
Vol.:(0123456789)

Software Quality Journal (2023) 31:575–617
https://doi.org/10.1007/s11219-023-09617-5

1 3

Assessing the specification of modelling language semantics:
a study on UML PSSM

Márton Elekes1 · Vince Molnár1 · Zoltán Micskei1

Accepted: 29 January 2023 / Published online: 1 March 2023
© The Author(s) 2023

Abstract
Modelling languages play a central role in developing complex, critical systems. A pre-
cise, comprehensible, and high-quality modelling language specification is essential
to all stakeholders using, implementing, or extending the language. Many good prac-
tices can be found that improve the understandability or consistency of the languages’
semantics. However, designing a modelling language intended for a large audience is
still challenging. In this paper, we investigate the challenges and typical issues with
assessing the specifications of behavioural modelling language semantics. Our key
insight is that the various stakeholder’s understandings of the language’s semantics
are often misaligned, and the semantics defined in various artefacts (simulators, test
suites) are inconsistent. Therefore assessment of semantics should focus on identifying
and resolving these inconsistencies. To illustrate these challenges and techniques, we
assessed parts of a state-of-the-art specification for a general-purpose modelling lan-
guage, the Precise Semantics of UML State Machines (PSSM). We reviewed the text
of the specification, analysed and executed PSSM’s conformance test suite, and catego-
rised our experiences according to questions generally relevant to modelling languages.
Finally, we made recommendations for improving the development of future modelling
languages by representing the semantic domain and traces more explicitly, applying
diverse test design techniques to obtain conformance test suites, and using various tools
to support early-phase language design.

Keywords UML · Modelling language · Semantics · State machine · Testing · Conformance

 * Zoltán Micskei
 micskeiz@mit.bme.hu

 Márton Elekes
 elekes@mit.bme.hu

 Vince Molnár
 molnarv@mit.bme.hu

1 Department of Measurement and Information Systems, Budapest University of Technology
and Economics, Müegyetem rkp. 3., Budapest H-1111, Hungary

http://orcid.org/0000-0003-1846-261X
http://crossmark.crossref.org/dialog/?doi=10.1007/s11219-023-09617-5&domain=pdf

576 Software Quality Journal (2023) 31:575–617

1 3

1 Introduction

Context In model-based engineering (MBE), models play the central role in information
exchange and serve as the base of derived artefacts and analysis (Brambilla et al., 2012).
Models are expressed using various modelling languages. Modelling languages are defined
by specifying (1) the possible elements of the language and their connections (abstract
syntax), (2) how they can be used to construct well-formed models (well-formedness con-
straints), (3) what graphical or textual notation to use to represent these elements (concrete
syntax), and (4) what a well-formed model means (semantics). However, to use models for
simulation, verification or generation, defining the precise semantics of the modelling lan-
guage is essential (Broy & Cengarle, 2011).

The Object Management Group’s (OMG) Unified Modeling Language (UML) (OMG,
2017) is a general-purpose modelling language widely used to describe software systems.
UML defines several diagrams for visualising different aspects of systems. The initial
release of the language specification concentrated on the syntax and visual notations to
use. To relieve the lack of a precise semantic definition of the language, the OMG made
a great effort to create the Semantics of a Foundational Subset for Executable UML Mod-
els (fUML) specification (OMG, 2011), which is an executable subset of UML to define
the exact structural and behavioural semantics of systems. The Precise Semantics of UML
State Machines (PSSM) specification (OMG, 2019) extends fUML with execution seman-
tics for state machines.

Motivation Specifying a general-purpose, complex modelling language for widespread
use by thousands of professionals and organisations is highly challenging. Several methods
have been proposed for specifying modelling languages with various levels of formalisa-
tion, but the prevailing method is still primarily based on extensive natural language speci-
fication (Bork et al., 2020).

Having a “high quality”, precise definition of a modelling language is crucial for all the
different stakeholders:

• Model users, i.e. professionals using the modelling language, need to understand the
language to create meaningful, correct models.

• Developers need to implement the models or modelling, simulation and analysis tools
to conform with the details of the specification.

• Language designers need to carefully design or update each feature and consider its
impact on other language features and their joint behaviour.

Organisations specifying general-purpose, widespread modelling languages have realised
that more precise definitions of the syntax and semantics of languages are needed. For
example, if we observe the history of the modelling languages developed by OMG, we can
see several improvements to the process and format of language specification. The abstract
syntax is defined using formal languages (context-free grammars or metamodels) extended
with well-formedness constraints (e.g. in Object Constraint Language). A machine-readable
version of the metamodel is now part of every specification in a standardised interchange
format. The fUML and subsequent standards added a semi-formal, operational semantics
to refine the semantics defined with natural language in the UML specification. Reference
implementations were created during the development of the language. Finally, the PSSM
specification provided an extensive test suite to illustrate the semantics and validate that
model execution tools conform to the PSSM semantic model.

577Software Quality Journal (2023) 31:575–617

1 3

Having semi-formal semantics, reference implementations and test suites are significant
improvements for specifying modelling languages. They offer support for model users to
understand some nuances of the semantics, and for validating tool conformance but only
for a subset of the semantics. However, even in state-of-the-art specifications, there are
still numerous issues regarding the definition of semantics.1 Important questions such as
the followings arise during the development or revisions of complex modelling languages.

• Can model users understand the semantics from the specification?
• Are the different semantics described in the various artefacts consistent?
• What level of tool conformance can we validate using the test suites?

The reason behind these issues and questions could be that less work was directed towards
assessing the modelling language specification itself than its usage. We need verification
and validation (V&V) techniques and activities for the modelling language, and not just
for the derived artefacts (i.e. system models created with UML or modelling tools imple-
menting the specification).

Modelling language specifications are requirement and design documents. Therefore
they shall adhere to typical quality criteria: they shall be consistent, complete, verifiable,
and understandable (ISO/IEC/IEEE, 2018). Common review techniques could be appli-
cable also to modelling language specifications. However, good practices for modelling
language development (Czech et al., 2020) and previous works on testing modelling lan-
guages (Ratiu et al., 2018) were more focused on the tooling for the language (editors, code
generators) and not specificities of modelling language specification documents.

Therefore the research question that motivated our work is the following.

What are the challenges when assessing the specifications of modelling language
semantics?

Method To analyse the specificities of modelling language specifications from a quality
point of view, we built on our experience in designing modelling languages’ semantics,
building verification tools and teaching semantics to model users. We (1) investigated prac-
tices from recent modelling language specifications, (2) performed a case study on assess-
ing the artefacts of the PSSM specification, and (3) based on these insights, synthesised
general concepts and challenges of modelling language’s semantics.

1. We considered the major stakeholders (model users, tool developers and language
designers), their motivations and viewpoints with respect to the semantics of the lan-
guage. We collected the various artefacts supporting the definition of a modelling lan-
guage, and how each artefact can be used to refine or communicate the semantics of the
language.

2. We used the PSSM specification (OMG, 2019) as a case study. We choose PSSM
because it is a recent specification containing several of the above artefacts. We reviewed
the document along standard review criteria (e.g. consistency, unambiguity); taking into
account the different stakeholder views based on our experience in those roles; executed
the tests in Cameo Systems Modeler; and analysed the consistency between the various
artefacts. As PSSM is quite complex, we focused on selected key areas instead of aiming
for a complete review.

1 Issues for OMG specifications can be browsed publicly: https:// issues. omg. org/ issues/ lists

https://issues.omg.org/issues/lists

578 Software Quality Journal (2023) 31:575–617

1 3

3. Based on the issues and insights from the case study that can be generalised, we syn-
thesised challenges about specifying semantics and ways to assess and improve the
definition and understanding of semantics.

The findings in this paper capture our experience gathered in the course of various mod-
elling-, specification-, and verification-related activities from the last decade. For exam-
ple, we analysed the semantics of UML Sequence Diagrams (Micskei & Waeselynck,
2011), designed a statechart language (Graics et al., 2020), and built verifiers for UML/
SysML (Horváth et al., 2020). Moreover, we taught numerous courses on model-based
design for students and professionals, worked with modellers from automotive, rail-
way, and aerospace companies, and recently are contributing to OMG’s new SysMLv2
language. Thus, we have first-hand experience with various stakeholder roles, which
provides a deep, although potentially biased view of the topic. We intend this paper to
facilitate further discussions and provide input for formulating hypotheses and research
questions in potential future empirical studies.

Note that we concentrated on the semantics of a behavioural modelling language
because we had more experience with the operational semantics of behavioural lan-
guages, but a similar process can be carried out for structural languages (e.g. UML
composite structures or SysML block definitions).

The insights from the case study helped us to identify typical issues with the seman-
tics, practical methods for cross-checking the various artefacts, and synthesise why
these issues and inconsistencies happened in the first place.

Results Our main finding is that as the semantics of complex modelling languages is still
mainly described with informal texts (even if there are numerous additional semi-formal
artefacts), a key challenge is how the various stakeholders understand these fragmented
semantic descriptions and how their understanding of the same semantics might misalign.
Therefore, assessment of the semantics should concentrate on identifying and decreasing
these misalignments in the understandings and inconsistencies in the artefacts.

Moreover, by performing a detailed analysis of the UML PSSM specification, we
identified typical issues in modelling language semantics: unclear representation of exe-
cution traces, errors due to manual specification of expected behaviours, or issues with
the joint behaviour emerging from the individual specifications of multiple elements.
We found that the test suite helped a lot to understand difficult parts of the specification.
However, it contained several significant typos, some valid execution traces were miss-
ing, and some aspects of the semantics remained undefined even by cross-checking all
the relevant semantic descriptions and test cases.

Based on these experiences, we proposed recommendations for specifying future
modelling language specifications. The most important ones are (1) the need for a clear
representation of the semantic domain, (2) finding the right abstraction level for execu-
tion traces, (3) better processes and tools to derive test oracles and list of alternative
traces, (4) using additional test methods to design test suites for the semantics, and (5)
recommendations about further tooling to support assessment.

Extension of previous work This paper extends our preliminary workshop
paper (Elekes & Micskei, 2021), which focused on the PSSM test suite itself. This
paper discusses assessing the whole modelling language specification and not just test-
ing the modelling language test suite, and contains a more detailed investigation of the
PSSM specification.

579Software Quality Journal (2023) 31:575–617

1 3

Conclusion Having precise semantics and the appropriate tooling for a modelling lan-
guage is crucial. Semi-formal semantic definitions, detailed test suites and reference imple-
mentations for the modelling language increase the understandability and interoperability
significantly, as illustrated by the PSSM specification. However, our results highlighted
that defining a complex modelling language specification is still error-prone. We hope that
revealing the impact of possible misalignments and inconsistencies, the insights from the
assessment of PSSM, and our recommendations can support future specifications to be
more precise, comprehensible, and easier to use.

Structure of the paper Section 2 gives an overview of UML state machines and the
PSSM specification. Section 3 collects the viewpoints of different stakeholders and arte-
facts, then presents how misalignments and inconsistencies can be assessed regarding the
modelling language’s semantics. Section 4 details the assessment of the PSSM specifica-
tion and collects typical issues. Section 5 contains our recommendations for defining and
assessing future modelling specifications. Section 6 collects the related work on modelling
languages, semantics and testing. Finally, Section 7 concludes the paper.

2 Overview of UML PSSM

This section gives a short overview of the history of UML (Section 2.1), the informal
semantics of state machines (Section 2.1), the semantic description in PSSM (Section 2.3),
the test suite in PSSM (Section 2.4), and the various tools for PSSM (Section 2.5).

2.1 Short history of UML state machines

The Unified Modeling Language (UML) was created in the second half of the 1990s to
unify the various notations and approaches used for describing software design. The first
version of UML was standardised in 1997 as UML 1.1, which was refined in several ver-
sions in the coming years (with releasing UML 1.5 in 2003). UML 1.x included state
machines as an object-based variant of Harel statecharts (Harel, 1987). The abstract syntax
of the language was defined using class diagrams, additional well-formedness rules with
Object Constraint Language (OCL), and semantics using natural language.

The 2.0 version of UML consolidated the various notations in UML (collaboration,
state machines...) to a common semantic foundation (Selic, 2004, 2012). Class descrip-
tions were more detailed, but the description of the semantics was scattered in the alpha-
betically listed individual descriptions of each class. This problem was resolved in version
2.5 with the “UML Simplification” initiative, which merged the separate Infrastructure and
Superstructure documents and consolidated the description of the semantics to common
sections, where information was listed in a logical order (instead of alphabetical).

In the meantime, OMG issued a Request for Proposal for the “Semantics of a Founda-
tional Subset for Executable UML Models” to have more precise semantics for the core of
the UML language. The resulting Foundational UML subset (fUML) (OMG, 2011) speci-
fication was adopted in 2011. The specification contained a subset of the classifiers, com-
mon behaviour (events), actions and activities elements of UML. The fUML specification
defined a general execution model and an operational semantics for the language elements
in the selected subset. The execution model is itself an executable, object-oriented fUML
model containing classes describing the executions of the various UML elements. The
resulting specification is a more precise, although not easily understandable definition of

580 Software Quality Journal (2023) 31:575–617

1 3

the intended semantics. An important design direction was that fUML would not change
the semantics already published. Instead, fUML would only more precisely define the
semantics of the previous specifications and explicitly list cases where it restricts the previ-
ous behaviour.

