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Abstract

In this paper we present a method to assess the significance of the
correlation coefficient when at least one of the variables is spatially au-
tocorrelated. The standard test assumes independence of the samples.
If the data are smooth, the assumption does not hold and as a result
we reject in many cases where there is no effect (the precision of the
null distribution used by standard tests is over-estimated). We propose
a method that recovers the null distribution taking into account the
autocorrelation; it is based on Monte-Carlo methods, and focuses on
permuting, and then smoothing and scaling one of the variables so that
we destroy the correlation with the other variable while at the same
time maintaining the initial autocorrelation. This research has been
motivated by a project in biodiversity and conservation in the Biology
Department at Stanford University.

Keywords: Geostatistics; Monte-Carlo methods; Resampling; Spatial
autocorrelation; Spatial statistics; Variogram.

1 Motivation

Assessing whether the correlation coefficient is significant is not straightfor-
ward when the values of the variables involved vary smoothly with location.
Under the presence of spatial autocorrelation, classical tests based on Stu-
dent’s t (Fisher (1915)) tend to produce incorrect and exaggerated results.
Some work has been done, particularly in the field of geostatistics. For
example, Clifford et al. (1989) propose a method that estimates an effec-
tive (much reduced) sample size. Spatial autocorrelation implies that two



close-by locations have similar values, one of them not giving much new
information, and thus the variability of the sample is smaller than if the
sample was independent of the same size. To take this into account, the
correlation coefficient is compared to a Student’s t distribution with larger
variance (fewer degrees of freedom) which accounts for the loss of precision
due to the (spatial) dependence of the observations. The method however
is developed for Gaussian random fields, but not for general distributions,
and in reality smoothed processes tend to be non-Gaussian.

In addition to that, existing methodology focuses on global correlation
coefficients. With a good simulation model, it is possible to examine the
null distribution of a larger variety of statistics. For instance, this project
started because our coauthors were looking at local correlations produced
by Geographically Weighted Regression (GWR) methods. GWR is a set of
regression techniques that deal with spatially varying relationships. The
book Fotheringham et al. (2002) has captured considerable attention in
the geostatistics community. However, they do not provide tests for as-
sessing significance of the regressors in the model, and focus on comparing
coefficients for different spatial areas, identifying the relationships that are
stronger, but with no assessment to whether they are significant or not.

In this paper we propose a method to obtain global, as well as local
p-values for the correlation coefficient, that takes into account the spatial
autocorrelation. In the previous example, it returns a map of p-values for
the local correlations provided with GWR (or any other). Our approach
uses Monte-Carlo methods to recover the null distribution. It permutes
the values of X, one of the two variables, across space. This destroys the
correlation with the other variable Y, as well as its spatial autocorrelation.
The latter is recovered by smoothing and scaling the permuted variable in
a way that approximately recovers the variogram of the original variable X.
By repeating this process many times, we obtain approximate realizations
of the null distribution of interest.

The rest of the paper is organized as follows. In section 2 we intro-
duce the problem through a real example and analyze the limitations of the
standard test. Section 3 describes the alternative method proposed by this
paper, and Section 4 gives some evidence on the performance of the method
and compares it with the approach in Clifford et al. (1989).



2 Introduction of the problem

Protecting remote ecosystems is the future of global diversity. Our collab-
orators in this project mapped the locations of sites over the world using
two criteria: quantity of species richness (biodiversity) and travel time to
reach the nearest city (remoteness), see McCauley et al. (2012) and Figure 1,
where the smoothed nature of both variables is obvious. An important ques-
tion that arises from the mapping is whether remoteness and biodiversity are
correlated with one another; i.e. are there more species in remote areas that
are better insulated from human disturbance? To succinctly communicate
the strength of these correlations, the authors are interested in reporting a p-
value map for the areas where overlap between remoteness and biodiversity
occurs.

