the aggregated distributions.

The results are reported for 2003 and 2005 in table 11d, and should be compared to the corresponding

estimates of p obtained with individual data (see tables 8a and 10a).

Category 1 2 3 4 5 6 7 8 9 10 11
pagr [2003] 1,9 1,0 0,9 0,7 0,1 1,2 0,0 1,6 1,3 13,9 7,1

pagr [2005] 0,5 4,4 1,8 2,0 0,0 0,5 3,1 1,2 4,7 11,2 13,9

Table 11d : Eviction rate (aggregated data)

We observe important divergences between the two sets of estimates, as testified by lower values of

’aggregated’ estimates. These values are in addition almost always outside the confidence interval for p

estimated from individual data. Both the amplitude of the truncation effect (when the usury law is in

force), and the reorganization of the distribution (in 2004 and 2005 for loans to NFC) are underestimated.

Moreover, pagr and p don’t evolve in the same way between 2003 and 2005. For instance, pagr increases for

cat. 2, 3 and 4, and decreases for cat. 8. Thus, the results leave no doubt that the interpretation of the

distribution of interest rate depends strongly on the level of aggregation.
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6.2.4 Heterogeneity of the reporting population

The numerous modes identified in the distributions, especially for consuming loans and loans to NFC, seem

to indicate that the market is segmented. In this section, we go one step further with an indirect discussion

of this hypothesis. To achieve this aim, the idea is to compare ex-post indicators calculated for subgroups

of banks to the results concerning to the whole population of loans. By doing this way, we wish to identify

modes associated to particular subsets of the credit institution population. Obviously, more direct methods

are already available for this kind of problem. For instance, standard regressions allows to estimate bank

effects, all things being equal, but the difficulty relies precisely on a correct specification of the explanatory

variables included in the model. By contrast, our approach is model free, and nothing else than purely

descriptive. For the sake of clarity, we consider three strata of banks, corresponding to the most simple

partition of the MIR reporting population : commercial banks (abbreviated "G"), mutual and cooperative

banks, including saving and provident institutions ("M"), and specialized financial institutions ("F"). We

first tried to use indicators (36), but the results were disappointing because figures are strongly unstable

over time. A better way to handle the problem is to content ourselves with a qualitative interpretation

of estimated ex-post distributions for each strata. The resulting curves are plotted for october 2003 and

october 2005, and for some selected categories in appendix 9.8.

For any network R ∈ {G,M,F}, the posterior p.d.f. is:

fR (x) =
MX

k=1

θR (k)ϕk (x) +
M+DX

k=M+1

θR (k) δxk (x) (58)

The relative share of each component in this mixture is estimated by:

θR (k) =

P
i∈R Pi ×P (k |xi )P

i∈R Pi
(59)

As in (31), the sums in this expression range over all loans granted by banks belonging to network "R",

while P (j |xi ) is the ex-post probability (33).

We find varying results, depending on the category of loans under investigation. As was expected,

housing loans (cat. 4,5,6) don’t show any strong discrimination between networks, although we reported

the existence or two or three underlying regimes in the distributions. This fact provides another evidence

for the homogeneity of this competitive market. For consumer loans, it is not surprising to observe very

different distributions in 2003 and 2005, since this feature showed up already for the global study. However,

a few patterns seem to be relatively stable, and hence should be emphasized. Firstly, specialized financial

institutions appear clearly in the top of the distribution, especially for loans up to 1524€ (cat. 1) and bank

overdrafts over 1524€ (cat. 2). For this category, mutual and cooperative banks seem to apply lower interest

rates than commercial banks, a result which reflects a possible specialization in terms of instrument. Lastly,

for personal loans over 1524€ (cat. 3), commercial banks and mutual banks can’t be clearly discriminated.
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Turning now to loans to NFC, we observe that specialized financial institutions seem particularly com-

petitive for loans with duration up to 2 years. It seems also that for this category, commercial banks offer

lower interest rates than mutual banks.

For loans with duration over two years at floating rate (cat. 8), the curves are very close : the three

networks operate on the submarkets identified by the modes. For loans over 2 years at fixed rate (cat. 8),

we observe that generalist banks appear mostly in the top of the distribution in 2005, and to a lesser extent

in 2003.

These results are still preliminary, and a careful checking of their robustness should be undertaken.

However, it seems that, with the exception of specialized financial institutions for some specific categories,

the heterogeneity in the distributions is more related to the instruments included in the categories than to

the banking population, at least when we consider a rather crude partition of this population.