Building on the fUML specification, the Precise Semantics of UML State Machines
(PSSM) specification extended the execution model and operational semantics to state
machines (OMG, 2019). PSSM is a direct extension of fUML, e.g. specialising execution
classes defined in fUML. A significant part of the specification is a test suite containing
103 test cases that are given as examples for various parts of the semantics and can be used
to check the conformance of state machine execution tools.

Cook (2012) provided a detailed description of the history and evolution of the UML
language up to 2012, which we recommend for interested readers.

2.2 Informal semantics of UML state machines

For event-driven behavioural modelling, UML defines state machines that model finite
automata (OMG, 2017, Clause 14). Since the basics of state machines are known well, in
the following, we give only a simplified introduction to the elements we use in this paper
based on the official specification.

A StateMachine comprises one or more (orthogonal) Regions, each Region contain-
ing a set of Vertices interconnected by Transitions. Vertices can be States, FinalStates and
Pseudostates (initial, etc.). States can be simple states or composite states, which can com-
prise one or more Regions. A State contained in a Region of another composite state either
directly or indirectly through other composite states is called a substate of the compos-
ite state. A State may have entry and exit Behaviors, which are executed when the State
is entered or exited (resp.). A State may have a doActivity Behavior, which commences
execution concurrently when the State is entered and the entry Behavior has completed (if
given).

A Transition is a directed arc from a source Vertex to a target Vertex (can be the same).
It may have an effect Behavior, which is executed when the Transition is traversed. A Tran-
sition is enabled if its source State is in the active state configuration and it has a Trigger
matching the dispatched Event occurrence. If more than one Transition is enabled within a
StateMachine, they may be in conflict with each other. In this case, transitions from direct
and indirect substates have priority over containing States. Only transitions in mutually
orthogonal Regions may be fired simultaneously. A Transition may have a guard Con-
straint. A Transition with a guard that evaluates to false is disabled.

An executing StateMachine instance is in exactly one state configuration at a time,
called the active state configuration. When an Event occurrence is recognised, it is stored
in the event pool. When the execution comes to a wait point (stable state configuration)
where it needs a trigger to continue, the event pool is examined. If the pool contains an
event occurrence that matches one of the Triggers, the occurrence is removed from the pool
and dispatched to the state machine. A StateMachine step is executed if there is at least one
enabled Transition that the Event occurrence can trigger. A step involves executing a tran-
sition and terminating in a stable state configuration, i.e. the next wait point. The transition
can be a compound transition, which chains multiple transitions into a more complex one
through Pseudostates, e.g. when entering a composite state via the initial Pseudostate and
initial transition. This step is called a run-to-completion step (RTC). Run-to-completion

581Software Quality Journal (2023) 31:575–617

1 3

means that a pending Event occurrence is dispatched only after the processing of the previ-
ous occurrence is completed and a stable configuration has been reached.

A special kind of Transition is a completion transition, which is triggered by a comple-
tion event of its source state (CE(source)). A state generates a completion event if all
of its internal activities have completed (e.g. entry and doActivity Behaviors) and all of
its orthogonal Regions have reached a FinalState (in case of composite state). Completion
events have dispatching priority over regular events.

In UML, a State may specify a set of Events that are deferred in that State. These Event
occurrences are not dispatched and remain in the event pool until the Events are no longer
deferred by any state in the state configuration, or a Transition from the deferring state is
triggered by the Events in order to override the deferring constraint.

2.3 Precise operational semantics of fUML and PSSM

As PSSM extends the execution model of fUML, the precise semantics of fUML is pre-
sented briefly. The execution of an fUML model is done by an execution engine. The
specification defines this execution engine using class diagrams specifying the classes and
operations of the engine. The details of the operations are specified with detailed activities
described using a surface notation similar to the Java language. Hence the specification
contains low-level, executable operational semantics for a subset of UML.

The fUML specification uses visitor classes to define how a specific behaviour shall
be executed. For example, one of those visitor classes defines how and when the activ-
ity’s nodes should be activated. So-called activation visitor classes define the semantics
of the various model elements (e.g. what should happen when a final node is fired). The
specification contains additional classes representing elements of the semantic domain that
are not UML model elements themself (e.g. Token that is an essential concept in the
token-game dataflow semantics of activities). Non-deterministic choices are modelled in
the operational semantics using ChoiceStrategy classes (although, as we would see
later in the paper, not every choice is modelled explicitly).

The Common Behavior package defines how active objects communicate with each
other using signals or operation calls. Active objects can act asynchronously. The seman-
tics of an active object defines how the object’s event pool is handled (e.g. dispatching
events from the pool). Matching events are handled by so-called event accepters.

The PSSM specification defines classes that extend the execution model of fUML.
PSSM defines that state machines have two separate event pools, one for “normal” event
occurrences and one for deferred ones. The active object representing state machines con-
tains specific methods to guarantee that completion events are dispatched first. A single,
special event accepter is used for state machines, which is responsible for collecting match-
ing transitions, calculating priorities, resolving conflicts and selecting the set of transitions
to fire in case of orthogonal regions. Visitor classes are used to define the semantics of
each state machine element (e.g. state, region, transition).

2.4 Overview of the PSSM test suite

The PSSM specification (OMG, 2019) contains 103 test cases grouped into 18 cate-
gories relating to specific parts of state machines. The tests were manually created by
experts based on 113 requirements extracted from the normative text of the UML 2.5.1

582 Software Quality Journal (2023) 31:575–617

1 3

specification. The PSSM specification defines a traceability matrix showing the cover-
age of the requirements.

A test case in the PSSM test suite consists of the following:

• A target state machine is the system under test (SUT). The target receives and dis-
patches events of the stimulation sequence, which will trigger transitions. Through-
out its execution, the state machine generates an execution trace, which is used to
evaluate the outcome of the test case.

• A tester that encodes the stimulation sequence (i.e. a series of event occurrences,
e.g. Start, Continue), which is the input sent to the target.

• A semantic test instantiates and controls the tester and the target. After the execu-
tion of the SUT, the semantic test compares the execution trace to manually defined
expected one(s) and marks the test passed or failed.

A test case is identified by its category, a 3-digit number, and optionally a letter for
subtests. Figure 1 shows the target state machine of test case Event 009, which checks
the following requirements: multiple transitions (in different regions) can be triggered
by the same event occurrence, and their execution order is left undefined As an expla-
nation, PSSM describes the RTC steps realised during the execution (Table 1). Each
step contains the status of the event pool, the state machine configuration, and the
transition(s) fired during the RTC step. The default dispatching strategy for the event
pool is FIFO, and the dispatched event in the front is denoted with boldface.

Fig. 1 Target state machine for a test case (OMG, 2019, Event 009). Input events: Start, Continue,
Pending

Table 1 RTC steps of test case Event 009 (OMG, 2019)

Step Event pool State machine configuration Fired transition(s)

1 [] [] - Initial RTC step [T1]
2 [Start, CE(waiting)] [waiting] []
3 [Start] [waiting] [T2(T1.1, T2.1)]
4 [Pending, Continue, CE(S1.2),CE(S1.1)] [S1[S1.1, S1.2]] []
5 [Pending, Continue, CE(S1.2)] [S1[S1.1, S1.2]] []
6 [Pending, Continue] [S1[S1.1, S1.2]] [T1.2, T2.2]
7 [Pending, CE(S1)] [S1] [T5]

583Software Quality Journal (2023) 31:575–617

1 3

The execution is the following: the tester sends as the stimulation sequence a Start signal
when the state configuration is [waiting], a Continue and a Pending signal in state con-
figuration [S1[S1.1, S1.2]]. Once the first state waiting is reached, a completion event
(CE(waiting)) is generated. The completion event is given priority over non-completion
events. Therefore it is dispatched first: in lack of completion transition (transitions without an
external triggering event, here T4 and T5) to be triggered from state waiting the event is
discarded. In state waiting, a Start event is dispatched from the event pool, which triggers
transition T2, and the state machine enters the orthogonal regions of S1. Thus the configura-
tion changes to [S1[S1.1, S1.2]]. The completion events of S1.1 and S1.2 are discarded
without triggering a transition. The dispatching of Continue event simultaneously triggers
transitions T1.2 and T2.2 in the two orthogonal regions. Both regions and state S1 complete
as the regions reach final states, which generates completion event CE(S1). As the completion
event has priority, it triggers the completion transition T5. Pending will never be dispatched
because there is no longer a transition that it can trigger, and the state machine finishes its exe-
cution. Some parts of the state machine contain activities (i.e. effects of transitions, entry/exit/
doActivity behaviours of states) to generate the execution trace. PSSM specifies the expected
trace for every test, in this case T1.2(effect)::T2.2(effect) and the alternative trace
T2.2(effect)::T1.2(effect), i.e. both orders are possible due to the simultaneous fir-
ing of the two transitions on Continue in the orthogonal regions, but T3 cannot be traversed.

A PSSM test case contains many details which illustrate and check some part of the
semantics. However, as we would see later in Section 4, this description sometimes still
misses key details and concepts that hinders understanding and cross-checking the seman-
tics. For example, as only the firing of transitions T1.2 and T2.2 are written in the trace,
we cannot be sure about the order of T1.1 and T2.1. If T1.1 fires first, does it mean
that the upper region always steps first and T1.2 should also come first? Such specific
questions about corner cases could only be answered with more directed test cases or more
detailed descriptions (e.g. the RTC table could define the internals of an RTC step).

2.5 Tools: Implementations, simulators and verifiers

One of the novelties of fUML specification’s development was a reference implementa-
tion2 created in parallel with the text of the specification. This software takes an XMI
(XML Metadata Interchange) description of a UML model and provides an execution trace
for selected activities. The reference implementation prints out only one execution trace,
even if multiple possible alternative traces exist when executing an activity. The reference
implementation used during the development of the PSSM specification was an open-
source component for the Moka plugin3 of Eclipse Papyrus. The Java code implementing
the methods of the execution model’s classes is more or less the same as the one in the
semantics model XMI of the specification.

Simulator tools usually offer visualisation and debugging capabilities among model exe-
cution. As far as we know, Cameo Simulation Toolkit (CST) is the only commercial UML
modelling tool stating that it simulates state machines according to the PSSM semantics.
CST offers a graphical user interface for simulating state machines, but generally it pro-
duces only one simulation trace in case of parallelism or non-deterministic choices.

2 fUML implementation: https:// github. com/ Model Driven/ fUML- Refer ence- Imple menta tion
3 Eclipse Papyrus Moka: https:// wiki. eclip se. org/ Papyr us/ UserG uide/ Model Execu tion

https://github.com/ModelDriven/fUML-Reference-Implementation
https://wiki.eclipse.org/Papyrus/UserGuide/ModelExecution

584 Software Quality Journal (2023) 31:575–617

1 3

Formal verifier tools can check some properties of the model (Micskei et al., 2014).
These tools usually analyse all or many possible traces for a given model. Thus they can
reason whether a specific state configuration is reachable or whether there is a dead-
lock in the model. There are verifier tools for subsets of fUML (Lima et al., 2020) or
SysML (Horváth et al., 2020).

3 Challenges of assessing modelling language semantics

In this section, we examine the specificities of developing modelling language specifica-
tions in order to highlight the increased importance of human understanding. While pro-
gramming languages can be regarded as a form of communication between humans and
machines, the use of modelling languages is closer to natural languages in the sense that
their primary role is (a more formalised, potentially computer-assisted) communication
between different stakeholders of the system development process. In this sense, the equiv-
alent of an execution platform for a programming language is in fact many times a human
engineer realising the prescribed model.

Along this insight, we first collect the various human parties involved in different
aspects of a modelling language and shortly present their viewpoints. Then we identify the
various artefacts a specification may provide to cater to these stakeholders and examine
them with respect to the extent and quality of understanding they can provide about the
language. Finally, we zoom in on these understandings and analyse the impact of the vari-
ous ways they may be misaligned.

3.1 Understanding stakeholder viewpoints

Stakeholders interested in the semantics of a modelling language may have very different
motivations, which may be addressed differently (Harel & Rumpe, 2004). In order to assess
the quality of modelling language specifications, we will consider three distinct groups in
terms of their goals and necessities.

The widest and most obvious group is model users, composed of end-users of the lan-
guage, i.e. modellers, engineers, and any other practitioner interested in communicating
through models (either with others or themselves). Therefore, the primary interest of model
users is to efficiently, intuitively and unambiguously convey information with the help of
models. However, they mostly work with informal intuitions and rely on patters to move
from examples to abstractions and back.

Another group with significantly different concerns is developers, including implement-
ers taking the models as specification as well as developers of simulation and analysis/
verification tools. The primary interest of developers is a precise, often to-the-letter inter-
pretation of a model for some kind of execution, as opposed to getting an overall intuition.
While implementers are usually close to the modeller and can use other means of com-
munication to clarify issues, tool developers have to rely on the specification only. Further-
more, while simulators generally aim to derive one or some valid executions of the model,
analysis and verification tools in theory should be able to consider all of them (and only
them).

