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Assessing the Social Criteria for Human-Robot Collaborative

Navigation: A Comparison of Human-Aware Navigation Planners

Harmish Khambhaita1 and Rachid Alami1

Abstract— This paper focuses on requirements for effective
human robot collaboration in interactive navigation scenarios.
We designed several use-cases where humans and robot had
to move in the same environment that resemble canonical
path-crossing situations. These use-cases include open as well
as constrained spaces. Three different state-of-the-art human-
aware navigation planners were used for planning the robot
paths during all selected use-cases. We compare results of sim-
ulation experiments with these human-aware planners in terms
of quality of generated trajectories together with discussion on
capabilities and limitations of the planners. The results show
that the human-robot collaborative planner [1] performs better
in everyday path-crossing configurations. This suggests that the
criteria used by the human-robot collaborative planner (safety,
time-to-collision, directional-costs) are possible good measures
for designing acceptable human-aware navigation planners.
Consequently, we analyze the effects of these social criteria
and draw perspectives on future evolution of human-aware
navigation planning methods.

I. INTRODUCTION

We are witnessing a surge in social robots that are present

in our everyday lives. Robots are offering guidance to

passengers at airports [2], providing assistance to elderly

people at care centers [3], or even engaging in entertaining

experiences in public spaces [4]. Use of social robots in

these domains show that situations where human and robot

share and navigate in common space are becoming more

and more important. An even higher degree of collaboration

is necessary for fluent co-navigation, especially in confined

spaces such as narrow corridors where human and robot have

to act cooperatively and help each-other for finding their way.

Although there are several human-aware navigation plan-

ners proposed in the literature, to the best of our knowl-

edge, no substantive approach yet proposed to compare

and evaluate the planning schemes. In this paper we will

consider several normative co-navigation situations as basis

for comparing the performance of human-aware navigation

planners. Therefore, we will refrain from going in to the

implementation details (planning algorithms, robot control)

and rather focus on assessment of paths generated by the

planners and behavior of the robot during a full interactive

navigation episode. Fig. 1 shows the situations we have

designed in a simulated environment for evaluating the

planners. From our experiments with multiple planners in

different situations we have learned that parameter tuning
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Fig. 1: Canonical human-robot path crossing situations. (a)

Human and robot crossing each other’s path on a corridor.

(b) 90
◦ path crossing situation. (c) Human coming out of

a room where robot needs to go, they cross each-other at

the door. (d) Similar to situation (a), however the drawer is

blocking the corridor in such a way that only one person (or

robot) can pass next to the drawer at a time.

for particular situations is essential for any planner to show

its full potential in solving the co-navigation situation.

II. RELATED WORK

A. Social cost based human-aware planning: Safe mo-

tion with respect to co-existing humans is the foremost

requirement for social robots. Consequently some of the

earlier work in human-aware navigation mainly concentrates

on generating paths that keep a safe distance from humans,

mainly by adopting the theory of proxemics [5]. The human-

aware navigation planner introduced by [6] uses an algorithm

that generates social costs in a grid-map structure around

humans to facilitate A
∗-like search algorithms to find paths

that minimize such social costs. Furthermore, the authors

have proposed other social criteria like visibility: it is better

for the robot to make itself visible to the human for most

part of their trajectory, and hidden zones: robot should not

make itself appear very near from behind the human which
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Fig. 2: Trajectories generated by human-aware planners for indoor hall navigation task. (a): Directional-cost planner. (b):

AKP planner. (c): Cooperative planner. The robot and human are crossing each other’s path in a face-to-face configuration.

Since the area is relatively wide, the robot has enough latitude to move away from the predicted human path.

can shock humans. Recent surveys [7] [8] provide thorough

analysis on the use of proxemics and other social costs in

human-aware navigation planning.

One important aspect for co-operative motion is legibility,

which enables an observer to quickly infer the robot intent

and goals [9]. The directional cost model introduced by [10]

has shown to increase legibility of the robot motions, where a

robot attempts to solve a spatial conflict by adjusting velocity

instead of the path when possible. From an extensive user-

study, it is clear that humans prefer robot following this

strategy, particularly in 90
◦ path crossing situations [11]. In

our comparison of human-aware planners, the first planner

we have considered implements this strategy.