7 Concluding remarks

This paper shows how individual informations permit to precise diagnosis based on aggregated data, in

particular by allowing the treatment of specific issues dealing with heterogeneity. The work elaborates on

finite mixtures distributions which appear to provide a fairly good description of distributions of effective

interest rates, despite all the difficulties encountered when practically implementing the method. Now, this

work could be pursued along three directions:

At first, the methodology provides as a by-product a typology of loans through the definition of sta-

tistical homogeneous groups (in terms of interest rate) defined from the regimes or modes identified in the

distribution. In a second step, it would be interesting to analyse more precisely the loans belonging to a

given group, for instance by taking into account additional variables on the supply side (characteristics of

the bank such as balance sheet data, qualitative information provided by the Bank Lending Survey), and on

the customer side : income (for households), size, sector, risk indicator (for NFC).

Secondly, since the comparison between individual and aggregated data sometimes display important

discrepancies, we intend to build new aggregated indicators in the spirit of price index methodology. Indeed,

summarizing the distribution of interest rates by a single indicator is a difficult task, and moreover, different

weighting schemes may provide different interpretations for short term analysis. Estimation of an "interest

rate index" means estimating in a first step structural effects deriving from usual determinants of interest

rates at the micro level. Then in a second step aggregating these structural effects with constant weights, or

weights from the previous quarter. This methodology could enable us to disentangle structural effects driven

by the weighting process and short term effects driven by the ’price’ component which are the primary concern

of short term analysis. From an econometric standpoint, we could allow for flexibility for the estimation of

structural effects at the individual level through a semi-linear specification.
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Lastly, more work is to be done about the robustness of the estimations. Our results indicate a lack of

persistence in the shape of the distributions from one quarter to another. The tentative explanation given

in this paper relies on the heterogeneity of the categories and/or of the banking system. But this instability

could also be linked to some weakness in the estimation procedure. For this reason, we should increase the

time-series dimension of the exercise, and more importantly, seek for more robust estimators and alternative

numerical optimization schemes, such as simulated annealing methods.
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9 Appendix

9.1 Normality tests

We first sketch how to obtain the limit law of the test statistics. Since F is continuous, the change of

variables u = F (x) yields: 



KSn =
√
n× sup

0≤u≤1

¯̄
¯ bFN

¡
F−1 (u)

¢
− u

¯̄
¯

ADn = n
R 1
0

{Fn(F−1(u))−u}2

u(1−u) du

Fn (u) = bFn
¡
F−1 (u)

¢
is the empirical distribution function of the sample obtained from the Uk =

F (Xk) . Under the null hypothesis (truncated normal law for Xk), the Uk follow the uniform law with

support on (0, 1), and we obtain the convergence in distribution in the functional space D [0, 1] (Billingsley

(1968)):
√
n×

©
Fn (u)− u

ª
=⇒

N→+∞
B0 (u) (60)

B0 is the Brownian bridge on [0, 1] . The continuous mapping theorem yields the asymptotic laws of KSN

and ADN : 



KSn =⇒
n→+∞

sup
t∈[0,1]

|B0 (t)|

ADn =⇒
n→+∞

R 1
0

B2
0(t)

t{1−t}dt
(61)

The parameters
¡
m,σ2

¢
being unknown, they are estimated by maximum likelihood. The empirical

distribution function F (x) is then replaced by eFn (x) in (8) and (7):

eFn (x) = Φ
µ
x− bm
bσ

¶Á
Φ

µ
ru − bm
bσ

¶
if x ≤ ru (62)

We then get the feasible statistics dKSn and dADn. Under the null hypothesis, their asymptotic laws are not

given by (61); they depend in a complex way of m and σ2. We then use a bootstrap experiment in order

to estimate the quantiles of this law. However, the classical approach (sampling with replacement in the

empirical law Pn of (Xk)1≤k≤n) can’t be used directly in our context (Babu and Rao (2004)). More precisely,

let (X∗k) be a n-sample i.i.d drawn from Pn, bF ∗n (x) its empirical distribution and eF ∗ (x) the distribution
function obtained with bm∗ and bσ∗ estimated from the (X∗k) . It can be shown that

√
N
n
bF ∗n (x)− eF ∗ (x)

o

is a biased estimator of
√
n
n
bFn (x)− eF (x)

o
, the bias being OP (1) . Instead of trying to correct the bias,

we proceed with the parametric version of the bootstrap which leads to the correct asymptotic distributions

(Babu and Rao (2004), Romano (1988)). The basic principle is to draw the sample (X∗k) from the law