Last but not least, the developers of the language or its specification, as well as meth-
odologists creating guidelines for the utilisation of the language are also stakeholders with
special requirements. They are distinguished from the previous stakeholders in that they

585Software Quality Journal (2023) 31:575–617

1 3

need to maintain a holistic picture of all the features and artefacts of the language in order
to make it usable and ultimately a successful engineering tool. They are responsible for
avoiding inconsistencies inside and between different artefacts, and for providing mappings
between common problems of a domain and the constructs of the language.

3.2 Assessing views provided by specification artefacts

As we could see, while the complete and consistent description of the syntax and seman-
tics is a primary concern of language developers, the specification of a successful language
needs more than that. As a modelling language is a tool, its success will mostly depend on
how well its users can employ it to solve their problems. A language not explained suffi-
ciently to its different audiences will most likely fail.

In this section, we describe the possible artefacts produced in the specification process
of a (behavioural) modelling language to facilitate this explanation. Figure 2 shows the
possible artefacts, how they are related to each other, and what iterative steps could be
used to improve the clear and precise understandings of these artefacts with respect to the
language’s semantics.

Specifications are usually given as an informal text. Language designers iteratively
review and refine the text to harmonise with their understandings and to clarify vague parts
and resolve inconsistencies in order to improve the quality of the specification. ① denotes
this review-revise cycle. The understanding of the informal specification is the complete
definition of the whole language but due to its informal nature it is unclear at certain
points. This is illustrated by the blurred edges in the figure. Before submitting new versions
of standards third party reviewers also review the specification in most cases.

The specification can be refined by giving a semi-formal semantics, which includes
some kind of semi-formal description, e.g. using other languages or structured textual
rules. ② Refining the semantics makes the specification more precise and clarifies certain
questions. This process can also be used in the opposite direction to complete the informal
text where needed and resolve inconsistencies. ③ The understanding based on the semi-
formal semantics is more precise than the informal text but it might be limited if it does not
cover the whole language (e.g. PSSM does not include time-dependant behaviours from

Fig. 2 Possible artefacts connected to a specification process of a modelling language, activities to check
them, and understandings gathered from them

586 Software Quality Journal (2023) 31:575–617

1 3

UML). Language designers revise the semi-formal semantics in order to match it to their
intended understandings.

Once the language is defined by more artefacts, their consistency is an essential ques-
tion. ④ The designers can compare their understandings of both the informal text and the
semi-formal semantics. This leads to a bigger review cycle where both artefacts can be
revised to decrease their misalignments.

Several other types of artefacts can help define the standard and verify its usage. An
implementation developed in parallel with the standard, called a reference implementation,
demonstrates the feasibility of the language, e.g. the standardisation of new C++ features
usually includes collecting implementers’ and users’ feedback before adoption.4 A refer-
ence implementation is precise and can clarify ambiguities, since it is defined using a pro-
gramming language, which is defined quite precisely. However, it is usually limited to a
subset of the language, i.e. it produces valid executions but not all possible executions. For
example, Moka reference implementation of PSSM is not capable of parallel execution,
which is allowed by the specification but not mandatory. ⑤ The implementation can be
compared to the semi-formal semantics using reviews.

A test suite can be designed to verify whether implementations execute models con-
forming to the specification. For this purpose test design techniques can be used, e.g. aim-
ing to cover the requirements imposed by the semi-formal semantics with test cases to ver-
ify that the requirements are fulfilled. ⑥ The test suite can be used to verify the reference
implementation. This way we can make sure that the reference implementation produces an
execution that is included among the possible valid executions defined by the test suite. A
reference implementation can also be used to produce one/some of the valid executions if
we have a test model without the expected valid executions.

A test suite precisely defines the semantics for the test models in it, as it lists all the
possible executions. However, this only covers parts of the whole semantics. ⑦ These test
cases can be considered as illustrations of the semantics on selected examples, which can
be used to learn or infer the semantics of the language from these examples. The result of
this learning process is a more general but still partial view of the language. ⑧ By compar-
ing this inferred understanding with the semi-formal semantics we can discover if some
parts of the semantics are not tested by the test cases or if there are inconsistencies (which
will primarily concern language designers).

The specification can be extended with formal semantics using mathematical formal-
isms that define a precise semantics of the language, or more commonly, a subset of it.
This can be compared to the specification using review to find inconsistencies and clarify
parts that should be clear also in the specification. Furthermore, the formal semantics can
be used by a verifier, which can derive proofs from the model considering every possible
interpretation allowed by the semantics. This can be used to show that an execution trace
conforms to a model, look for traces with a given property (e.g. to generate tests or find
requirement violations), or even potentially generate every trace of a given model, e.g. a
test model — in which case we get the expected valid executions of that test case. ⑨ This
way the test suite can be verified to match the formal semantics.

4 https:// isocpp. org/ std/ the- life- of- an- iso- propo sal

https://isocpp.org/std/the-life-of-an-iso-proposal

587Software Quality Journal (2023) 31:575–617

1 3

3.3 Misaligned understandings of the semantics

After discussing the several artefacts aiming to refine and cross-check our understanding of
the semantics, we will now evaluate the impact of potential misalignments that can result
from their quality. Exploring these misalignments is crucial in order to identify what types
of issues could be present.

Figure 3 illustrates how the misalignment of the understanding of different stakeholders
may affect the successful adoption of a language. Assume we have a complex behavioural
model that defines a set of execution traces denoted by the dashed blue set in the Venn
diagram (all possible traces). The model has been created by a modeller (a model user
in the above grouping), whose understanding about the intended traces is denoted by the
green set (model users). A simulator is available for the language that is able to produce the
orange set of execution traces (simulators). Finally, the model is mapped into a formal lan-
guage and given to a formal verifier, which will explore the behaviours in the red set (veri-
fiers). In this last case, we also show with an embedded dotted set that regardless of the
mapping, a verifier may be unable to explore the all behaviours of the model.

Ideally, these sets should coincide perfectly. This (very unrealistic) case would assume:

• From the user, a perfect understanding of all the language concepts and every detail of
the semantics.

• From the simulation, a completely controllable simulation down to the smallest non-
deterministic steps, perfectly faithful to the specification.

• From the verifier, a perfect, semantics-preserving and complete mapping from the mod-
elling language to the formal language and a sound and complete verification algorithm
that is capable of exploring all the behaviours defined by the model.

More often than not, however, the sets will not align perfectly. First of all, no matter
how detailed the semantics are, there are often (either deliberately or accidentally)
un- or underspecified cases where it is not possible to decide whether a given trace

Fig. 3 Subset of traces understood by users and explored by tools

588 Software Quality Journal (2023) 31:575–617

1 3

is defined by the model or not. For example, most modelling language specifications
refuse to go into details about memory management (the handling of variables) as it is
highly platform-specific, but this makes one unable to reason about the precise effects
of concurrently accessing a shared variable. Other times users or tool developers are
not familiar with the details of the language well-enough, have different preconceptions
which they use to fill in the blanks, or simply misunderstand things for some reason.

In the following we will discuss the causes and effects of the various misalignments,
marked by numbers in Fig. 3. Any quality assessment activity should focus on recognis-
ing these misalignment and inconsistencies with respect to the various semantics.

 1. The ideal case is when an execution trace is envisioned by the user, it is allowed by
the specification, can be simulated with a simulator, and formal verifiers can reason
about its correctness.

 2. Quite frequently, verifiers will not be able to analyse a trace, either because it is theo-
retically very hard or impossible, or because they are not prepared for a subset of the
language or miss the semantics. This is not a significant issue, because we are still in
the user-expected subset and therefore confirmation by one tool is usually enough.

 3. Other times, verifiers will return traces that are expected by the user, but cannot be
simulated. This usually happens when the simulator cuts some corners in the seman-
tics, and, e.g., fixes behaviours that are non-deterministic based on the specification.
This case may cause confusion to the user, as simulators are considered more credible
— in this case, one would check the specification to confirm that the trace is indeed
allowed by the semantics.

 4. Sometimes, users are aware of traces that are implied by the semantics, but no tool can
handle them. Since they are left alone, there should be an easy way to get confirmation
from the specification. Users will often avoid models with such behaviour because
they will not take the risk of being wrong — note that the set of valid traces defined
by the specification is often fuzzy.

 5. A “success story” of tool development is when a verifier shows the user a trace that was
not expected, and through detailed simulation users can expand their understanding
about their models and the modelling language. However, in a sense, this may also be
a shortcoming of the specification — one that can be compensated with good tooling.

 6. A similar case is when even though we are outside the capabilities of the verifier, but
using the simulator, users can discover new behaviours in their model. In a sense, this
is the purpose of testing: to validate if the model indeed describes the intentions of
the modeller. There may be questions about whether the trace is indeed allowed by the
specification or not (case 6 or 9), but simulators are generally better in explaining their
results, so users can employ techniques similar to debugging to decide on a verdict.

 7. The other variant, where the verifier returns an unexpected trace without the simula-
tor being able to reproduce it, is similar to case 3. Even worse, users may be more
suspicious, because according to their understanding, the trace should not be valid
according to the specification. Contrary to case 6, there is generally no possibility for
“debugging”. Considering whether the trace is indeed in case 7 or in case 10 outside of
the behaviours allowed by the specification is a very hard task that requires expertise.

 8. There may be cases when users envision traces that are not permitted by the specifica-
tion. This may come from a misunderstanding of the semantics, but it may also be the
consequence of the limited capabilities of the language. The former is a problem that
can and should be supported by specification artefacts aimed at the user, i.e. explana-

589Software Quality Journal (2023) 31:575–617

1 3

tions and examples, or tool support to validate models and give warnings about pos-
sibly confusing parts of the model. The latter should be discovered by the language
designers, who in turn should make a decision whether to support these cases or not,
or provide workarounds to change the model for a better alignment. In any case, a too
large gap is the responsibility of the designers and addressing it should be in their best
interest if they want the language to be successful.

 9. Other times, simulators will produce traces that are in fact not allowed by the speci-
fication. This is dangerous, because users will more often believe tools rather than
textual descriptions of the semantics, and this way they may not be aware that other
tools (e.g. code generators) may interpret the model differently. To help avoid this,
language specifications may try to define test sets for the evaluation of simulators.

 10. Verifiers may also produce invalid traces for a plethora of reasons, mostly due to
transformations not maintaining the original semantics. Once again, they can be really
confusing to users, as they need to rely on the specification to decide on a verdict.
Furthermore, too many false positives can lower the usability of verifiers and erode
user-trust.

 11. The most dangerous part of the Venn diagram is where neither the user, not the simula-
tor or the verifier is aware of the trace that is otherwise legal according to the speci-
fication. Users often miss corner cases (such as the specific firing sequence in the
example of Section 2.4), but these will not come up in simulators either, and verifiers
will produce false negatives. The problem is that other tools and people, especially
implementers or code generators may very well come up with these exact traces, most
of which have never been tested or verified or even considered.

A key takeaway from the above list is that misalignments can be dangerous, and it is the
responsibility of the specification to help stakeholders align their understanding with the
true and intended meaning of models. A language that does not help its users in this is
likely to fail. In the rest of the paper, we will present a set of techniques that can be used
to assess how well a specification fares in this regard, mostly by detecting consistency
problems.

4 Assessing the PSSM specification

To synthesise how modelling languages’ semantics can be assessed and what typical issues
are present in state-of-the-art specifications, we reviewed and assessed the UML PSSM 1.0
specification (OMG, 2019). We choose PSSM as it is a recent standard applying many of
the good practices listed in the previous section (e.g. test suite, reference implementation).

4.1 Steps of assessing the PSSM specification

We found no prior work on evaluating the PSSM specification. Therefore we started with
common verification and validation techniques, then we outlined the possible artefacts and
cross-validation options for a behavioural modelling language in the assessment workflow
in Section 3.2. Figure 4 shows how this workflow is adapted to PSSM. UML defines state
machines in an informal text, PSSM gives a semi-formal semantics and a test suite, Moka
is the reference implementation for PSSM, Cameo is another implementation we used.
Unfortunately, a PSSM-compliant verifier for state machines is not available.

590 Software Quality Journal (2023) 31:575–617

1 3

The types of assessment activities we performed and the insights we gathered can be
mapped to the workflow in Fig. 4 in the following way.

1. We had an initial understanding of the semantics defined in the UML specification from
our previous experience (step ① in Fig. 4).

2. We reviewed the text of the specification (Section 4.2).

(a) We read the standard concentrating on the parts about semantics. We collected the
essential concepts that affect the execution ③. We continuously cross-checked the
new information with the text of the UML specification and with our understand-
ing of the intended semantics ④.

(b) We reviewed and categorised the test cases. The behaviour described in the tests
helped to infer additional details about the semantics ⑦.