Another acclaimed approach used by the human-aware

robotics researchers is the social force model [12]: a method

to describe crowd dynamics. The robot navigation planners

explained in [13] and [14] use the social force model to cope

with uncertain human motions. In the extended social force

model [15], [16] approach, every iteration of planning step

uses the human prediction information which is dependent

on the path calculated during the previous iteration. This is

the second planner we are using for our comparison. The

planning schemes based on the social force model works

nicely in large or open spaces where the robot have enough

latitude to move away from predicted human paths. However,

as we will see, it performs rather poorly in constrained

situations. An important concept brought in by these methods

is to interlace prediction of human motions within the robot

navigation planning framework. Because of superior results,

we believe that any further human-aware navigation planner

should also involve prediction of human motions in their

planning architecture.

B. A case for human-robot cooperative planning: An

elastic band [17] augmented with temporal information for

optimizing robot trajectories is introduced in [18]. In this ap-

proach, the optimization framework locally deforms the robot

trajectory that includes a series of time-difference values

between each successive poses, instead of deforming a purely

geometric path. The resulting timed elastic band makes it

easy to take kinodynamic and nonholonomic constraints into

account, formalizing the optimization problems as a non-

linear least squares problem.

We have substantially extended this work by introducing

prediction and optimization of human trajectories within the

same framework [1]. In this planning scheme the robot uses

the same environmental map to coherently plan its own

trajectory and predict plausible human trajectories, therefore

it always provides a solution where both human and robot

can move optimally. The co-navigation solution does not

include only the contributions of the robot but also of the

human, and that is why we claim that it is a human-robot

cooperative planner. However, human and robot are not

treated equally in this scheme, generally the robot takes,

when possible, all or most of the effort to avoid colliding

with humans. With this planner the robot not only can

react to the unfolding situation but it can also proactively

suggest a solution to the co-navigation situation, especially in

confined spaces. In this approach, our focus is on advanced

interactive motions from a single person to a small group

of people. For open spaces, this cooperative planner gives

comparable results to the social force model based approach.

However, in confined spaces it give arguably better results by

eliminating unnecessary detours and remaining adaptive to

the human motions. This is the third planner we are using for

comparison of human-aware navigation planners discussed in

the following section.

III. COMPARING HUMAN-AWARE PLANNERS

We have compared three human-aware navigation planner

in five customary human-robot path crossing situations. All

of the planners utilize the well-known robot navigation

architecture move_base [19], developed as a local planner

plug-ins to it1. We have constructed a simulated environment

with MORSE2 that resembles the real robotics lab at LAAS-

CNRS. Fig. 1 shows screen shots of the simulator and

situations we have designed for testing the planners. We

have used a simulated version of the PR2 robot for these

1Directional-cost: http://harmish.in/HANP/code/planner
AKP: https://devel.iri.upc.edu/pub/labrobotica
Cooperative: http://harmish.in/COOP/code

2https://www.openrobots.org/morse
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Fig. 3: Trajectories generated by human-aware planners for corridor crossing task. (a) and (d): Directional-cost planner. (b)

and (e): AKP planner. (c) and (f): Cooperative planner. Figures on the top row shows snapshots of situations that happen a

few seconds before the situations shown in the bottom row. Here also the robot and human are crossing each other’s path

in a face-to-face configuration, however, in a confined space.

experiments. An advantage of simulation is that it provides a

consistent and reproducible environment for testing different

navigation algorithms. For simulating human motions, we

have developed a human navigation package, based on the

design of the move_base framework, which can simultane-

ously simulate the motion of multiple humans. This simulator

uses an A
∗-like algorithm for planning global paths and a

teleportation controller as local planner, which simply moves

the humans on the global path at nominal walking velocity3.

Thus, for each situation we give the exact same start

and goal positions of the robot and human for all three

planners. As a shorthand we will use the names directional-

cost planner for the planner in [11], AKP planner for planner

in [16] and cooperative planner for planner in [1]. All of the

comparison figures show both global (in green) and local

(in red) paths of the robot. Whenever possible the predicted

human paths are also shown in the figures (in blue)4.

A. Indoor hall navigation: In the first situation we have

considered a hall size area where robot and human are

crossing each other’s path in a face-to-face configuration.

Fig. 2 shows a particular scene during the navigation task for

each planner. Here trajectories generated by both AKP and

cooperative planners make the robot move away from the

predicted human path thus keeping a comfortable distance

from the human and require minimal or no effort from the

human in the collision avoidance task. Since, the directional-

cost planner only plans in velocity, it slows down as the

human approaches near and eventually stops completely.

Once the human moves behind the robot the robot continues

on its path, thus it requires the human to go around the robot.