N

³
bm, bσ2 |−∞, ru

´
. The replication of this step through a Monte-Carlo experiment allows in a final step

the estimation of the wanted distributions. The whole process can be summarized as follows:

1. Draw B (=2000) simulated independent samples23of size n in the law N
³
bm, bσ2 |−∞, ru

´

23One obtains these samples from the simple device: X∗ = m+ σΦ−1 UΦ ru−m
σ

with U Ã U (0, 1) .
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2. For each sample b = 1, . . . , B, estimate by maximum likelihood bm∗b and bσ∗2b , then calculate according

to (62), (7) and (8), dKS
∗
n,b and dAD

∗
n,b with bFn replaced by bF ∗n,b, empirical distribution of the sample

b, and F replaced by eF ∗n,b:

eF ∗n,b (x) = Φ
µ
x− bm∗b
bσ∗b

¶Á
Φ

µ
ru − bm∗b
bσ∗b

¶
(63)

3. From the set of B points obtained, calculate the empirical quantiles.

It is advisable to consider one supplementary test of the Anderson-Darling type, designed for a weaker

hypothesis : testing for normality by restricting ourselves to the upper side of the distribution. For the

modified A-D statistic, we obtain similarly:

ADn = n

Z 1

F (θ)

©
Fn (u)− u

ª2

1− u
du (64)

The limit law for (64) is now:

ADn =⇒
n→+∞

Z 1

F (θ)

B2
0 (t)

1− t
dt (65)

Clearly, the limit law is now depending on the category of loans. Next, we define dADN in the same way

as before, and use the parametric bootstrap analysis along the same lines as explained above.

ADn and ADn are calculated from the order statistics U(k) = F
¡
X(k)

¢
, with the convention at end-points

given by U(0) = 0 and U(n+1) = 1. Then, we remark that for any function Ψ (·, ·):

Z 1

0

Ψ
n
bFn
¡
F−1 (u)

¢
, u
o
du =

nX

k=0

Z U(k+1)

U(k)

Ψ
n
bFn
¡
F−1 (u)

¢
, u
o
du =

nX

k=0

Z U(k+1)

U(k)

Ψ

½
k

n
, u

¾
du

� With Ψ (x, u) = (x−u)2
u(1−u) , we obtain after integration the text-book expression:

ADn = −n−
1

n

nX

k=1

(2k − 1) log
£
U(k)

¤
− 1

n

nX

k=1

(2k − 1) log
£
1− U(n−k+1)

¤
(66)

� With Ψ (x, u) = (x−u)2
1−u , we obtain after some tedious manipulations (k0 = [nF (θ)] + 1) :

ADn = n×
n
1
2 +

¡
k0
n − 1

¢2
log [1− F (θ)] + F 2(θ)

2 −
¡
2k0
n − 1

¢
F (θ)

o

− 1
n

Pn−k0
k=1

©
(2k − 1) log

£
1− U(n−k+1)

¤
− 2U(n−k+1)

ª (67)
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9.2 The E-M algorithm

The density of a variable X which follows a mixture model is written as:

f (x |θ ) =
MX

k=1

πkϕk (x;θk)

θk =
¡
mk,σ

2
k

¢
is the parameter pertaining to the kth normal law of the mixture. Let θ be the vector of

all parameters, including the θk and the πk.

Classically, we introduce the state vector (Y1, . . . , YN ) such that:

Yi = k ∈ {1, . . . ,M} if individual i arises from component k

Clearly, P (Y = k) = πk for all k = 1, . . . ,M. Obviously, the Yi are unobservable, but we may write the

joined law of X and Y :

f (x, y |θ ) = f (x |y,θ ) f (y)

The likelihood of the variables (Xi, Yi)1≤i≤n is:

f (X,Y |θ ) =
nY

i=1

f (Xi |Yi,θ )πYi (68)

Moreover:

f (Y |X,θ ) =
nY

i=1

f (Yi |Xi,θ )

=
nY

i=1

πYif(Xi|Yi,θ )

f(Xi|θ )

(69)

and:

f (Xi |θ ) =
MX

k=1

πkf (Xi |Yi = k,θ )

We suppose that a preliminary estimate of θ, θ(1) is available. The basic idea is to improve the estimate by

considering the criterion:

Q (θ) = Eθ(1) {log f (X,Y |θ ) |X } (70)

The calculus of this criterion is the "E" step of the algorithm. It enables us to replace the unknown quantities

Y by their theoretical mean; (70) can be written as:

Q (θ) =

Z
log f (X, y |θ ) f

³
y
¯̄
¯X,θ(1)