(c) We identified some major cross-cutting semantic concerns (e.g. scope of ato-
micity and interleaving in orthogonal region) that are challenging to understand
even from all the available artefacts (Section 4.2.2). The highlighted blue parts
symbolise these concerns in the figure. The figure stresses the main challenge in
defining or assessing the semantics of modelling languages: such semantic con-
cerns are scattered in various parts of multiple artefacts that should be consistent
and unambiguous.

(d) We cross-referenced the textual descriptions of the relevant execution classes and
test cases mentioning those concerns (highlighted in blue), and tried to construct a
big-picture view of the given concern supported by the evidence in steps ⑦ and ⑧
(Section 4.2.3).

(e) To gain additional insights, we consulted the Java source code of the Moka refer-
ence implementation in step ⑤.

(f) We collected relevant test cases, categorised them in a test coverage table to find
parts of the semantics that are not tested thoroughly enough (Section 4.2.4).

Fig. 4 Artefacts connected to UML/PSSM standard and understandings gathered from them. Highlighted
blue parts symbolise questions about certain semantic concepts in the language. Blue lines connect the arte-
facts and their understandings that we compared during the assessment

591Software Quality Journal (2023) 31:575–617

1 3

(g) During the review of the tests, we found conceptual limitations and inconsisten-
cies of PSSM’s test architecture (Section 4.2.5) and the way the expected results
are specified in tests (Section 4.2.6).

3. We executed the test suite available as an XMI document in a UML/SysML simulation
tool in step ⑥ (Section 4.3).

(a) We compared the trace produced by the simulator to the ones given in the speci-
fication.

(b) We manually experimented with different stimuli in case of test cases covering
the above-mentioned challenging cross-cutting concerns.

As PSSM is a complex specification, we did not aim for completeness in our review. We
concentrated on the most frequently used elements and behaviour. For example, we skipped
most of the test cases of the following categories: Junction, History, Redefinition. Never-
theless, we already found several issues, and our findings illustrate general challenges in
specifying precisely such an expressive modelling language.

4.2 Reviewing the specification and test cases

During the review process, the first and the last author separately reviewed parts of the
PSSM test suite along standard review criteria (e.g. consistency, unambiguity, complete-
ness). Then all authors discussed the issues found. We reported the errors found to OMG
through 6 issue tickets on their official portal.5 Some concerns, e.g. exact representation of
semantic concepts such as threading or RTC steps, are more significant than a simple issue,
and would require a major rework of the standard. Therefore we recommend some of our
findings in Section 5 primarily for language designers of modelling languages.

4.2.1 Revisiting transition firing and orthogonal regions

In the subsequent sections, most questions are concerned with the detailed execution and
specific cases of the transition firing sequence or the possible concurrent execution of
orthogonal regions. Therefore we shortly summarise their behaviour.

Transition firing sequence The transition firing sequence is as follows.

1. The Transition source is exited. The exit sequence consists of a call to the exit Behavior
of the source vertex. This exit sequence can propagate exit calls to parent vertex as long
as the least common ancestor Region of the source and the target vertex has not been
reached.

2. The effect Behavior of the Transition is executed.
3. The Transition target is entered, and its entry Behavior is executed. This call can

lead to a number of nested enter calls to enter parent vertices before the actual target
vertex is entered until the least common ancestor is reached (OMG, 2017, 14.2.3.9.6;
2019, 8.5.3).

5 See https:// issues. omg. org/ issues/ spec/ PSSM/1.0

https://issues.omg.org/issues/spec/PSSM/1.0

592 Software Quality Journal (2023) 31:575–617

1 3

Conflict and priority UML defines that two Transitions are in conflict if they both exit
the same State (i.e. the intersection of the States they exit is non-empty). Only Transitions
that occur in mutually orthogonal Regions may be fired simultaneously. A partial priority
between transitions is defined based on their source State: a Transition originating from a
substate has higher priority than a conflicting Transition from any of its containing States
(OMG, 2017, 14.2.3.9.3).

Orthogonal regions In the presence of orthogonal Regions, it is possible that multi-
ple Transitions in different Regions can be triggered by the same Event occurrence in an
order which is left undefined. Each active orthogonal Region without nested Regions (i.e.
a “bottom-level” Region) can fire at most one Transition for an Event occurrence. When all
Regions have finished executing the Transition, the current Event occurrence is fully con-
sumed, and the run-to-completion step is completed (OMG, 2017, 14.2.3.9.1).

These concepts seem to be well-defined. However, if we take a closer look and try to
understand every possible combination and corner cases, we may have several questions. In
the subsequent section, we first describe the identified general question that is relevant for
all modelling languages (marked with General), then illustrate this question with specific
issue(s) in PSSM, then detail concrete examples and evidences from the PSSM text or the
test suites that help to characterise these issues, and finally summarise the insights.

4.2.2 Explicit definition of concepts in the semantic domain

The classes of the original UML specification represent those model elements that the
engineers use to construct the model of the system under study. The concepts of seman-
tics are described in the accompanying text. The novelty of fUML and PSSM was that
they explicitly introduced some of these semantic classes, e.g. Token in activities or the
deferred event pool in state machines.

General: Defining and including essential semantic concepts Turning informal seman-
tic concepts into explicit classes makes explaining or reasoning about the semantics much
easier for model users, and tool developers could implement these concepts similarly. How-
ever, during the review we found out that not all semantic concepts are explicitly included
in the specifications. For example, the concept of threading is implicit in fUML activi-
ties (OMG, 2011, 8.9.1), and the run-to-completion step for state machines is not modelled
explicitly in PSSM. Language designers have to make a non-trivial trade-off: specifying
everything might make the specification incomprehensible, but leaving out a core concept
might raise unending questions.

PSSM: What is an atomic execution step? We illustrate this situation with an example
on the definition of the basic execution step. A core aspect of the semantics is the exact
definition of what an atomic step of execution means. Atomicity influences what steps can
overlap and when an execution can be aborted.

UML State Machines are driven by run-to-completion (RTC) steps. However, the unit
of execution is not an RTC step, but the different micro-steps of entry/exit behaviours
or effects. The decision on what constitutes an atomic step and when the effects can be
seen, e.g. by other components, is a well-studied problem in the early history of stat-
echarts (Pnueli & Shalev, 1991). Various statechart versions use slightly different strate-
gies, but it is crucial to define these basic assumptions explicitly.

593Software Quality Journal (2023) 31:575–617

1 3

The previously described transition firing sequence seems to define the execution steps
in simple cases. How the execution steps interleave with each other is rather complex in
case of concurrently firing, possibly compound transitions in orthogonal regions. Moreo-
ver, these behaviours are defined with activities composed of numerous actions. Thus
besides entry/exit behaviours and transition effects interleaving with each other, they might
overlap each other. How internal actions can overlap is especially interesting if, e.g., they
depend on the same variable (StructuralFeature), they read or write them parallelly.

Therefore the different stakeholders could raise a number of questions regarding atomic-
ity and interleaving.

• If there are more than one transition firing concurrently, can every step in the different
transitions’ firing sequences interleave with each other?

• Can entry/effect/exit behaviours of different transitions interleave?
• Are these steps intended as instantaneous? What happens if we add actions with long

duration constraints to effect behaviours?
• How is the execution affected if we have an asynchronously running doActivity behav-

iour executing in the current state configuration?

The specification answers some of these situations with the help of the test cases. However,
it provides no systematic evidence to fully answer questions about atomicity or concur-
rency. Some concurrency aspects are deliberately left undefined to accommodate various
implementations and execution platforms, e.g. no actual parallelism or multi-threading
is required in a conformant execution tool as long as it produces a subset of the allowed
traces. However, the specification needs to define the set of all possible traces, i.e. if there
are any restrictions at all on concurrency. It would be beneficial to clarify this in the text
and illustrate its consequences with positive and negative test cases.

Example We will present these questions in more detail in the subsequent questions.
Now we use the example of doActivities to show why these are important questions that
can affect the execution of even basic state machines. A controversial part of the specifica-
tion is the atomicity of doActivities, i.e. is there any part of a doActivity that is undoubt-
edly executed before its abort caused by, e.g., an event triggering an outgoing transition.

When state S1 in Fig. 5 is entered, the entry behaviour is executed, and then the
doActivity starts its execution on its own thread. After that, the state machine dispatches
AnotherSignal from the event pool, which aborts the execution of the doActivity,
runs the exit behaviour, traverses the transition and executes its effect. Test case Behav-
ior 003-A specifies that the only possible trace is entry::do-I::exit::effect,
where the doActivity can print to the trace, waits for an incoming Continue, and then the
dispatching AnotherSignal aborts the doActivity while it is waiting for a signal. On

Fig. 5 A state machine with an aborted doActivity. Input event: AnotherSignal. Based on OMG (2019,
Behavior 003-A)

594 Software Quality Journal (2023) 31:575–617

1 3

the other hand, test case Event 017-B allows an alternative execution, where the doActiv-
ity is aborted before printing to the execution trace: entry::exit::effect. It argues
that the doActivity starts its execution asynchronously when its state is entered, thus the
doActivity may or may not have the time to contribute to the trace before the state is exited.

Summary This example presented a case where the semantics inferred from different
test cases are inconsistent. Without having an explicit definition of what is atomic in the
state machine execution, it is hard to decide which version is the intended semantics. Edge
cases and contradictions of this kind should be either clarified or explicitly marked as
implementation-defined.

4.2.3 Exact representation of semantic concepts

General: Canonical representations for core semantics concepts For model users and
tool developers to understand the semantics, it is helpful to have canonical representations
for semantic domain concepts. For example, as we discussed previously, some semantic
concepts were explicitly introduced in fUML and PSSM (e.g. activations of model ele-
ments). However, some fundamental concepts are left implicit, e.g. the RTC steps forming
an execution trace. Even if traces, threading, or RTC steps are not explicitly represented in
the execution model, the specification should define an unambiguous representation format
for them to ease interoperability and communication.

PSSM: How to represent run‑to‑completion steps unambiguously? The RTC steps are
described with a table in the test case definitions. The table contains an ID for the step, the
status of the event pool and the state configuration before the RTC step is started, and the
fired transitions.

The RTC steps table should be detailed enough to differentiate the alternative executions. The
text does not clarify whether an execution trace has only a single possible sequence of RTC
steps or whether different RTC steps of the same state machine can also produce the same
trace. In our opinion, the RTC table does not contain all the necessary information to uniquely
identify the executed behaviour (e.g. interleaving of state and transition activations).

As we discussed above, the exact behaviour of orthogonal regions poses several ques-
tions. Thus we examined the RTC steps of those. The RTC steps table defines the fired

Table 2 RTC steps of test case Transition 019 (OMG, 2019)

Step Event pool Configuration Fired transition(s)

1 [] [] - Initial RTC step [T1]
2 [Start, CE(wait)] [wait] []
3 [Start] [wait] [T2(T1.1, T2.1)]
4 [Continue, CE(S1.1), CE(S2.1)] [S1[S1.1, S2.1]] []
5 [Continue, CE(S1.1)] [S1[S1.1, S2.1]] []
6 [Continue] [S1[S1.1, S2.1]] [T1.2, T2.2]
7 [CE(S2.2), CE(S1.2)] [S1[S1.2, S2.2] [T1.3]
8 [CE(S2.2)] [S1[S2.2]] [T2.3(T3)]

595Software Quality Journal (2023) 31:575–617

1 3

transitions in each step, which can include multiple transitions in orthogonal regions and
compound transitions.

Question Does the order of the fired transitions in the RTC table define execution order
or is it only a set of unordered transitions?

Example The RTC steps of state machine Transition 019 (Fig. 6) are described in
Table 2. The first three steps are as follows.

• Step 1-2: Initial RTC step, then the completion event of wait is discarded.
• Step 3: The state machine dispatches a Start event which fires [T2(T1.1, T2.1)]

compound transition to implicitly enter the orthogonal regions via the initial Pseu-
dostates. Entering the states S1.1 and S2.1 produce completion events CE(S1.1)
and CE(S2.1) (resp.).

As we can see, a lot can happen in a single RTC step, and only part of the behaviour is vis-
ible from the RTC step table. In order to decide whether the text in the fired transition(s)
column represents the order in which the concurrent transitions T1.1 and T2.1 have been
fired, we could cross-check this information with the RTC step table of the alternative
traces. In both the main and alternative RTC steps table the firing is written as [T2(T1.1,
T2.1)], but the order of produced completion events are different ([CE(S1.1),
CE(S2.1)] and [CE(S2.1), CE(S1.1)]). Does this mean that the order in which the
fired transitions are irrelevant (i.e. they can be in any order or fire even in a true concurrent

Fig. 6 A test case with compound and simultaneous transitions in orthogonal regions. Input events: Start,
Continue. (OMG, 2019, Transition 019)

596 Software Quality Journal (2023) 31:575–617

1 3

manner)? Or is the firing order the same as the written order, just the firing order of the
transitions does not determine the order in which the completion events are produced (see
the general question in the previous section about what is atomic and what can interleave)?