We will use this example to illustrate our methodology, but for simplicity
will focus on the american region of the world. Biodiversity (X) is the
number of different species in an area of size 100 x 100 km and centered at
location s. The variable X is the result of estimating the number of species
of plants, amphibians, birds and mammals in the area. Each of the 4 counts
is normalized to a maximum score of 10, with X being the average of those 4
normalized counts. Remoteness (Y') takes values between 1—8 and indicates
the travel time in days needed to reach the nearest city larger than 50,000
inhabitants from location s, where 8 represents any travel time larger than
7 days. Our sample is denoted by (X, Ys,),. .., (Xsy, Ysn), 8= (S1...5N),
where s; € R? are the longitude and latitude coordmates of observation ¢
and N = 19,926.

Figure 2 plots the local correlations between Xy and Yg, using a gaussian
kernel truncated at the bandwidth A = 5.281. The local correlation at
location s is calculated as follows:

o s, <n Ws; (X, — Xs) (Vs = Ys) "
BRAC _
\/ZHS syllon Wa; (Xay = K)oy cn ws; (Y, = ¥a)?
Z S Zws

where X = ng _S nd Yy = ng “3. As we describe in detail in Section

3.1, the R package locfit fits a local constant regression at each location
s using kernel weights (see expression (4), where in this case we use the
fix bandwidth A). We compute (1) by breaking it down and separately
evaluating the quantities ) ws, X, Y ws, Ys,, D ws, X, Y, Y ws; stj and
> ws; YSQJ using locfit. Note the we have not used GWR to calculate local
correlations; the results are very similar, but locfit is much more efficient.
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Figure 1: Variables biodiversity and gemoteness (only areas where remote-
ness exceeds 1 day are considered, areas with no data are indicated in grey).
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Figure 2: Local correlations between biodiversity and remoteness at loca-
tions s1, ..., SN using a gaussian kernel with bandwidth A = 5.281.



Assessing whether (and which) these correlations are significant, is the
aim of this paper. The variogram is a useful tool to visualize the spatial
autocorrelation of a process. It represents how the values of a variable
X vary among different locations, and it is defined as the variance of the
difference of X at two given locations s; and s;; v(u) = §Var[X,, — X,,],
where u = ||s; — sj||. In practice, we observe the empirical variogram, the
collection of pairs of distances u;; = ||s; — s;|| between s; and s;, and their
corresponding variogram ordinates v;; = %(X s — Xs j)2.

The empirical variogram for biodiversity is plotted in Figure 3. The
smoothed variogram # is an estimate for v and is plotted in red in Figure 3
[in Section 3.1 we define more formally v and 4]. At small distances, the
variance among the values of X, is small, indicating that the autocorrelation
of locations close-by is high. As the distance increases, the correlation fades
away (variance increases), which shows that locations sufficiently far apart
are more independent.

Empirical and smoothed variogram for biodiversity

15 2.0 25 3.0
|

log(semivariance)

1.0

o 4
N
.
o -
o -
—O‘A

Distance

Figure 3: Empirical and smoothed variogram (in red) for biodiversity in a
logarithmic scale.



2.1 The standard test and its limitations

If (x1,41),- -, (zN,yn) is an independent and normally distributed sample,
the null distribution for the Pearson’s correlation coeflicient is

(112"
r) = , ri| <1 2
PO =gty IS e
1
A test for p = 0 is based on the statistic t = %, which follows a
1—r?4)2

Student’s t distribution with NV — 2 degrees of freedom.

Variables biodiversity and remoteness are both spatially autocorrelated,
and the pairs (Xs,,Ys,) for i =1,..., N are not independent. The classical
assumption of independence does not hold and, as a consequence, the stan-
dard test produce incorrect and exaggerated results. Although we have a
very large sample size, because of the strong autocorrelation, the effective
dimension is much smaller (see Walther (1997)). The observed correlation
will have more variance; behaving like a correlation with very small sample
size. We illustrate this phenomenon in the following subsection.