´
dy

We use (68) to calculate log f (X, y |θ ) and (69) for the second term. We then get, with δl,yi = 1 and yi = l,

zero otherwise:

Q (θ) =

Ã
MX

y1=1

. . .
MX

yN=1

!Ã
nX

i=1

MX

l=1

!
δl,yi log {πl × f (Xi |yi = l,θ )}

nY

j=1

f
³
yj

¯̄
¯Xj ,θ

(1)
´
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Q (θ) =

Ã
nX

i=1

MX

l=1

!
log {πl × f (Xi |yi = l,θ )}

Ã
MX

y1=1

. . .
MX

yN=1

!
δl,yi

nY

j=1

f
³
yj

¯̄
¯Xj ,θ

(1)
´

We observe now that:

Ã
MX

y1=1

. . .
MX

yN=1

!
δl,yi

nY

j=1

f
³
yj

¯̄
¯Xj ,θ

(1)
´
=








MX

y1=1

. . .
MX

yN=1

k 6=i



Y

j 6=i

f
³
yj

¯̄
¯Xj ,θ

(1)
´



× f

³
yl

¯̄
¯Xi,θ

(1)
´

The expression between brackets reads as follows:




Y

j 6=i




MX

yj=1

f
³
yj

¯̄
¯Xj ,θ

(1)
´




× f

³
yl

¯̄
¯Xi,θ

(1)
´
= f

³
yl

¯̄
¯Xi,θ

(1)
´

Finally,

Q (θ) =

Ã
nX

i=1

MX

l=1

!
log {πl × f (Xi |yi = l,θ )} f

³
yl

¯̄
¯Xi,θ

(1)
´

and the we get the more tractable expression:

Q (θ) =
³Pn

i=1

PM
l=1

´
log (πl) f

³
yl

¯̄
¯Xi,θ

(1)
´

+
³Pn

i=1

PM
l=1

´
log {f (Xi |yi = l,θ )} f

³
yl

¯̄
¯Xi,θ

(1)
´ (71)

In this expression, f (Xi |yi = l,θ ) = ϕl (Xi;θl) and for all couple (l, i):

f
³
yl

¯̄
¯Xi,θ

(1)
´
=

π
(1)
l f

³
Xi

¯̄
¯yi = l,θ(1)

´

f
³
Xi

¯̄
¯θ(1)

´ =
π
(1)
l f

³
Xi

¯̄
¯yi = l,θ(1)

´

PM
k=1 π

(1)
k f

³
Xi

¯̄
¯yi = k,θ(1)

´

Since Q (θ) is perfectly calculable from the data, we define the updated parameter according to:

θ(2) = argmaxQ (θ) (72)

(72) is the "M" step of the algorithm. It is particularly simple when the laws composing the mixture are

Gaussian. Then, the updating relations become:

π
(2)
k =

1

N

NX

i=1

f
³
yk

¯̄
¯Xi,θ

(1)
´

m
(2)
k =

PN
i=1Xif

³
yk

¯̄
¯Xi,θ

(1)
´

PN
i=1 f

³
yk

¯̄
¯Xi,θ

(1)
´

σ
2(2)
k =

PN
i=1

³
Xi −m

(1)
k

´2
× f

³
yk

¯̄
¯Xi,θ

(1)
´

PN
i=1 f

³
yk

¯̄
¯Xi,θ

(1)
´
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Now, we briefly consider the typical case when sampling weights Pi are attached to each observation i. In

such case, each observation must be duplicated how many times as indicated by Pi.Then, it is easily seen

that the updating equations are only slighted modified according to:

π
(2)
k =

1

N

NX

i=1

Pif
³
yk

¯̄
¯Xi,θ

(1)
´

m
(2)
k =

PN
i=1 PiXif

³
yk

¯̄
¯Xi,θ

(1)
´

PN
i=1 Pif

³
yk

¯̄
¯Xi,θ

(1)
´

σ
2(2)
k =

PN
i=1 Pi

³
Xi −m

(1)
k

´2
× f

³
yk

¯̄
¯Xi,θ

(1)
´

PN
i=1 Pif

³
yk

¯̄
¯Xi,θ

(1)
´

9.3 Estimation through subsampling analysis

Subsampling techniques are valid in a very general context, especially when the observations at hand,

(X1, . . . ,Xn) can be supposed to be independent and equidistributed. Indeed, the only requirement is

that the statistical problem under investigation leads to a convergence in distribution such as:

nH (θn − θ) =⇒
n→+∞

X (73)

θ is some unknown parameter, θn = θn (X1, . . . ,Xn) is a statistic function of the observations, and H

describes the speed of convergence towards the limit law X. Generally, H is known, but in some cases H

depends on some structural unknown parameters (e.g. long memory models). The method can be adapted

so that it allows the estimation of both H and θ.