Similarly, in test Entering 011, the fired transitions seem to be unordered or not affect-
ing the order of completion events since the compound transition [T2(T1.1, T2.1)] can
produce multiple traces and CE orders. For example, in trace T2.1(effect)::S2.1(e
ntry)::T1.1(effect)::S1.1(entry) the fired transition order in the RTC table
is the reverse of the effect order in the trace, and the order of the state entry behaviours
does not imply the order of the completion events produced. Furthermore, in an alternative
trace the effect order does not imply the order of entry behaviours, i.e. it is in reverse. In
Fork 001 the fired transitions are not ordered alphabetically, which would suggest that their
order matters but the transition effects in the trace do not follow the same order.

On the contrary, in a similar setting in test Entry 002-B the fired transitions are listed
in different orders and the order determines the order of entry behaviours and the order
of CEs in the event pool, i.e. [T2(T1.1, T2.1)] produces [CE(S1.1), CE(S2.1)]
and the reversed transition order, [T2(T2.1, T1.1)] produces the reversed event order
[CE(S2.1), CE(S1.1)]. The same applies to tests Terminate 001 and Terminate 002,
where transition order in RTC steps determines the order of entry behaviours and comple-
tion events (in the former test). Another test from the Fork category, Fork 002 suggests that
different transition firing orders imply the transition effect order in the trace, despite the
counterexample in Fork 001.

As we experienced, from the partial information in the RTC step table, we could deduce
that the order of the fired transitions in RTC steps in some test cases is unordered and can
produce several different orders in the trace and the event pool. However, in some tests the
fired transitions are ordered and this order not only defines the transition effect order in the
trace but can also define the entry behaviour order and the order of the completion events
in the event pool, from which it follows that these should be executed as atomic steps, even
though transitions in orthogonal regions are fired concurrently. Some examples show that a
single trace can be produced by several different RTC step sequences, despite at most one
of them is showed in the tests.

Summary If an element of the semantic domain is not modelled explicitly, it is important
to have an unambiguous representation for it in the examples and test cases. Users could
use the information in the test cases to accept or reject some theories about the working of
those elements. But in order to decide such questions, the test cases should not contradict
each other, and the representation should contain all the necessary details or it should be
explained what is left undecided in it.

4.2.4 Emergent behaviours need explanation and systematic testing

General: Undefined emergent behaviour of well‑defined elements An overarching
challenge in defining modelling languages’ semantics is the identification and explanation
of emergent behaviours. Even if some of the language elements and their semantics are
clearly explained, combining these elements might result in emergent behaviours. These
behaviours might be clearly defined using the composition of individual semantic rules, but
in many cases, these behaviours are unexpected or even unintuitive for some users. It is a
good practice to explain them with simple examples and later use systematically designed
tests to check the behaviours of possible combinations.

597Software Quality Journal (2023) 31:575–617

1 3

PSSM refines how UML modelling elements should behave and defines test cases
verifying and illustrating the behaviour of a few of these elements in each. As UML
has numerous modelling elements and concepts used in state machines, the elements
can have various combinations that alter each other’s behaviour. Some of these com-
bined behaviours can be easily deduced by the model users. Other combinations need
clarification and explicit specification about the emergent behaviour of those model-
ling elements when used in combination. To verify the tools, developers need test cases
designed systematically to test the intricate behaviour emerging from the combination
of elements.

PSSM: Combining transition firing and orthogonal regions The steps of firing a transi-
tion, and the selection of transitions in orthogonal regions even in case of conflicts are
separately well-defined (see Section 4.2.1), therefore comprehensible. However, it is con-
siderably harder to understand the emergent behaviour of their interaction. The concur-
rent firing of transitions in orthogonal regions is a hard-to-understand part of PSSM, e.g.
how the exit–transition effect–entry behaviour sequences can interleave with each other in
orthogonal regions, and which parts should be executed in one RTC step (we mentioned
this question previously in Section 4.2.2).

Question Are the possible combinations of the firing sequence of multiple transitions
explained in the specification and illustrated with test cases?

Simple state machines for exit, transition effect, and entry behaviours and for con-
flicting transitions in orthogonal regions are shown in Fig. 7a and b. Exit–transition
effect–entry sequence and orthogonal regions separately are explained in the relevant
execution model classes in PSSM and some test cases verify these aspects. (Although the
whole exit–transition effect–entry sequence, illustrated in Fig. 7a, is only present in quite
complex test cases.6)

(a) Transition effect and

entry/exit behaviours.

(b) Conflicting transitions and orthogonal regions.

Fig. 7 State machines illustrating behaviours that are well-defined separately but their interaction is compli-
cated

6 Test cases: Event 018, Deferred 002, History 002-A, History 002-B

598 Software Quality Journal (2023) 31:575–617

1 3

However, we were not able to find an explanation in UML and PSSM about their joint
behaviour and how the steps can interleave with each other.

Example To reveal the subtle details of transition firing in orthogonal regions, we sys-
tematically reviewed all the 34 PSSM test cases which contained orthogonal regions.
Table 3 lists the 24 test cases whose traces showed concurrency in transition firing steps,
i.e. exit/entry behaviours and transition effects. Only selected states and transitions in the
test cases are extended with activities that print to the trace therefore comparing the traces
can only verify the order of these steps. Concurrency between exit/entry behaviours and
transition effects is denoted with X. In certain tests (denoted with CE) alternative order of
the steps is present as the transitions are triggered by completion events that are put into the
event pool after their states, which are active concurrently, complete their own behaviour.
However, as the completion event of a state is processed in separate RTC step, the transi-
tion firing steps in one region form an atomic step and they are not concurrent and cannot
interleave with transition firing steps of other regions. In this case only the completion of

Table 3 PSSM test cases where transition firing behaviours interleave with each other in orthogonal regions

Notation: X — the two behaviours interleave with each other in the test, CE — the two behaviours can pre-
cede and succeed each other depending on the order of completion events in the event pool, * — the test
case has errors. Note: duplicate test cases in Standalone category are excluded.

exit transition effect entry

Test case exit transition effect entry transition effect entry entry

Transition 011-D* X X

Transition 017* X

Transition 019* X X X

Transition 023 X

Event 009 X

Event 016-B X

Event 019-E X

Entering 010 X X

Entering 011 X X X

Exiting 001 X

Exiting 003 X

Entry 002-A X

Entry 002-B X

Exit 002 CE

Junction 005 X X

Fork 001 X X X

Fork 002 X X

Join 001 CE CE CE

Join 002 X

Join 003 CE

Terminate 001 X

Terminate 002 X

History 001-C* CE CE

History 002-B* CE CE CE CE CE CE

599Software Quality Journal (2023) 31:575–617

1 3

the previous states, which triggers the steps, is concurrent. Test cases marked with * have
errors in the traces.7

Evidence There is no test case which shows the concurrency of all the 3 steps (i.e. a row
with 6 X-es in the table). The 6 test cases with X marks in exit–transition effect, exit–entry,
or transition effect–entry columns can partially answer the question about interleaving
steps: Steps in another region (exit and effect in the example) can be executed between
exit behaviour and transition effect in one region (Transition 019). Steps in another region
(effect and entry in the examples) can be executed between transition effect and entry
behaviour in one region (Entering 010, Entering 011, Junction 005, Fork 001, Fork 002).
Since there is no X in the exit–entry column, there is no test case to show whether the whole
exit–transition effect–entry sequence in one region can precede the same in another region,
despite UML specifies that transitions in orthogonal regions may be fired simultaneously.

Summary Test cases should be designed systematically to illustrate and verify how such
behaviours can interleave. It would be beneficial to elaborate on the emergent behaviour
in all relevant artefacts, since the individual specifications might not be enough for many
stakeholders.

4.2.5 Test architecture for conformance test suites

General: Observability and controllability trade‑offs for the tests As we have seen, hav-
ing a test suite is essential for supporting understanding (model users) and checking tool
conformance (developers). The authors of PSSM spent a great amount of effort on design-
ing a test architecture where the test suite is automated, tool-independent, and can be traced
to the requirements derived from the normative text of the UML specification.

The decision to perform the testing on the model level without direct interaction with the
execution engine influenced what can be logged in the test trace used to evaluate the out-
come of the tests. RTC steps, the content of event pools, etc. are described as supporting
information, but they are not part of the machine-readable test suite. However, as we will
see, this is not the only controllability and observability challenge with the test architecture
and traces.

Observability: What information should the test trace contain? Based on the test’s pur-
pose, certain state machine states and transitions are extended with entry/exit/doActivity
behaviours and transition effects that trace the execution to make the behaviour of the tar-
get state machine observable and verify that the execution tool under test runs correctly.
State changes and transitions are expected to happen as a consequence of stimulation sig-
nals. However, the traces do not contain the received input signals. Therefore the test suite
cannot enforce the causality and the order in which the input and output signals interleave.
The text also describes the intended RTC steps for each test case, but the tests have no
means to verify that these were the executed RTC steps.

7 E.g. Transition 011-D fails to list traces in both order that the concurrent entry of the initial states of
two regions can produce. The order of concurrent transitions in the traces of Transition 019 determines
the order of their target states’ completion events in the event pool (as if transition effect and the target
state producing CE is an atomic step), despite transitions in orthogonal regions may be fired simultaneously.
Completion transitions in History 001-C and History 002-B incorrectly precede the initial entry of the other
region.

600 Software Quality Journal (2023) 31:575–617

1 3

Example PSSM states that comparing only the execution traces, which are intentionally
incomplete, is always sufficient to evaluate conformance.8 However, we found that this is
not necessarily true for every test case. For example, the purpose of test case Event 001
in Fig. 8 is to check that upon its creation, the state machine immediately starts its execu-
tion. The expected execution trace only contains a single part, the exit behaviour of the ini-
tial state wait. Start event triggers the outgoing transition T2, but this transition is not
included in the trace, nor is the received Start event. Therefore we were not convinced
that the test could actually verify that the execution was started immediately and the exit
behaviour was executed when the state exited and not before that since only the exit behav-
iour prints to the trace.

Summary Some of these observability questions can be addressed by adding more log-
ging calls to state and transition behaviours. This will increase the length and number of
alternative traces, but with the help of automation in test design, this could be managed.
However, adding the received signal to the trace is not trivial.9 We revisit these questions in
the discussions.
Controllability: Exact order and timing of test input sequence In each PSSM test
case, the tester encodes the test input, i.e. a stimulation sequence, and sends it to the
target. A test case enumerates the received event occurrences in an ordered list worded
as “SignalName — received when in configuration StateConfiguration”. This

Fig. 8 A test case with a single
part as expected trace. Input
event: Start. (OMG, 2019,
Event 001)

9 Specific tools might have extra support to get such information, e.g. the Action Language Helper API in
Cameo https:// docs. nomag ic. com/ displ ay/ CST190/ ALH+ APIs

8 “Although the trace built during the execution is not complete, it is always sufficient to evaluate if the
state machine was executed in way that conforms to the semantics specified for UML state machines”
(OMG 2019, 9.3.1).

https://docs.nomagic.com/display/CST190/ALH+APIs

601Software Quality Journal (2023) 31:575–617

1 3

suggests the order of the input signals is determined, and their timing depends on the
actual state configuration.10

Example Contrary to the quote above, the tester component disregards the state con-
figuration and may send the stimulation signals right after the test starts.11 For example,
the tester implementation of Exiting 002 sends two Continue signals (parallelly). Still,
the textual specification expects that the reception of the second signal should be after an
AnotherSignal sent to the state machine (by a doActivity in the state machine itself),
and the second Continue signal should be received only in the next state. Other testers
send the signals after each other, but the specification also prescribes in which state con-
figuration the events are received, which the test suite still does not ensure.

The tester has no means to delay sending a signal. Moreover, the tester cannot query
the actual state configuration of the target state machine, thus cannot wait for a state con-
figuration of another state machine or other events received by the state machine. Unless,
of course, the target state machine sends back signals to the tester. As one of the authors of
PSSM pointed out in an active OMG issue, ensuring that tester implementations send the
signals in the specified order is still insufficient because there is no guarantee that the state
machine will receive them in the same order as they can get reordered.12

Summary There is a non-trivial trade-off in the test architecture design balancing con-
trollability/observability, the complexity of tests, and tool independence. The chosen test
architecture constrains the part of the semantics that the test suite can potentially check.

4.2.6 Test design: specifying expected results in tests
General: How to derive expected results in tests efficiently? Creating a detailed, com-
plex test suite is, again, a challenging task. Standard test design techniques could help to
select relevant test inputs and scenarios. However, specifying the expected results for each
test is quite resource-intensive. Without tool support or models helping to derive tests,
manually specifying the tests can easily introduce issues into the test suite.

PSSM: Minor issues due to manual specification of expected result We found more than
a dozen cases when the PSSM test suite had minor inaccuracies, e.g. in the RTC steps of
tests. This is due to the error-prone manual specification of the test suite. In most cases, the
specification references non-existing states or transitions, but some refer to existing ones
that can cause confusion. For example, in test case Transition 020, the RTC steps table
refers to a non-existing state S1.1 instead of state S1 of the model.