2.1.1 Behaviour of the correlation coefficient under spatial auto-
correlation

Let W be a stationary and isotropic gaussian random field in R? (s € R?)
with autocorrelation function a member of the Matérn family:

p(u) = {270 (k)} " (u/9)" Kpe(u/9),

where u = ||s; — sj||, Kx(-) denotes a modified Bessel function of order &,
¢ > 0 is a scale parameter with the dimensions of distance, and x > 0
is a shape parameter that determines the smoothness of the process. The
variance of the process is 02 = var(W5).

Suppose X, is generated by a stationary process

Xo =Ws + Z; (3)

where Z; are mutually independent, identically distributed with zero mean
and variance 72. The parameter 72 corresponds to the nugget variance, the
measurement error variance.

Figures 4(a) and 4(b) are Xg and Yg, two independent realizations of this
process observed at locations s = (s1...sy) with s; € [0,1] x [0,1], K = 0.5
and ¢ = 0.30 (simulated using R package RandomFields).
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(a) gaussian random field X (b) random field Ys, independent of Xg

Figure 4: Two independent realizations of a gaussian random field with
Matérn autocorrelation function and smoothing parameter x = 0.5.

Figure 5(a) is the scatter plot of Xg and Yg, whereas Figure 5(d) is the
scatter plot of two independent samples, each of them mutually independent
(non-spatially correlated) and normally distributed. The correlation coeffi-
cient is much larger for Xg and Y5 (rx,y, = 0.3). However, Figure 5(b) is
the scatter plot of two new independent realizations Xg and Yg, and now
we observe a negative strong correlation. Figure 5(c) shows a third scatter
plot, for another set of observed processes, with a correlation closer to zero.
Due to the spatial component, the variance of the correlation coefficient is
larger, in fact, the larger is x, the larger the variance of the observed cor-
relation. This is due to chance; because of the smoothness it is more likely
that, just by chance, at a given region s* of the support, Xg+ increases while
Y5« increases as well (or decreases instead), contributing to a positive (or
negative) linear correlation between Xg and Ys (look at Figures 4(a) and
4(b) for an illustration of that).

If we use the standard test to assess rx,y, = 0.3, the p-value is 0, al-
though Xg and Y have been constructed to be independent of each other.
A sample of the true null distribution of rx, y, (obtained by simulation) is
shown in Figure 6. Superimposed we plot the null distribution under the
assumption of independence of the observations. The consequence of spa-
tially autocorrelated data is a larger variance, which explains why it is more
likely to reject when using the wrong null. If two close-by locations have
similar values, one of the pairs in the sample is not giving new information;
we know less about the distribution of rx, y,, which is translated into less
precision and an effective sample size smaller than N. Based on the true
nulls, the probability of obtaining values of r as extreme as the observed
(rx, v, = 0.30 and ripq = 0.01) are 0.16 and 0.42 respectively, and there is
no evidence to reject p = 0 in both cases.
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Figure 5: The observed correlation of two independent but spatially auto-
correlated gaussian random fields X and Yg has larger variance (5(a), 5(b)
and 5(c)), due to chance, in comparison with two independent samples with
no spatial autocorrelation (5(d)).
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Figure 6: Empirical null distributions for the correlation coefficient between
Xs and Y, in contrast with the null distribution under the assumption of
independence (no autocorrelation).
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In the next section we propose a methodology to assess the correlation at
each location by extracting (eliminating) the component of the correlation
due to spatial location. One of the results of this approach is that now it is
easy to produce a p-value map indicating which areas have high values for
both biodiversity and remoteness, areas known to be good refuges.

3 Proposed methodology

We propose a method that approximately recovers the null distribution of
rXx,,y,- LThe simulation model also allows us to examine the null distribution
of a much bigger variety of statistics and thus we will be able to answer
other distribution-related questions. The following scheme summarizes the
ingredients of the method.

Let X and Yg be a realization of two processes that have been observed.
Repeat the following two steps B times:

1. Permute the indices of X over s, which we denote by Xr(s); this means
Xr(s) and Ys are independent.

2. Smooth and scale X ) to produce Xs, such that its variogram approx-

imately matches the variogram of Xg; i.e. the transformed variable X
has the same autocorrelation structure as Xg.