The standard maximum likelihood estimator fulfills obviously this very weak hypothesis, with H = 1/2 .

But this is also the case for the test statistics used in the paper. For instance, the test (18) may be written

as:
LRn (M|M+ 1) = −2 {Ln (M)− Ln (MM+ 1)}

= −2n
n
Ln(M)

n − Ln(M+1)
n

o

≡ nθn

(74)

Here θn = 2
n
Ln(M+1)

n − Ln(M)
n

o
H = 1 and θ = 0. The probability limit of θn is given by the Kullback

contrast:

θn → −2× EM+1

µ
log

f (x;θM)

f (x;θM+1)

¶
(75)

This limit is always ≥ 0 and zero when f (x;θM) = f (x;θM+1) a.e. for the measure f (x;θM+1), that

is when the null hypothesis H0 is satisfied (θ = 0). Conversely, under Ha, θ > 0, and θ is omitted from

expression (74) because the statistic must diverge under the alternative.

The statistics used in section 3.2 can be handled in the same way. For instance:

ADn = n
R ru
−∞

{Fn(x)−F (x)}2

F (x){1−F (x)} dF (x)
≡ nθn

(76)
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Under the null hypothesis, θn −→ 0, whereas under the alternative (we note Fa the c.d.f. of the Xk):

θn −→ θ ≡
Z ru

−∞

{Fa (x)− F (x)}2

F (x) {1− F (x)}
dF (x) > 0

The basic idea of subsampling methodology is to draw with replacement B independent samples of size

m from (X1, . . . ,Xn) . Then, the test statistics of interest are calculated for all the subsamples : we obtain

θn,m,b for b = 1, . . . , B. Suppose now that θn is the Maximum Likelihood estimator of parameter θ. We

approximate the c.d.f FX of X by its empirical counterpart obtained from the B subsamples:

bFn,X (x) =
1

B

BX

b=1

1
©
mH (θn,m,b − θn) ≤ x

ª

It can be shown (theorem 2.2.1 from Politis and alii (1999)) that, if 1
B +

1
m + m

n −→ 0 when n → +∞
and if FX is continuous, then:

sup
x

¯̄
¯ bFn,X (x)− FX (x)

¯̄
¯ P−→
n→+∞

0

We turn now to the case when θn is a test statistic, as in (74) or (76). Since we work under the null

hypothesis, θ = 0 and we approximate the c.d.f FX of X with:

bFn,X (x) =
1

B

BX

b=1

1
©
mHθn,m,b ≤ x

ª

Under H0 and the same set of hypothesis as before, sup
x

¯̄
¯ bFn,X (x)− FX (x)

¯̄
¯ P−→
n→+∞

0 (theorem 2.6.1 from

Politis and alii (1999)).

Finally, let Xn,1−α be the quantile of order 1− α from the (empirical) law bFn,X . Politis and alii (1999)
have shown that: "

Under H0 : P (nθn > Xn,1−α) −→
n→+∞

α

Under Ha : P (nθn > Xn,1−α) −→
n→+∞

1

These properties say : 1) that the asymptotic test associated to θn and based on the "subsampling"

quantiles Xn,1−α has the correct nominal size α, and 2) that the test is consistent.

9.4 Estimation of the asymptotic variance

For the ease of exposition, we consider only the case of a scalar parameter. The estimator is:

bσ2θ =
n

H

HX

h=1

µ
bθ(h) − bθmc

¶2

with:

bθmc
=
1

H

HX

h=1

bθ(h)

and
√
n

µ
bθ(h) − θ

¶
=⇒ Yh
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with

Yh Ã σθN (0, 1)

For H fixed and n→ +∞, and thanks to the joined convergence of the bθ(h) which is a direct consequence
of the independency of these variables, we get the following convergences:

bσ2θ = 1
H

PH
h=1 n

µ
bθ(h) − θ

¶2
+ n

³
bθmc − θ

´2
− 1

H ×
√
n
³
bθmc − θ

´
×
PH

h=1

√
n

µ
bθ(h) − θ

¶

bσ2θ =⇒ 1
H

PH
h=1 σ

2
θY

2
h +

σ2θ
H

³PH
h=1 Yh

´2
− σ2θ

H

n
1
H

PH
h=1 Yh

o
×
nPH

h=1 Yh

o

=⇒ σ2θ ×

½
1
H

PH
h=1 Y

2
h −

³
1
H

PH
h=1 Yh

´2¾

Now, since the Yh are iid N (0, 1), when H → +∞, we have:

1

H

HX

h=1

Y 2h −
Ã
1

H

HX

h=1

Yh

!2
⇒ 1

Thus,

bσ2θ =⇒ σ2θ in sequential limit when (n,H → +∞)seq

9.5 Estimated parameters

Note :

The estimators are all pertaining to the continuous part of the distribution.