PSSM: Specifying alternative traces completely and consistently As PSSM permits
multiple execution orders in certain cases (e.g. in orthogonal regions), alternative execu-
tion traces can also be valid. In most cases, the specification also lists these alternative
traces.

10 “test descriptions includes: … The event sequence that is received by the tested state machine. The order
in which the event occurrences are enumerated is the order in which the event occurrences will be received.
Each received event occurrence is related to a specific state machine configuration” (OMG 2019, 9.3.1).
11 Except for test Deferred 006-A, in which the target state machine sends a signal to the tester that causes
the tester to emit the next stimulation signal.
12 “Tests that send multiple signals are not correct”, https:// issues. omg. org/ issues/ PSSM11-3

https://issues.omg.org/issues/PSSM11-3

602 Software Quality Journal (2023) 31:575–617

1 3

Example For example, Fig. 9 shows a test case with an orthogonal region. In state con-
figuration [S1[S1.1, S2.1]] the state machine receives a Continue event which fires
local transition T3, then reaching an exit point causes state S1 to exit, and T4 is tra-
versed. Since the orthogonal regions are exited concurrently, the exit behaviours can print
S1.1(exit) and S2.1(exit) to the trace in either order. PSSM lists the following
two possible traces:

S1.1(entry)::S2.1(entry)::T3(effect)::S1.1(exit)::S2.1(exit
)::S1(exit)
S1.1(entry)::S2.1(entry)::T3(effect)::S2.1(exit)::S1.1(exit
)::S1(exit)

In this case, there is a more severe mistake in the specification, i.e. certain alternative exe-
cution traces are missing. Missing traces are problematic for several stakeholders. Model
users might not consider all possible executions of their model, thus they might design
faulty systems. Simulation and verification tool developers might build wrong tools by fol-
lowing the test cases, or their valid execution tools would be declared non-conformant by
wrong test cases.

In Fig. 9, the substates in the orthogonal region have not only exit but also entry
behaviours. Although PSSM specifies that the regions are entered concurrently

Fig. 9 A test case with missing alternative traces. Input events: Start, Continue. (OMG, 2019, Transi-
tion 011-D)

T3(effect) S1(exit)

S1.1(entry)

S2.1(entry)

S1.1(exit)

S2.1(exit)

Fig. 10 The 4 valid execution traces for Fig. 9 as an activity diagram

603Software Quality Journal (2023) 31:575–617

1 3

(OMG, 2019, 8.5.2), the test does not list the entry behaviours in the reversed order, i.e.
S2.1(entry)::S1.1(entry). By contrast, test case Entering 011 correctly allows
both orders of the entry behaviours.

As a compact representation for alternative execution traces, we introduce a notation
similar to activity diagrams. Figure 10 shows all possible alternative traces produced by
Transition 011-D in Fig. 9. The actions in the diagram print their label and a separator to
the trace with the restriction that printing is atomic, i.e. each name is printed after the other
and cannot overlap.

Summary A more compact, readable representation for alternative traces proved to be
really useful for us when reviewing complex test cases with numerous possible scenarios.
Such exact representations for important semantic concepts could be essential for all kinds
of modelling languages.

4.3 Executing the test cases in a simulator

From the available simulators (Section 2.5), we chose Cameo Systems Modeler 19.0 SP4
and executed the test cases in it. We also tried Moka, but it could not run state machines
reliably. Cameo is an MBSE environment for SysML models, which is stated to support
PSSM.13 Importing the official test suite from the XMI format and resolving the missing
dependencies was complicated, and the import displayed several warnings. Therefore we
had to send the stimulation signals manually to the target state machine and inspect the
execution trace in the console log instead of executing the test suite automatically. Conse-
quently, we refrain from evaluating the conformance of the tool.

The high-level summary of our experiences is the following.

• Basic tests from, e.g., Behavior, Transition, Event categories ran successfully, gener-
ated valid traces, and showed correct behaviour during the step-by-step execution using
the debugging tools of Cameo.

Fig. 11 Test case Transition 017 while simulated in Cameo (extended with transition labels). Visited (green),
last visited (orange), and active states/transitions (red) are highlighted with colours. Input event: Start. Gener-
ated trace during a particular run: T2(effect)::S1(entry)::S3.1(doActivity)::T2.2(effect)
::T3.1.2(effect). Next part of trace: T3.2(effect)

13 https:// docs. nomag ic. com/ displ ay/ CSM190/ 19.0+ LTR+ Versi on+ News

https://docs.nomagic.com/display/CSM190/19.0+LTR+Version+News

604 Software Quality Journal (2023) 31:575–617

1 3

• A few advanced modelling elements are not supported in execution: e.g. fork/join pseu-
dostates, evaluating guards with properties (Choice 001).

• Some elements or not recommended constructs are wrongly executed:

– local/external transitions (Transition 011-A–D);
– when the execution of a region is to be ignored because it misses the initial state

(Entering 004);
– the static analysis phase of junction pseudostates, which should precede the RTC

step (Choice 005);
– event deferred by a state in a region which blocks the other orthogonal regions

accepting it (Deferred 004-A).

A more important observation regarding the semantics is that since Cameo is a simulation
tool and not a model checker, it cannot be used to produce all possible execution traces.
However, it is not explicitly defined how the simulator handles non-deterministic choices
in the semantics (or even if every choice point is recognised by the simulator). Without
knowing such implementation details, users of a simulator might get the wrong impression
that their model is deterministic or there is no concurrency in it.

For example, in case of the test case Event 015 having two conflicting (completion)
transitions, Cameo seems to always traverse the same transition first. On the other hand,
Cameo can produce different execution traces non-deterministically in other tests, e.g. in
orthogonal regions (Fig. 11).14

The PSSM specification permits that conformant tools produce only a subset of the pos-
sible traces. Concurrency or time are intentionally not constrained by the fUML execution
model (OMG, 2021, 2.3). However, handling concurrency is not an explicit semantic vari-
ation point, therefore there is no standardised way to report on how these non-determinism
resulting from concurrency is handled internally in the simulator. Standardised templates
of conformance statements for such tool-specific choices would be beneficial.

5 Discussion

Based on the collected specification aspects, existing good practices, and the experiences
when assessing the PSSM specification, in this section we make recommendations to
improve the specifications of future modelling languages.

• The section starts with recommendations for the language (Section 5.1):

– Representation of semantic domain: the core semantic concepts of the language should
be explicitly represented as language elements and not just in the informal text.

– Abstraction level of execution steps: an essential semantic decision is what is observ-
able from the execution of the model.

• Then it continues with recommendations for test suites (Section 5.2):

14 The following 2 of 8 possible traces were observed while simulating Transition 017 in Cameo: T2(e
ffect)::S1(entry)::S3.1(doActivity)::T2.2(effect)::T3.1.2(effect)::T3.2(eff
ect), T2(effect)::S1(entry)::T3.1.2(effect)::S3.1(doActivity)::T2.2(effect):
:T3.2(effect).

605Software Quality Journal (2023) 31:575–617

1 3

– Derived test oracles: automatically deriving all valid execution traces for a model
would reduce inconsistencies in the test suite.

– Rigorous check of execution: checking only a high-level, partial trace could hide sev-
eral issues in the implementations.

– Representation of alternative execution traces: a graph-based representation could be
useful to capture many traces compactly.

– Creating tests using more diverse test design techniques: after fulfilling requirement
coverage, the test suite could be extended with other test design techniques (e.g. combi-
natorial testing of model elements).

– Separate tests for conformance testing and for readers: start with simple tests explain-
ing only the semantics of basic elements, then gradually include further elements or
specific cases useful for conformance checking.

• Finally, recommendations for tool support are given (Section 5.3).

5.1 Recommendations for language specifications

5.1.1 Representation of semantic domain

The precision and unambiguity of arguing about the semantics of a language are heavily
influenced by how its semantic concepts are defined. The fUML and PSSM standards make
the reasoning easier and more precise by explicitly defining some concepts of the semantic
domain with classes (e.g. event pool). Concepts of the semantic domain are defined in the
same metamodel as the elements of the language. Another possibility would be to give the
language translational semantics to another language.

Fig. 12 The observable traces (T) produced by a test case (TC) in different abstraction levels from high-
level (top) to implementation-level (bottom)

606 Software Quality Journal (2023) 31:575–617

1 3

During reviewing PSSM we found that some concepts of the semantic domain missed their
explicit definition, e.g. run-to-completion step of state machines. Consequently, several ques-
tions (e.g. concurrency) are hard to answer and the PSSM test suite contains contradictions
since we do not have the concepts to specify the “micro-steps” within an RTC step.

5.1.2 Abstraction level of execution steps

Defining the abstraction level of execution is a crucial decision, because it limits what can
be observed from the semantics by the various users and tools. Figure 12 shows an over-
view of the hierarchy of traces with different levels of details. If a state machine receives an
input, it could produce traces on the following abstraction levels during its execution.

1. Selected states and transitions in the state machine are extended with activities that
print to the trace. These traces (T

�
 and T

�
) are on the first trace level. They are the only

behaviours that can be observed from outside if the state machine is treated as a black
box.

2. The next level contains the RTC step representation used in PSSM test suite. The speci-
fication uses them only for illustration and they are not used during verification as there
is no means to examine the current state of another state machine. However, several
such traces (T

A
,… , T

C
) can produce the same observable trace (T

�
).

3. The next level of traces (T1,… , T5) present the operational semantics as defined in
PSSM with the methods of the execution engine.

4. The most detailed traces (T1.1, T1.2,…) are the traces produced by logging the steps, e.g.
the method calls, of a concrete implementation, the Moka reference implementation in
this case.

As we see in Section 4.2.3, different RTC step sequences of a state machine can produce
the same trace despite at most one RTC sequence is listed for each test. Furthermore, the
RTC steps representation used in PSSM is not detailed enough to unambiguously define
the next step, e.g. how the concurrent steps produce completion events or what observable
traces the state machine produce. Thus, the figure shows an idealistic view, and the RTC
steps in PSSM are not detailed enough for the verification purposes of tool developers and
neither sufficient for model users to conceive the observable traces based on them. On the
other hand, the operational semantics level with the method call traces is overly detailed
and it is closer to the abstraction level of Moka’s traces than the concepts of state machine
execution. Using that to represent the execution steps of a state machine restricts imple-
mentations to use the same class hierarchy and methods, and even the body of the methods
in fUML. Although a concrete implementation is detailed enough to catch all the details,
PSSM and fUML reference implementations are not complete, e.g. for concurrent behav-
iours as they are single-threaded.

We recommend having a trace level described using the concepts of the semantic
domain. This level is in the middle between the RTC steps and the current operational
semantics in PSSM and is detailed enough to describe the execution steps unambiguously
but does not restrict the implementations since only concepts of the semantic domain are
used.

607Software Quality Journal (2023) 31:575–617

1 3

Currently to check tool conformance only the observable traces can be used but they
proved to be ambiguous for some testing purposes (e.g. a trace with a single part in Fig. 8).
This could be improved if the observable trace also includes the stimulation sequences sent
to the test target (Section 5.2.2). To treat the state machine execution more like a white
box, we need to access the internals of the state machine execution, e.g. event pool, acti-
vated elements, and boundaries of RTC steps. There is no means in the specification to
observe these while the state machine is executed, e.g. in a simulator. In order to facilitate
debugging and verification of the operational semantics, future specifications may include
concepts to observe runtime information in the metamodel, e.g. a trace model to observe
state changes. A similar extension to fUML was proposed by Mayerhofer et al. (2012).

5.2 Recommendations for test suites

5.2.1 Derived test oracles

Most of the issues we found (missing alternative executions, inconsistencies, and typos)
could be avoided if the expected output and the execution steps are automatically derived
from the specified test model and its inputs. This way the generated output could be used as
test oracle to decide whether a test passes or fails. PSSM has a proof-of-concept implemen-
tation, Eclipse Papyrus/Moka,15 which supports execution and debugging of UML models.
An execution framework is typically able to realise a certain execution trace but not all
variants of them. A single execution can generate the RTC steps of that specific execu-
tion. Generating all possible executions is an open question. For this purpose model check-
ers (Horváth et al., 2020) could be used instead of manual enumeration.

5.2.2 Rigorous check of execution

Only partially verifying the execution trace helps the tests to be targeted. However, we sug-
gest that the order in which the stimulation signals are received should also be recorded
during the execution. Verifying the order of both the stimulations and the trace is needed
to check the causal relation. Moreover, the execution tools should support a way to monitor
the RTC steps and compare them to the expected ones.

5.2.3 Representation of alternative execution traces

Some test cases can produce alternative execution traces, which are represented as lists.
If there are more than a few or even more (e.g. 85 traces for test Fork 001), it is hard to
understand the list of valid traces. Partially ordered sets can be used to specify which
executions should precede which, and leave the order of the others undefined. A graphi-
cal representation would help language designers to specify the traces, and would also
help model users and developers to understand them more easily. We suggest a nota-
tion similar to activity diagrams to represent alternative execution traces (Fig. 10). This
notation has the ability to represent conditional trace segments which is needed in cer-
tain tests where some parts can be omitted, e.g. due to abort.