Hence the variables X7, ..., X2 are independent of Y3 but with autocorre-
lation similar to Xs. A sample from a null that approximates the true null
distribution of rx, y, is #1,...,7p, where 7; = cor(X{, Ys).

Finally, using this sample as the reference null, the p-value to assess
whether the observed correlation r%_y, = cor(Xg, Ys) is significant, is P(|rx, y,| >
v =5 Zf:l Iy > X, v,

By permuting the indices of one variable, while destroying the indepen-
dence necessary to recover the null, we also destroy the smoothness (spatial
autocorrelation). Step 2 restores it, the following section focuses on this
step.

3.1 Matching variograms

We smooth X ) over the domain R? by fitting a local constant regression
at each location s. The smoothing is achieved via a kernel K (s,s;) that
assigns weights to observations based on their distance from s. We fit the

11



following function using the R package locfit (Loader (1999)):

~ ) wiXm
f5(8) — Z||5_51HS>\5 ) (4)

ZHsfsiﬂg)\s wi

The weights are w; = K)_(||s—s;||) where K_(x) = exp [gf’fz] is a gaussian

kernel, and the bandwidth A; of the kernel controls the smoothness of the
fit. For a fitting point s, the nearest-neighbour bandwidth Ag is chosen so
that the local neighbourhood contains the k = | Nd| closest points to s in
euclidean distance, where ¢ is a smoothing parameter in (0,1). Using a
non-constant bandwidth reduces data sparsity problems, because in areas
with fewer points the radius of the neighbourhood is incremented to include
more neighbours. Only observations belonging to the ball By (s) (centered
at s and of radius \,) are used to estimate f5(s), so the gaussian kernel
truncates at one standard deviation, and the factor 2.5 in K scales the
kernel accordingly.

If we evaluate the function f(s(s) at the original locations s1,...,sy we
obtain a new spatially autocorrelated variable Xg . The smoothing param-
eter § is chosen such that the variogram of X? is close to the variogram of
the original Xg. Formally, the problem reduces to choosing a variogram of
the family

By(X2) +a (5)

that best approximates y(Xs).
Before moving forward, we need to define «. The theoretical variogram
of a stationary process X, in (3) is:

Y(u) = o?(1 = p(u)) +7°. (6)

The function p(u) is the autocorrelation function of Wy, , typically a mono-
tone decreasing function with p(0) = 1 and p(u) — 0 as u — oo. Its
most important feature is its behaviour near v = 0, and how quickly it
approaches zero when u increases, which reflects the physical extent of the
spatial autocorrelation in the process. When p(u) = 0 for u greater than
some finite value, this value is known as the range of the variogram. The
intercept 72 corresponds to the nugget variance, the conditional variance of
each measured value X, given the underlying signal value W,,. The asymp-
tote 72+ o2 corresponds to the variance of the observation process X, (the
sill). Figure 7 gives a schematic illustration.

12
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Figure 7: Typical semivariogram of a stationary spatial process: ~(u) =
02(1 — p(u)) + 72. The range is the distance u at which the autocorrelation
function fades; p(u) = 0. The intercept 72 is the nugget variance, and 72+ o2
is the sill, the variance of the process.

Smoothed variogram 4. Since y(u) is expected to be a smooth function
of u, we smooth the empirical variogram (defined in Section 2) to improve
its properties as an estimator of y(u), using the following kernel smoother:

N N
Doim1 2 jmit1 Wijlij

N N
>t Zj:i—H Wij

It assigns weights that die off smoothly as distance to ug increases, with
wij = Kp(|Jluo — wijl|) and Kp(xz) = exp [‘(%2’”)2], the gaussian kernel is
scaled so that their quartiles are at £0.25h, with A being the bandwidth (R
function ksmooth). The variogram 4 is obtained evaluating (7) at distances
u = [ug,...,uio), uniformly chosen within the range of distances u;;. As an
example, Figure 3 shows the empirical as well as the smoothed variogram
(in red) for biodiversity, with bandwidth h = 0.746. Variograms in Figure 3
are truncated at distance u = 10, corresponding to the 25% percentile of
all pairs of distances, because the precision of the estimate is expected to
decrease as the distance increases, since a decreasing number of pairs are
involved in the estimate.