TETA_E, TETA_S : Monte-Carlo estimate of mk and its standard error.

PI_E, PI_S : Monte-Carlo estimate of πk and its standard error.

SIG2_E, SIG2_S : Monte-Carlo estimate of σ2k and its standars error.
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Oclober 2003

Oclober 2003

cat Regime

Consumer Rl
<1524C

R2

R3

R4

R5

R6

Bk over. > Rl
1524C

R2

R3

R4

R5

R6

R7

Personal R1
> 1524C

R2

R3

R4

R5

R6

TETA E TETA S PI E PI S

2.7995 0.0223 0.0678 0.0007

6.6853 0.0132 0.1198 0.m09

12.6625 0.0096 0.4064 0.0018

11.9217 0.0096 0.2271 0.00ts

16.9756 0.019 0.12â! 0.00,06

19.85æ 0.0173 0.0567 0.0002

,1.5863 0.0146 0.2342 0.mil4

6.5662 0.0177 0.152 0.0016

8.7631 0.0164 0.2694 0.m22

11.5f16 0.01,16 0.1013 0.0008

rs.8538 0.æ90 0.0985 0.0006

15.5839 0.01(x 0.0æ o.mu

17.8038 0.0134t 0.0768 0.æ06

2.8712 0.0215 0.10&1 0.0012

5.7399 0.0060 0.2819 0.0031

6.6663 0.0098 0.æ00 0.0023

7.0816 0.0122 0.?'2il 0.æ15

9.5598 0.0070 0.1491 0.0010

$.11a) 0.0291 0.0343 0.0003

stc2 E StGz S

2.63/,2 0.026,f

2.3112 0.0233

2.8968 0.0167

0.1255 0.0659

0.t802 0.0165

0.5696 0.0686

0.,11æ 0.0121

0.3214 0.0095

1.3811 0.0191

0.4639 0.ù211

0.93,f5 0.0159

0.0014 0.0037

0.,f951 0.m,t3

0.3249 0.097

2.2923 0.025

0.1988 0.1187

0.2538 0.0126

0.3030 0.01il

0.0m4 0.3197

TETA-E TETA-S PI-E PI-S SIG2-E SIG2-S

cat Regime

Housing, Rl 0.756,{ 0.0l,f8 0.otf2 0.m05 0.1536 0.0686
fix. rate

R2 1.îl2S 0.0m1 0.9458 0.æ05 o.oil$ 0.0000

Housing, Rt 3.,{596 0.0034 0.1770 0.(m0 0.0157 0.0013
var. rato

R2 4.5631 0.095 0.7323 0.0028 0.3601 0.0018

R3 6.2359 0.020,f 0.0907 0.m08 1.5196 0.0133

Housing, Ri 1.1c23 0.0018 0.Ogl3 0.0008 0.qX3 0.0q)4
brid.

R2 1.5681 0.0001 0.9087 0.m08 0.0211 0.0000

October 2003

Oclober 2003

TETA E TETA S PI E PI S SIG2 E SIG2 S

cat Regime

NFC, Rl 3.6dr2
instal.

R2 3.6738

R3 ,f.0586

R4 1.86;t2

R5 6.3984

R6 7.96&l

R7 8.6€Xl5

NFC,Bk Rl o.Tt26
ovgr.