The directional-cost based planner relies fully on the global

3http://harmish.in/HSIM/code
4The purple cylinder shown in the AKP planner examples are the goal

positions used for the human goal prediction.

planner to generate paths. Thus, if we use the global planner

with a continuous re-planning scheme in case when the

human stops in front of the robot, the robot will eventually

change its direction as well, as soon as a new global plan is

available. However, here we are purely comparing the local

planner, so to remain fair to the other two planner we are

not using the re-planning mechanism for the global planner.

B. Corridor crossing: Second situation is quite common

in the office, airport, or shopping mall like environments.

Here the human and the robot are crossing their paths

similar to the previous situation, however, since the passage

is narrow it requires some effort from both human and robot

to avoid a collision (see fig. 3). In case of the directional-

cost planner the robot again simply slows down as the human

approaches, the local plan of the robot gets smaller. Thus,

even this behavior is understandable by the human, it requires

human to go around the robot.

The AKP planner starts properly on its path, however, as

the human comes nearby it plans a trajectory backwards.

Such back-tracking is common in social force model based

planners. A possible explanation for this behavior would be:

while the repulsive force of the walls remains same on both

sides of the robot, as human approaches the repulsive force

from human gets larger than the attractive force towards the

robot’s goal, which eventually results into the robot moving

backwards5. As we can see in the figure 3c, the cooperative

planner moves on the one side of the corridor well ahead in

time. It does so because it has predicted a human path in the

same map that requires least effort from the human in terms

of changing their current path. It should be noted that, in

this case it is necessary for both human and robot to change

5Because of backtracking and due to the design of AKP planner, only
for this planner we had to add an imaginary laser scanner on the back of
the PR2 robot in simulated environment
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Fig. 4: Trajectories generated by human-aware planners for 90◦ path-crossing task. (a) and (d): Directional-cost planner. (b)

and (e): AKP planner. (c) and (f): Cooperative planner. Figures on the top row shows snapshots of situations that happen a

few seconds before the situations shown in the bottom row.

their paths to find a solution to the co-navigation problem.

Here the robot selects a solution that causes minimal change

to the human trajectory.

C. 90
◦ path-Crossing: Fig. 4 shows a situation where

robot and human are crossing their paths at a 90
◦ angle.

Here the directional-cost planner performs quite good as the

robot slows down when a human comes nearby, and then

the robot accelerates again towards its goal, no additional

effort required by the human here. It should be noted

that the directional-cost planner was extensively tested on

this situation, thus it generates paths that are legible and

acceptable by the humans. AKP planner initially computes a

path to cross in front of the human, but when the human

is closer to the robot, the planner eventually decided to

traverse behind the human. Here, we suspect this behavior is

due to the particular workings of random exploration based

algorithm used by the AKP planner. Nevertheless, A∗-like

path search algorithm with continuous re-planning scheme

also yields similar behavior.

The cooperative planner simultaneously changes its path

while slowing down, thus suggesting the human to pass

before itself. Since, we are using both directional and time-

to-collision constraints for this planner, this can be explained

as a combined effect of those social constraints. Therefore,

the resulting behavior remains as legible as, or arguably even

better than the directional-cost planner.

D. Passing through a door: As shown in figure 1c, often

in a door-crossing situation the human is visible to the robot

due to the window between the hall area and the room. Fig. 5

shows trajectories generated by the planners when the task

of the robot is to move inside the room while the human is

moving out. The directional-cost planner could induce “bad”

configurations, where it reaches near the door and slows

down but does not give enough space to the human to move

out of the room. This could lead to considerable effort by

the human, making them move back to create space for the

robot. The AKP planner, because of its backtracking behavior

could eventually make space for the human. However, as we

can see in fig 5d the robot goes very near to the door which

could threaten the human. With the cooperative planner the

robot prefers waiting in a place where it limits, as much as

possible, obstruction to the human motion. Instead of moving

backwards, here the robot proactively plans a path that is not

only far from the door when human is coming out, but also

the robot trajectory inherently contains a “waiting” behavior.

E. Constrained corridor crossing: The last situation we

have considered for comparison is similar to the corridor

crossing situation described in Sec. III-B, however with an

additional obstacle in the corridor. Fig. 1d depicts this situ-

ation in the simulation environment. The corridor becomes

a highly constrained space, where robot and human cannot

even pass side-by-side. Only the human or the robot can

cross the additional obstacle at a time, requiring the other to

either wait or backtrack. The additional obstacle (a drawer)

is not known to the robot, that is, it is not in its pre-built

map. Therefore, we are also showing laser scanner points (in

yellow) to better understand the robot behavior.