(7)

H(ug) =

How do we choose 4, « and f in (5)?

13



1. Given a permuted variable X, ), for each § € A we do the following:

(a) Construct the smoothed variable X?¢ as indicated above.

(b) Fit a simple linear regression between 4(X?) and 4(Xs), where
(&s, Bs) are the least-squares estimates.

2. The optimal §* is such that the sum of squares of the residuals of the
fit is minimized, and so the estimates for («, ) are (G, Bs* ).

By varying the tuning parameter § we obtain a family of variograms
4(X?) with different shapes. The shape of the optimal variogram 4(X?") is
the closest to §(Xs).

The smoothing has changed the scale of X (the smoother X2 is, the
smaller the variance), in addition to the intercept (nugget variance) of 4(Xs),
that is why we we need to transform X" in the following way:

>6* P S e N 1
Xs :|/85*|2Xs +‘a5*|22’

and ensure that the scale and intercept of 4(X?") match those of the target
variogram 4(Xs), where Z is a vector of mutually independent and identi-
cally distributed Z;’s with zero mean and unit variance. Note that 4(X?")
is a member of the family in (5).

From models (3) and (6), |35+ |var(X?") is an estimate of 62, |@g-| is an
estimate of 72, and correspondingly var(X?") = |Bs- |var(X2") + |as+| is an
estimate of o + 72.

To conclude, Xg* has been constructed to match the target variogram
4(Xs) in shape, scale, and intercept.

Note that the notation for Xg* has been used previously at the beginning
of Section 3 simplified as X, (X1,..., X2).

*
A

3.2 Illustration of the method

The global correlation between biodiversity and remoteness is 7x,ys =
0.224. The local correlations between both variables at locations si,..., sy
are plotted in Figure 2. If we apply our methodology, we can test whether
the global correlation is significant, and provide a map of p-values for the lo-
cal correlations. The algorithm, described in Section 3, returns Xsl, . ,Xf
(B = 1000 proxies for Xg) and the null distribution, which is plotted in
Figure 8; the red line indicates the observed value 7y, ys = 0.224. The
p-value for the global correlation is 0.057. If we had used the classical test,
the p-value would have been 0, rejecting the null hypothesis of the global
correlation being equal to zero.

14
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Figure 8: Empirical null distribution of the correlation between biodiver-
sity and remoteness obtained with the proposed methodology, the red line
corresponds to the observed correlation 7x, ys = 0.224.
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To assess the local correlations consider the following. Each pair of vari-
ables (X{,Ys) can be used to calculate a map of local correlations under
the null hypothesis of independence, since X! is constructed to be indepen-

dent of Y5, i = 1,..., B (the local correlations are calculated as described in
Section 2).

As a result, we have a sample (of size B) distribution of local correlations
for each s;, 7 =1,..., Ng, and we can calculate a p-value for each location.

Figure 9(a) is the map of p-values for the local correlations in Figure 2, which
identify the areas with strong correlation. For comparison, Figure 9(b) are
the p-values using the classical test, which contrasts with Figure 9(a), since
most of them are significant.

We illustrate in Figure 10 the variogram matching that takes place when
smoothing and transforming a permuted Xjr( s) in a a way that it resembles
the target variogram of Xg in Figure 3. Four different values for § are
used to smooth and scale Xfr(s). In this case, the best match between the
target 4(Xs) (in black) and ’y(Xsi’a) (in red) is reached when 6* = 0.085.
The estimates (&2, B‘S) are obtained by linearly regressing ’y(Xé"a) on 4(Xs).
Figure 11 plots the residual sum of squares of this fit for different values of
0. We choose ¢ such that the sum of squares is minimized: §* = 0.085.