R2 2.8053

R3 5.2203

R4 8.7395

R5 10.7221

R6 12.2753

R7 11.2878

NFC, Rl 1.7321
leasinq- 

R2 1.8460

R3 2.2776

R4 2.518E

0.0012 0.18æ 0.qn4 0.1tEl 0.0005

0.0æ2 0.1632 o.flXx 0.q)û2 0.0qx

0.0&tl 0.0851 0.fln4 0.û22 0.0002

0.0033 0.1706 0.(m3 0.0130 0.0(xx

0.0031 0.1243 0.(m3 0.2626 0.0016

0.0017 0.2154 o.(xxx 0.3038 0.0011

0.0001 0.0589 0.0002 0.00û2 0.0m0

0.0117 0.(E5,1 0.m06 0.00æ 0.0130

0.0195 0.0608 0.mO6 0.ll&l 0.0æ,f

0.0237 0.2112 0.@20 0.n$ 0.0123

0-0140 0.,f065 0.(Xl2.f 1.5139 0.0169

0.007,{ 0.125i} 0.0015 0.0æ1 0.æ87

0.0088 0.0697 0.0003 o.(Xlt 0.0037

0.mæ 0.0712 0.00qt 0.3702 0.009)

0.0m4 0.0656 0.0002 0.0008 0.0001

0.0(xx 0.5607 0.00fi 0.08fi 0.0002

0.0,005 0.2359 0.0010 0.0060 0.0003

0.0013 0.1378 0.(m6 0.991 0.0003

TETA-E TETA-S PI-E PI-S SIG2-E SIG2-S

càt Regime

NFC.> 2 R1 1.7132 0.0185 0.2925 0.æf0 0.0775 0.0115
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R3 5.5981 0.0074 0.1634 0.0018 0.0&f1 0.0û20
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ifixeq R2 3.8618 0.0032 0.fi195 0'æo3 0.0000 0.0(XX
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yêars 

R2 3.6076 0.0006 0.4472 o.'ois o.32ss o.oo13

R3 ,1.7æ9 0.00,f7 0.1826 0.0018 0.07,f0 0.0il3

R4 6.5596 0.0078 0.'1117 0.æ05 5.27?a 0.0112

R5 8.1118 0.0086 0.1133 0.(m4 0.2755 0.0177
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October 20@

October 2004

Regime

TETA E TETA S PI E PI S SIG2 E SIGz S

1.2245 0.0173 0.0370 0.m07 0.0384 0.0139

.f.6300 0.0125 0.l0tg 0.(XX}t 0.682.f 0.0OGl

724230 0.0170 0.0812 0.0005 0.,t323 0.0070
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9.1187 0.0û27 0.€55 0.m01 0.0008 0.0030

Consumer Rl
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R2

R3

R4

R5

R6

R7
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Bk over. > Rl
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R2

R3

R4

R5

R6

R7
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R2

R3

R4

R5

R6
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October 2004
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TETA Ë TETA S PI E PI S SIG2 E SIG2 S

cat Regime
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R3 1.6,f83 0.0014 0.279a 0.m38 0.ûZI 0.m02
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NFC,< 2 Rl 0.9282 0.0032 0.æ72 0.(m7 0.V217 0.0058
years 
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R5 zûæ6 0.0005 0.1879 o.qXX 0.0012 0.0005
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Oclober 2005

October 2005

Oclober 2fl)5

Regime

TETA E TETA S PI E PI S SIG2 E SIG2 S
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6.6æ9 0.0098 0.3071 0.m43 0.8599 0.1115

8.0961 0.0014 0.0886 o.(xXX 0.0371 0.0m4

8.,f433 0.01/00 0.06,{6 0.0003 0.000'l O.Of}27

Consumer Rl
<15248

R2

R3

R4

R5

R6

R7

Bk over. > Rl
152Æ.

R2

R3

R4

R5

R6

R7

Personal Rl
> 152æ.

R2

R3

R4

R5

R6

TETA-E TETA-S PI-E PI-S SIG2-E SIG2-S

cat Reglme

Housing, Rl 1.V212 0.0110 0.0734 0.m16 0.1325 0.0055
fix. rate

R2 1.1328 0.0002 0.9i266 0.0016 0.0264 0.0001

Housing, Rl 1.lga6 0.00a0 0.,t167 0.m89 0.0237 0.0æ2
var. rate

R2 r.3951 0.0013 0.5833 0.æ89 0.0173 0.0002

Housing, Rl 2.7282 0.0107 0.O57,t O.ÛXX 0.æ00 0.0002
brid.

R2 1.0112 0.0008 0.9.126 0.(XXN 0.5691 0.0æ9

Oclober 2005

TETA E TETA S PI E PI S SIG2 E SIG2 S

cat Regime

NFC, Rl 3.662 0.0002 0.36æ 0.qD4 0.0251 0.0000
instal.

R2 1.7331 0.m67 0.1204 0.0012 0.1078 0.0114

R3 7.2Æe 0.0044 0.1689 0.0011 0.5146 0.0120

R4 8.2,.11 0.0il8 0.08s5 0.0014 0.m00 0.0782

R5 8.68t1 0.01,f0 0.1125 0.æ10 7.0308 0.0933

RO S.4400 0.02,f2 0.1387 0.0008 0.23,16 0.0465

NFC,Bk Ri ,f.3599 0.0065 0.1808 0.0012 0.63,f6 0.0æ8
over.