Here both directional-cost and AKP planner come very

near to the obstacle at the same time when the human

also reaching near it. Directional-cost planner hardly gives

enough space for the human to pass, while AKP planner

makes the robot move backwards when human comes nearby

the robot. Since with both of these planners the robot slows

down to almost standstill, they are not violating the safety

requirement. However, with both planners the human needs

to share most of the effort for avoiding a collision with the

robot. The cooperative planner performs particularly well in

this situation. As shown in the fig. 6c, the robot first moves

near the drawer, and waits for the human to pass, and then

continuous its motion towards its goal.
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Fig. 5: Trajectories generated by human-aware planners for the robot passing through a door. (a) and (b): Directional-cost

planner. (c) and (d): AKP planner. (e) and (f): Cooperative planner. Figures a, c and e shows snapshots of situations that

happen a few seconds before the situations b, d and f respectively.

(a) (b) (c)

(d) (e) (f)

Fig. 6: Trajectories generated by human-aware planners for corridor crossing task with an obstacle in the middle of the hall.

(a) and (d): Directional-cost planner. (b) and (e): AKP planner. (c) and (f): Cooperative planner. Figures on the top row

shows snapshots of situations that happen a few seconds before the situations shown in the bottom row.

IV. DISCUSSION AND CONCLUSIONS

We have shown capabilities and drawbacks of three dif-

ferent human-aware navigation planners. The cooperative

planner performs well in both confined and non-confined

cases. The behavior such as stopping near the door and facil-

itating human in confined corridors emerges due to the social

constraints that are integrated in the optimization framework.

Furthermore, the cooperative planner enables balancing and

tuning of the efforts between the human and the robot to

solve a co-navigation task. The inspiration for designing a

tunable navigation planner comes from previously-proposed

approaches for geometric [20] and symbolic [21] planning

systems, where the robot synthesizes a shared plan for

the human and itself. By tuning, we mean to adjust the

“elasticity” of underlying timed elastic band. Fig. 7 shows

the effect of tuning the effort between a human and a robot

for a shared navigation task. The cooperative planner is also

highly reactive at the same time, so if during a navigation

task the human decides to move on a different path than the

one suggested by the robot, the robot quickly adapts its path.

With all other parameters being equal, fig. 8 shows the

effect of the safety constraint on the robot path. With a

single parameter we can tune how far the robot moves from

the human. The cooperative planner also exploits results of

user study in [11] and introduce directional costs in the

optimization framework. The directional costs discourages

face-to-face motion and makes the robot slow down when

human and robot move opposite to each other.

A novel constraint used by the cooperative planner is

time-to-collision, defined as the projected time to a possible

future collision with a human. Recent empirical studies of

pedestrian interactions have shown that time-to-collision can

uniquely describe how humans move in public places [22].

It is also interesting to note that, the same study also

shows that the social force model rather poorly fits to the

pedestrian interaction data, and thus being a weak model to

design human-robot interactive navigation planners. Fig. 9

shows an example of how this time-to-collision constraint

affects the generated path. When time-to-collision constraint

is switched-on the robot moves early to its right signaling

that it is already avoiding possible collision with the human,

thus making the robot behavior proactive.
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Fig. 7: Balancing the shared effort between human and robot.

(a) Human and robot share equal effort. (b) The robot shares

almost full effort and moves away from predicted human

path. (c) Although never used in real world situations, it

is possible to design a rude behavior of the robot where it

expects human to make more effort for avoiding a collision.

(a) (b)

Fig. 8: Effect of the safety constraint on robot paths. (a)

Minimum safety distance between human and robot is set to

0.3 meters. (b) Minimum safety distance is set to 0.7 meters.

We learned the following lessons from this comparison:

• Directional-cost planner performs well in 90
◦ path

crossing and sub-optimally in constrained situations.

• Social force model based planners can perform well

in open areas or large indoor environments, however

they suffer from unnecessary detours due to the way

repulsive and attractive forces are calculated.

• The cooperative planner performs well both in non-

constrained and constrained situations, it produces leg-

ible and cordial behaviors in confined areas.

• It is imperative for a human-aware navigation planner

to tightly couple with human motion prediction method.

Although simulation is a limited tool, repeatability of the

same experiments makes it a suitable tool for evaluating

different navigation algorithms on the same situations. We

believe that our investigation provides preliminary basis for

comparing human-aware navigation planners. Drawing fruit-

ful insights from these experiments, we think the cooperative

planner is ready for extended evaluation on the real robot.

Therefore, we are planning a comprehensive user-study to

further evaluate the cooperative planner and compare it

against other human-aware navigation planners.
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