4 Some evidence on the performance

In this section we use simulations to demonstrate the effectiveness of our
approach. By simulating random fields with a known theoretical model,
we can recover the true empirical null distribution and compare it with
the one obtained with our method, and therefore give some evidence of its
performance.

Let X, and Y, be two independent gaussian random fields that follow
model (3) with gaussian autocorrelation function (a particular case of the
Matérn model when k — 00), scale parameter ¢ = 0.3, no nugget variance,
variance 02 = 1 and mean p = 0.

We simulate the processes at locations s = (s1...sy) with s; belonging
to a grid [0, 1] x [0, 1], with 101 equally spaced points per interval, and N =
10201. A sample of the null for rx, y, is plotted in Figure 12(a), and obtained
by simulating several times the pairs (X, Y?), i =1,...,1000. To compare
this null to the one given by our method, we consider one of the pairs
(X%, YY), and apply our method with bandwidths A = (0.1,0.2,...,0.9) (in
75% of cases the optimal bandwidth is either 6 = 0.2 or § = 0.3). The
resulting null is also plotted in Figure 12(a). It does recover fairly well
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(a) Map of p-values obtained using the proposed methodology.

Map of p-values for the local correlations

1.00

0.50

0.10

0.05

0.01
0.00

-100 -80 -60 -40

(b) Map of p-values 1uZing the classical test.

Figure 9: For each local correlation at location s; in Figure 2, we associate
a p-value assessing whether it is different from zero.
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Figure 10: Matching that takes place between the target variogram of Xg
(in black) and the variogram of b (in red), variable result of permuting,
smoothing and scaling Xg, for 4 different values of the bandwidth 6.
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Figure 11: Residual sum of squares of linearly regressing ’y(X;"s) on 4(Xs),
for different values of §.
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the true null, and the upper and lower limits of the corresponding 95%
confidence intervals are very close.

Since the smoothing of the permuted variables is done with a gaus-
sian kernel, we also simulate random fields with non-gaussian (Matérn with
k = 0.5) autocorrelation function to not favour our method when we match
variograms. The results are very similar, specially in the tails, and are
plotted in Figure 12(b).

4.1 Comparison with Clifford’s method

In this section we compare our method to the one proposed in Clifford et al.
(1989), where they suggest to estimate an effective sample size that takes into
account the loss of precision due to spatial autocorrelation. The distribution
of reference is fy/(r) in (2) with M — 2 degrees of freedom instead, where
M is the effective sample size. Their approach is to equate o2, the variance

of the sample correlation, to ﬁ, the variance of fj;(r). An estimate for
M is thus M = |1+ %J They prove that,

52— Var(Sx.y,)
" OB(S%)E(SE)

to the first order, and under the assumption of normality (see Appendix
in Clifford et al. (1989)), where Sx,y, is the sample covariance, and 5%,
S%/S are the sample variances of Xg and Ys. The term in the numerator is
var(Sx,y,) = trace(Xg, X, ), where ¥¢, = PXx P, %, = PYXy, P, ¥x, and
Yy, are the covariance matrices of the processes Xg and Yg respectively,
P=1- %11’ and 1 is a vector of 1’s of dimension N.

They impose a stratified structure on ¥ x_ and Xy, to estimate var(Sx.y, ).
More precisely, they assume that the set of all ordered pairs of elements of s
can be divided into strata Sy, S1, S92, ... so that the covariances within strata
are constant. Then, the estimate for o2 is

52 > NiCx, (k)Cy, (k)
’ N25% 8%

where Ny, is the number of pairs in stratum Sy, and Cx_ (k) = Nik 2 G)es, (Xsi—
X)) (X 8 — X}) is an auto-covariance estimate for stratum Sj. The number

of strata is chosen as the number of bins used for the sample variogram of
Xs.
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(a) Gaussian autocorrelation function.
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Figure 12: Comparison of the true empirical null for rx, y, (obtained by gen-
erating samples from model (3)) with the empirical null obtained by applying
our methodology to one realization of the same model. The corresponding
95% Confidence Intervals are added to the plot.