15 https:// wiki. eclip se. org/ Papyr us/ UserG uide/ Model Execu tion

https://wiki.eclipse.org/Papyrus/UserGuide/ModelExecution

608 Software Quality Journal (2023) 31:575–617

1 3

5.2.4 Creating tests using more diverse test design techniques

As general-purpose modelling languages cover a wide range of use cases, they might
comprise numerous modelling elements and semantic rules. It is a good practice that
PSSM describes at least some details of the test design process, i.e. the test design tech-
nique used. The test suite was designed using requirement-based black-box test design
technique, i.e. the tests aimed to cover the requirements extracted from the normative
text of the UML specification and a traceability matrix shows which requirement is cov-
ered by which test.

While this coverage might be sufficient to cover the text of the specification, when using
the modelling elements jointly a substantial number of combinations are possible, and the
language designers need to systematically cover the significant ones. To this end, combi-
natorial test design techniques can be used (Kuhn et al., 2013). In addition to the require-
ment-based categorisation, test cases can be categorised into equivalence partitions, e.g.
tables showing which modelling elements and behaviours are covered in each test (e.g.
which tests contain simple, composite, or orthogonal states). This could be useful for both
the language designers during test design to increase the test coverage on model elements
and also for model users and developers looking for illustrative test cases. As an exam-
ple, we categorised the test cases which combine transition firing steps and orthogonal
regions (Table 3).

If the reference implementation is available, its code can be used to measure test cover-
age and design additional tests to cover missing functionality.

5.2.5 Separate tests for conformance testing and for readers

Model users most likely use the specification to learn the behaviour by looking at the rel-
evant examples in the test suite rather than reading the normative text of UML and PSSM
thoroughly. To make this learning easier, test cases should be ordered from simplest to
more complex ones and from the ones using basic modelling elements to more advanced
ones. This would help the readers to understand the specification gradually, and tool
developers would be able to provide partial implementations without the need to support
all modelling elements from the beginning. To help model users to comprehend the lan-
guage, examples for certain corner cases should be included. Additionally, tables about the
modelling elements used in each test could be provided as an index for navigating in the
document.

More rigorous testing increases the number and complexity of the test cases. The test
cases should be separated to both allow thorough testing of the tools and keep the docu-
ment’s readability. One group could contain the tests selected for readers to easily under-
stand the basic and advanced modelling elements then the emergent behaviour of a few
combinations. The other could extend this to reach higher coverage when testing the
conformance without the constraint of readability, especially testing the combinations of
elements.

609Software Quality Journal (2023) 31:575–617

1 3

5.3 Recommendations for tooling

Evaluating current practices UML made a major step forward with fUML and PSSM.
Extending the specification with a reference implementation and a test suite is crucial for
both helping to understand the semantics and assess the correctness of other tools. Start-
ing to create these tools in the early phases of the specification development can greatly
improve the specification’s quality.

Having the full test suite available to download and execute is convenient. However,
importing UML models from XMI is notoriously problematic, therefore some official
guidelines would be helpful (e.g. which other XMIs are needed, which tools were able to
import it).

Future tools to ease cross‑checking the semantics of artefacts If we revisit Fig. 4, we
can see that there are still many ways to support the development and assessment of a mod-
elling language. We list a few recommendations that could be worth exploring.

• Comparing the semantics implemented in a simulator to the specification is limited by
the fact that the simulator usually returns only one trace for a given input. Simulators
could be extended to select outcomes of non-deterministic choices during execution, or
at least report such choices.

• A specific verifier tool could be used to check whether a given trace is a valid execution
of a model.

• An advanced verifier could be developed to enumerate all or most of the possible valid
traces for a given model.

5.4 Threats to validity

Internal validity As the primary goal of this paper was not to assess the PSSM standard
per se, but to devise a methodology to assess it along with other similar specifications, we
allowed ourselves to diverge from standard empirical protocols.

Most importantly, the workflow was created in parallel with the assessment, iteratively
refining both as we discovered newer and newer aspects of the problem. This approach
may threaten internal validity of both the workflow definition process and the assessment
of PSSM:

1. The workflow may be too specific to PSSM (which may seem like an external validity
issue, but in fact, it is related to the validity of our method of devising the workflow).
We may have failed to discover relevant aspects that were either hidden by the flaws of
PSSM or were not present in it at all.

2. The assessment of PSSM influenced how we assessed PSSM, which is not recommended
in an empirical evaluation process. However, as stated above, this is not the primary
contribution and was a conscious decision.

610 Software Quality Journal (2023) 31:575–617

1 3

A more abstract threat is the fact that this paper is also based on the (subjective) under-
standing of the authors about the artefacts illustrated in Fig. 2. One of our key takeaway
messages was that this source of uncertainty has to be acknowledged during the specifica-
tion process, and one way to address it is the presence of multiple artefacts that can be
cross-validated.

External validity Although our goal was to assess modelling languages in general, our
experience is mostly based on discrete, software-based systems. We expect that our find-
ings on semantics, representation of traces, and different types of inconsistencies are also
valid for other types of modelling language families (e.g. continuous models like Matlab/
Simulink, Modelica).

Our experience with stakeholder roles, tools, and model-based methods originates from
specific domains (mostly automotive, railway, and aerospace). Other domains using model-
based techniques might rely on different practices or have different requirements.

To better assess the validity of our results, it would be beneficial to further explore the
discussed issues in the context of other subdomains and language specifications. With the
accumulation of such studies, we hope the way towards more precise methodological and
empirical studies will eventually open.

6 Related works

This section collects the related work on 1) common practices in modelling language spec-
ifications, 2) specification and assessment of modelling languages, 3) experiences in defin-
ing semantics for UML, 4) works on using fUML and PSSM, and 5) conformance testing
in other domains.

Common practices in modelling language specification At the conception of new lan-
guage specifications, there are generally two ways to approach: either 1) start with a use
case and syntax-oriented, intuitive, informal description and later define the semantics
more precisely; or 2) start from a mathematically precise formalism and add language fea-
tures as syntax sugar. Examples for the former are UML (OMG, 2017) and the Form-L
specification language (Nguyen, 2019), where the core of the language in both cases was
built from pre-existing approaches and practical user requirements. In case of UML, the
extension with (semi-)formal semantics came a lot later with the fUML (OMG, 2011) and
later the PSSM (OMG, 2019) specifications. Examples for the latter approach include the
Common Requirement Modelling Language (CRML, Bouskela et al., 2022), which in a
sense is a redesign of the Form-L language bottom-up from mathematical logic and Mod-
elica, as well as the Property Specification Language (PSL, IEEE, 2012) which is an exten-
sion of temporal logics to provide a richer syntax for formal property specification.

One of the latest large-scale general-purpose language specification efforts currently
in progress is the standardisation of SysMLv2. The SysMLv2 Submission Team includes
a lot of experts with many different backgrounds, including many of the people previ-
ously working on fUML, PSSM and SysMLv1, as well as representatives of many dif-
ferent stakeholders (users and experts from several domains, tool vendors, formal method

611Software Quality Journal (2023) 31:575–617

1 3

experts). Building on the vast amount of experience these people bring, the standardisa-
tion process aims to ship a very diverse set of artefacts already in the first release. This
includes textual and formal descriptions of the core of the language, KerML, as well as
explanatory and reference manual-style textual descriptions of language elements, but also
a standardised API, a reference implementation including the first prototype of a simula-
tor, guidelines for industrial tool developers, and a rich set of examples and test cases. This
should serve not only the future adopters of the standard, but also the language designers in
validating their concepts from the very start. Friedenthal (2018) summarises the goal of the
SysMLv2 submission process in more detail.

Specifying and assessing modelling languages Bork et al. (2020) surveys techniques
used in the specification of 11 well-known visual modelling language specifications. The
paper focuses more on the methods to specify the syntax and details structural modelling
concepts. They found that most specification use the combination of metamodels and natu-
ral language text descriptions.

Czech et al. (2020) collected good practices for domain-specific modelling. They
classified the identified good practices with respect to the language development lifecy-
cle phases: planning, analysis, design, implementation, test, and maintenance. However,
they found only a few advises for testing (Ratiu et al., 2018), and reported ones were more
focused on testing the language implementation and associated tooling (editors, code gen-
erators, etc.).

Bork and Roelens (2021) discuss the definition of visual modelling language notations.
They recommend a technique to evaluate and improve the semantic transparency of a nota-
tion. Semantic transparency is “the extent to which a novice reader can infer the mean-
ing of a symbol from its appearance alone” (Moody, 2009). A semantically transparent
notation is intuitive and it helps understanding the model by shifting some of the cogni-
tive tasks to perceptual tasks. In our experience, this intuitiveness and readability are also
important for the semantics of the language.

As we reported in the discussion section, specifying the execution trace format of a lan-
guage is critical for the semantics, as it impacts understandability and conformance testing.
Hojaji et al. (2019) conducted a systematic mapping study of 64 primary studies on model
execution tracing. They reported that the surveyed approaches mainly use translational and
operational approaches for semantic definitions. Collection of traces was recommended for
various reasons (debugging, testing or model checking). The authors discuss the need for
a common execution trace format. Zschaler et al. (2023) present a framework for executa-
ble domain-specific modelling languages (xDSMLs) to integrate execution semantics with
concurrency models of atomic and parallel steps. The framework allows exploring and
debugging possible execution traces along concurrency strategies. They argue that explor-
ing the concurrency model is useful for language designers to specify the right semantics
and for modellers to ensure their models capture the intended concurrent behaviour.

There are several user studies and controlled experiments (Budgen et al., 2011), where
some aspects of UML are evaluated with the help of human participants. However, those
studies mostly investigated the effect of the graphical layout (Purchase et al., 2000) or
model size and complexity (Störrle, 2014), and did not concentrated on the semantic
details. Wiesmayr et al. (2021) performed a user study to evaluate the usefulness of visual
programming IDEs.

612 Software Quality Journal (2023) 31:575–617

1 3

Semantics for UML There is a long history of works about the semantics of modelling
languages and specifically for UML. Harel and Rumpe (2004) explain what does and what
does not semantics mean for models, and argue that the explicit definition of the semantic
domain is crucial. They also mention that different kinds of representations are needed for
the various audiences (e.g. users or developers).

Seidewitz (2003) gives an overview about what models mean in the context of UML:
how models are specified with metamodels, and how is the model interpreted (i.e. the map-
ping of the model to the system under study). The concepts presented in the paper appeared
later in the overview sections of the fUML specification (OMG, 2011). Broy and Cengarle
(2011) report experiences in defining formal semantics for UML, and point why a solid
semantic foundation is needed for a formal modelling language that is to be used for code
generation or simulation.

There are many approaches that extend UML with some kind of formal semantics to
support execution and analysis of UML models. Ciccozzi et al. (2019) collect 63 papers
and 19 tools on executing UML models. They found out that state machines are frequently
used, but covering all UML concepts is still an open challenge. Most of the approaches use
a translational approach, and there are only a handful of model interpreter approaches.

Verification of UML model is a large field of research. Gabmeyer et al. (2019) presents
a survey on formal verification of software models. However, most of the techniques are
for the model and not for the language level, i.e. methods to verify user models and not the
specification of the language itself.

Finally, specifically the semantics of state machines were studied extensively in the liter-
ature. Relevant surveys (Crane & Dingel, 2005; Lund et al., 2007; André et al., 2023) pre-
sent more than 40 approaches that recommend various types of formal semantics to UML
State Machines. Moreover, many variants of state machines emergent targeted towards
real-time (Posse & Dingel, 2016) or component-based systems (Graics et al., 2020).

fUML and PSSM There is a limited amount of work on fUML, and there are very few
papers mentioning PSSM. Seidewitz (2014) gives an overview about fUML and its recom-
mended textual action language, Alf. Seidewitz and Tatibouet (2015) discuss how design in
fUML and execution can be supported by tools.

Craciun et al. (2013) introduces a rewrite-based executable semantic framework for fUML
that will enable model-based testing of fUML models. Romero et al. (2014) verified the base
UML (bUML) subset of fUML using theorem proving and detected inconsistencies and
incomplete parts in the specification. Mayerhofer et al. (2012) introduced an extension of the
fUML virtual machine with a dedicated trace model, and a command API to support debug-
ging. Abdelhalim et al. (2013) implement a formal verifier framework for fUML.

Pham et al. (2017) implemented a state machine code generator, and used the PSSM test
suite to test its conformance. We are not aware of any other paper investigating the PSSM
specification or analysing its semantics.

Conformance testing Conformance testing has well-defined methodologies originated from
the telecommunication domain (ISO/IEC, 1994). These methodologies also recommend a
detailed design review for validating test specifications. The European Telecommunications
Standards Institute developed the Test Description Language (TDL) (Makedonski et al.,
2019) to support defining test objectives.

613Software Quality Journal (2023) 31:575–617

1 3

Conformity of programming languages is also tested, e.g. Java Specification Requests
contain Technology Compatibility Kits to assess conformance of the implementa-
tions (Søndergaard et al., 2017). In the Java 8 Language Specification (Gosling et al., 2014)
they present several example Test programs with expected outputs in each chapter after
larger language feature specifications.