R2 7.5902 0.001 1 0.1351 0.dI22 0.0099 0.0037

R3 8.9571 0.0165 0.5288 0.0039 1.472 0.O5i22

R4 11.16æ 0.Ur72 0.1338 0.0021 0.4239 0.0308

RS 15.$æ 0.0170 0.0216 0.m02 0.,f981 0.0104

NFC, Rl r.sr68 0.0065 0.5255 0.0@1 0.0525 0.0034
leasino- 

R2 2.0883 0.0013 0.1SU 0.001,1 O.W2 0.0002

R3 2.1ft1 0.0010 0.2813 0.æ12 0.05ût 0.0002

TETA E TETA S PI E PI S SIG2 E SIG2 S

cat Regime

NFC,> 2 Rl 1.0879 0.0(}28 0.0905 o.(xxl 0.0007 0.0002

[iJi R2 1.H1 o.oot6 o.æ43 0.æ1e o.ooo4 o.ooo2

R3 1.3795 0.0@7 0.7087 0.(xxt6 0.(x51 0.0033

R4 1.5950 0.0068 0.æd] 0.0027 0.0015 0.0034

R5 2.431 0.0075 0.0102 0.(m1 0.0617 0.0122

NFC,> 2 Rl 1.192 0.0011 0.6569 0.0ù29 0.0628 0.0G13
Years
ifixea) R2 l.65fs 0.0me 0.1420 0.0023 0.0008 0.00:l'l

R3 1.7fi2 0.0003 0.æll 0.0012 0.0013 0.0000

NFC,< 2 Rl 3.Xt75 0.0015 0.5362 0.m10 0.A88 0.0010
years 

R2 ,f.1662 o.ooo5 0.0897 0.æ07 o.'oag '.oooi

R3 .1.9086 0.093 0.1078 0.0011 0.3112 0.0123

R4 6.7dr2 0.0æ2 0.1324 0.0008 6.1719 0.0641

R5 7.912 0.0076 0.1319 0.0007 0.0849 0.0799
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9.6 Estimated distributions : households

Fig. 9. Category 1
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Fig. 10. Category 2
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Fig. 11. Category 3
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Fig. 12. Category 4
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Fig. 13. Category 5
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Fig. 14. Category 6
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9.7 Estimated distributions : firms

Fig. 15. Category 7
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Fig. 16. Category 8
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Fig. 17. Category 9

64



Fig. 18. Category 10
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Fig. 19. Category 11
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Fig. 20. Category 12
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Fig. 21. Category 13
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9.8 Distributions per network

9.8.1 Consuming loans

Cat. 1 : 2003 Cat. 1 : 2005

Cat. 2 : 2003 Cat. 2 : 2005

Cat. 3 : 2003 Cat. 3 : 2005
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9.8.2 Housing loans

Cat. 4 : 2003 Cat. 4 : 2005

Cat. 5 : 2003 Cat. 5 : 2005
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9.8.3 Loans to NFC

Cat. 8 : 2003 Cat. 8 : 2005

Cat. 9 : 2003 Cat. 9 : 2005

Cat. 11 : 2003 Cat. 11 : 2005
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9.9 Structural parameters : alternative methods

For the method labelled "LRT+subsampling", the number of regimes is determined on the basis of the

distribution of the likelihood ratio test, obtained from subsampling analysis. For the method labelled "BIC",

the model is chosen among the 5 competitive models according to the usual BIC criterion. For both methods,

the final choice, between model in level vs model in log is achieved through the BIC criterion.

Category 2003 2004
λ M λ M

1 N 3 N 5
2 N 5 N 5
3 N 3 N 2
4 L 2 N 3

5 N 3 L 2

6 L 2 N 3

7 N 5 N 5
8 N 4 N 4

9 N 3 N 4
10 N 2 N 4
11 N 5 N 5

12 L 3 L 3

13 N 5 N 5

Category 2003 2004
λ M λ M

1 N 3 N 5
2 N 4 N 5
3 N 2 N 4
4 L 2 N 2
5 L 1 L 2

6 L 2 N 2

7 N 5 N 5
8 N 3 N 2
9 N 3 N 2

10 N 4 N 4
11 N 5 N 5

12 N 3 L 3

13 N 4 N 4

Method : LRT+subsampling Method : BIC
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