Hence, an approximation of the null distribution of rx, y, is fy;(r). The

. 1. .
statistic t = % follows a Student’s t with M — 2 degrees of freedom
1-72)2

and is used to assess significance of a given correlation 7. We can also
assess significance using a sample of f,(r) as the reference null, that we can
obtain generating independent and normally distributed random samples of
size M. The elements of the null are TiCI = cor(X;,Y;), where X; and Y; are
independent random vectors of dimension M ,1=1,...,1000.

We have now all the ingredients to carry out the following simulation
experiment to compare both methods: (1) generate pairs (X3, Yd) following
model (3) with gaussian autocorrelation function, for j = 1,...,100, (2)
apply both methods to each pair. As a result, we have two empirical null
distributions for pair j: Clifford’s null erl = (rlcjl, - ,rlc(}ooj) and our null
rj = (ri,...,71000;). We compare each null to the empirical true null
of Figure 12(a) using a Kolmogorov-Smirnov test of comparison between
distributions. The p-values of these tests are summarized in Figure 13(a)
for each method. Both methods behave quite similar when the data is
normal, although our method does slightly better.

Clifford’s method is based on the assumption of normality. To see to
which extent it is robust to deviations of normality, we generate data from
the same gaussian random field and transform the marginal distribution.
We generate gamma random numbers (75) with scale and shape parameters
equal to 2, and use its CDF Fr, to transform the original observations as
Zs, = F:FSI(FXS (Xs,)), i =1,...,N. The marginal distribution is now non-
gaussian, the results of applying the same simulation experiment to these
data are summarized in Figure 13(b). In this context, our method gives
better results.

4.2 Type I error estimates

The type I error of the test should be equal to the significance level a. We
use the nulls (rq,...,r100) and (r{,...,r{l,) to estimate the type I error
rates associated to both methods. We generate 100 samples (X¢, YZ) under
the null hypothesis and use respectively r; and r]Cl to assess significance of
#; = cor(XE, YY), for i = 1,...,100. Out of the 100 samples, the proportion
of times the p-values are smaller than o = 0.05 is an estimate of the type
I error. We repeat the process for all nulls, j = 1,...,100, and average the
results, which are found in Table 1. We see that our method provides better

estimates in both cases, for gaussian and non-gaussian data.
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Figure 13: Comparison, using a Kolmogorov-Smirnov test, of the true em-
pirical null with the empirical nulls obtained by applying our methodology
(r1,...,r100) and Clifford’s method (rlcl, e ,rlcolo). The boxplots are the
p-values of the tests for normal and non-normal samples.

Table 1: Estimated Type I error for ours and Clifford’s method for gaussian
and non-gaussian samples (%).

our method Clifford
gaussian 5.62 7.59
non-gaussian 5.8 7.92
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Discussion

This paper aims to bring attention to the consequences of spatial autocor-
relation when analyzing correlations, and propose a method that minimizes
its effect. It provides a p-value for the global correlation of a spatial region,
as well as a map of p-values that indicate the areas of high correlation, given
a map of local correlations. It is of interest to explore correlation at both
scales since association, as stated in Clifford et al. (1989), ‘can exist simulta-
neously at a number of different geographical scales, and it is possible that
negative association at small scales is swamped by positive association at
large scales’.

The corresponding null distributions are recovered using Monte-Carlo
methods. The procedure behaves well in practice, both for isotropic gaussian
and non-gaussian random fields. The results are more precise than when the
problem is approached by estimating effective sample sizes, as in Clifford
et al. (1989)), and our method does not rely on the assumption of normality.

One of the consequences of autocorrelation is that increasing the reso-
lution (getting more data) does not necessarily increase the power to find
significance. Even if we have tons of fine resolution points, at some point
we get no or little more information, since it is limited by the spatial au-
tocorrelation of the variables. Consequently we would estimate the same
significance if we used 20,000 fine resolution points, or a sample of 2,000 of
them, for instance. In practice, it may be more important to focus on using
methods that adjust for autocorrelation, than to focus on collecting a lot
more data.
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