Großer et al. (2022) studied different types of traceability relations and dependencies
between requirement documents to support requirement reviews and conformance analy-
sis in large space-engineering projects. They focused on requirement reuse, e.g. tailoring
requirements from a standard to specific projects, and analysed requirement graphs auto-
matically to reveal document inconsistencies and missing tailorings in a case study from
the space industry.

7 Conclusion

Succeeding in building complex, safe, and reliable systems is hard to achieve without using
models and modelling. Building accurate, helpful, collaborative models is hard to achieve
without having precise, understandable modelling language specifications. In this paper,
we investigated why specifying precise and comprehensible semantics is a crucial but
highly challenging goal due to the possibly conflicting understandings of the various stake-
holders using the modelling language.

We identified the viewpoints of model users, developers, and language designers concern-
ing the specification of the semantics of a modelling language. We collected the various arte-
facts that support the definition of the language’s semantics. We analysed how the model exe-
cution traces envisioned by model users could differ from the traces produced by simulators or
considered by model verifiers and why each type of difference is relevant but needs different
verification and validation techniques to identify or resolve. Furthermore, we summarised how
these differences and inconsistencies could be identified while assessing the semantics.

To investigate the typical challenges and issues in the specification of semantics in more
detail, we assessed a state-of-the-art, general-purpose modelling language specification,
the Precise Semantics of UML State Machines (PSSM). We categorised and presented an
overview of the issues found while reviewing the PSSM specification and executing its test
suite. Issues ranged from minor errors in test descriptions to unanswered questions about
fundamental semantic concepts like atomicity or interleaving of executions. Based on these
experiences, we refined the general challenges and assessment activities.

We recommended improving the specification of future modelling languages using
explicit or more exact representations of the semantic domain, more systematic approaches
for designing the test suite, and tooling support, e.g. exploring all possible traces for the
expected behaviour.

As future work in an ongoing collaboration on developing pragmatic formal verification
methods for systems engineering models, we plan to contribute to the semantic definition
of the upcoming SysMLv2 language, and to partially automate generating and validating
such test suites for modelling languages using novel graph generation (Semeráth et al.,
2021).

Funding Open access funding provided by Budapest University of Technology and Economics. This work
was partially supported by the National Research, Development and Innovation Fund of Hungary, financed

614 Software Quality Journal (2023) 31:575–617

1 3

under the 2019-2.1.1-EUREKA-2019-00001 funding scheme, and by the European Union’s Horizon 2020
program under the Marie Sklodowska-Curie grant agreement No. 823788.

Data availability All data generated or analysed during this study are included in this published article.
The specifications from the Object Management Group are available from its website: https:// www. omg.
org/ spec.

Declarations

Competing interests The authors declare no competing interests.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

References

Abdelhalim, I., Schneider, S. A., & Treharne, H. (2013). An integrated framework for checking the behav-
iour of fuml models using CSP. International Journal on Software Tools for Technology Transfer,
15(4), 375–396. https:// doi. org/ 10. 1007/ s10009- 012- 0243-0

André, E., Liu, S., Liu, Y., et al. (2023). Formalizing UML state machines for automated verification - A
survey. ACM Computing Surveys. https:// doi. org/ 10. 1145/ 35798 21

Bork, D., & Roelens, B. (2021). A technique for evaluating and improving the semantic transparency of
modeling language notations. Software and Systems Modeling, 20(4), 939–963. https:// doi. org/ 10.
1007/ s10270- 021- 00895-w

Bork, D., Karagiannis, D., & Pittl, B. (2020). A survey of modeling language specification techniques.
Information Systems, 87. https:// doi. org/ 10. 1016/j. is. 2019. 101425.

Bouskela, D., Falcone, A., Garro, A., et al. (2022). Formal requirements modeling for cyber-physical sys-
tems engineering: an integrated solution based on FORM-L and modelica. Requirements Engineering,
27(1), 1–30. https:// doi. org/ 10. 1007/ s00766- 021- 00359-z

Brambilla, M., Cabot, J., & Wimmer, M. (2012). Model-Driven Software Engineering in Practice. Morgan
& Claypool.

Broy, M., & Cengarle, M. V. (2011). UML formal semantics: lessons learned. Software and Systems Mod-
eling, 10(4), 441–446. https:// doi. org/ 10. 1007/ s10270- 011- 0207-y

Budgen, D., Burn, A. J., Brereton, O. P., et al. (2011). Empirical evidence about the UML: a systematic
literature review. Software: Practice and Experience, 41(4), 363–392. https:// doi. org/ 10. 1002/ spe. 1009

Ciccozzi, F., Malavolta, I., & Selic, B. (2019). Execution of UML models: a systematic review of
research and practice. Software and Systems Modeling, 18(3), 2313–2360. https:// doi. org/ 10. 1007/
s10270- 018- 0675-4

Cook, S. (2012). Looking back at UML. Software and Systems Modeling, 11(4), 471–480. https:// doi. org/
10. 1007/ s10270- 012- 0256-x

Craciun, F., Motogna, S., & Lazar, I. (2013). Towards better testing of fUML models. In: ICST. IEEE Com-
puter Society, pp. 485–486. https:// doi. org/ 10. 1109/ ICST. 2013. 67

Crane, M. L., & Dingel, J. (2005). On the semantics of UML state machines: Categorization and compari-
sion. In: Technical Report 2005-501, School of Computing, Queen’s University, Canada.

Czech, G., Moser, M., & Pichler, J. (2020). A systematic mapping study on best practices for domain-specific
modeling. Software Quality Journal, 28(2), 663–692. https:// doi. org/ 10. 1007/ s11219- 019- 09466-1

Elekes, M., & Micskei, Z. (2021). Towards testing the UML PSSM test suite. In: 10th Latin-American Sym-
posium on Dependable Computing, LADC 2021, Florianópolis, Brazil, November 22-26, 2021. IEEE,
pp 1–4, https:// doi. org/ 10. 1109/ LADC5 3747. 2021. 96725 70

https://www.omg.org/spec
https://www.omg.org/spec
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/s10009-012-0243-0
https://doi.org/10.1145/3579821
https://doi.org/10.1007/s10270-021-00895-w
https://doi.org/10.1007/s10270-021-00895-w
https://doi.org/10.1016/j.is.2019.101425.
https://doi.org/10.1007/s00766-021-00359-z
https://doi.org/10.1007/s10270-011-0207-y
https://doi.org/10.1002/spe.1009
https://doi.org/10.1007/s10270-018-0675-4
https://doi.org/10.1007/s10270-018-0675-4
https://doi.org/10.1007/s10270-012-0256-x
https://doi.org/10.1007/s10270-012-0256-x
https://doi.org/10.1109/ICST.2013.67
https://doi.org/10.1007/s11219-019-09466-1
https://doi.org/10.1109/LADC53747.2021.9672570

615Software Quality Journal (2023) 31:575–617

1 3

Friedenthal, S. (2018). Requirements for the next generation Systems Modeling Language (SysML® v2).
Insight, 21(1), 21–25. https:// doi. org/ 10. 1002/ inst. 12186

Gabmeyer, S., Kaufmann, P., Seidl, M., et al. (2019). A feature-based classification of formal verification
techniques for software models. Software and Systems Modeling, 18(1), 473–498. https:// doi. org/ 10.
1007/ s10270- 017- 0591-z

Gosling, J., Joy, B., Steele, G. L., et al. (2014). The Java Language Specification, Java SE 8 Edition, 1st edn.
Addison-Wesley Professional.

Graics, B., Molnár, V., Vörös, A., et al. (2020). Mixed-semantics composition of statecharts for the component-
based design of reactive systems. Software and Systems Modeling, 19(6), 1483–1517. https:// doi. org/ 10.
1007/ s10270- 020- 00806-5

Großer, K., Riediger, V., & Jürjens, J. (2022). Requirements document relations. Software and Systems
Modeling, 21(6), 1–37. https:// doi. org/ 10. 1007/ s10270- 021- 00958-y

Harel, D. (1987). Statecharts: A visual formalism for complex systems. Science of Computer Programming,
8(3), 231–274. https:// doi. org/ 10. 1016/ 0167- 6423(87) 90035-9

Harel, D., & Rumpe, B. (2004). Meaningful modeling: What’s the semantics of semantics? Computer,
37(10), 64–72. https:// doi. org/ 10. 1109/ MC. 2004. 172

Hojaji, F., Mayerhofer, T., Zamani, B., et al. (2019). Model execution tracing: a systematic mapping study.
Software and Systems Modeling, 18(6), 3461–3485. https:// doi. org/ 10. 1007/ s10270- 019- 00724-1

Horváth, B., Graics, B., Hajdu, Á., et al. (2020). Model checking as a service: towards pragmatic hidden formal
methods. In: MODELS Companion. ACM, pp. 37:1–37:5, https:// doi. org/ 10. 1145/ 34179 90. 34214 07

IEEE. (2012). Standard for Property Specification Language (PSL). https:// doi. org/ 10. 1109/ IEEES TD. 2012.
62284 86. IEC 62531:2012(E) (IEEE Std 1850-2010).

ISO/IEC. (1994). Conformance testing methodology and framework. ISO/IEC 9646.
ISO/IEC/IEEE. (2018). Systems and software engineering – Life cycle processes – Requirements engineer-

ing. 29148-2018.
Kuhn, D. R., Kacker, R. N., & Lei, Y. (2013). Introduction to Combinatorial Testing. Chapman and Hall/

CRC.
Lima, L., Tavares, A., & Nogueira, S. C. (2020). A framework for verifying deadlock and nondeterminism

in uml activity diagrams based on csp. Science of Computer Programming, 197(102), 497. https:// doi.
org/ 10. 1016/j. scico. 2020. 102497

Lund, M. S., Refsdal, A., & Stølen, K. (2007). Semantics of UML models for dynamic behavior - A survey
of different approaches. In: Model-Based Engineering of Embedded Real-Time Systems, LNCS, vol
6100. Springer, pp 77–103. https:// doi. org/ 10. 1007/ 978-3- 642- 16277-0_4

Makedonski, P., Adamis, G., Käärik, M., et al. (2019). Test descriptions with ETSI TDL. Software Quality
Journal, 27(2), 885–917. https:// doi. org/ 10. 1007/ s11219- 018- 9423-9

Mayerhofer, T., Langer, P., & Kappel, G. (2012). A runtime model for fUML. In: 7th Workshop on Mod-
els@run.time, Innsbruck, Austria. ACM, pp 53–58. https:// doi. org/ 10. 1145/ 24225 18. 24225 27

Micskei, Z., & Waeselynck, H. (2011). The many meanings of uml 2 sequence diagrams: a survey. Software
and Systems Modeling, 10, 489–514. https:// doi. org/ 10. 1007/ s10270- 010- 0157-9

Micskei, Z., Konnerth, R., Horváth, B., et al. (2014). On open source tools for behavioral modeling and
analysis with fUML and Alf. In: OSS4MDE@MoDELS, vol 1290. CEUR-WS.org, pp 31–41.

Moody, D. L. (2009). The physics of notations: Toward a scientific basis for constructing visual notations in
software engineering. IEEE Transactions on Software Engineering, 35(6), 756–779. https:// doi. org/ 10.
1109/ TSE. 2009. 67

Nguyen, T. (2019). Formal requirements and constraints modelling in form-l for the engineering of complex
socio-technical systems. In: IEEE 27th Int. Requirements Engineering Conference Workshops (REW),
pp 123–132. https:// doi. org/ 10. 1109/ REW. 2019. 00027

OMG. (2011). Semantics of a Foundational Subset for Executable UML Models (fUML). Formal/11-02-01.
OMG. (2017). OMG Unified Modeling Language (UML). Formal/17-12-05.
OMG. (2019). Precise Semantics of UML State Machines (PSSM). Formal/19-05-01.
OMG. (2021). Semantics of a Foundational Subset for Executable UML Models (fUML). Formal/21-03-01.
Pham, V. C., Radermacher, A., Gérard, S., et al. (2017). Complete code generation from UML state

machine. In: MODELSWARD. SciTePress, pp 208–219. https:// doi. org/ 10. 5220/ 00062 74502 080219
Pnueli, A., & Shalev, M. (1991). What is in a step: On the semantics of statecharts. In: Theoretical Aspects

of Computer Software, International Conference TACS, LNCS, 526. Springer, pp. 244–264. https:// doi.
org/ 10. 1007/3- 540- 54415-1_ 49

Posse, E., & Dingel, J. (2016). An executable formal semantics for UML-RT. Software and Systems Mod-
eling, 15(1), 179–217. https:// doi. org/ 10. 1007/ s10270- 014- 0399-z

https://doi.org/10.1002/inst.12186
https://doi.org/10.1007/s10270-017-0591-z
https://doi.org/10.1007/s10270-017-0591-z
https://doi.org/10.1007/s10270-020-00806-5
https://doi.org/10.1007/s10270-020-00806-5
https://doi.org/10.1007/s10270-021-00958-y
https://doi.org/10.1016/0167-6423(87)90035-9
https://doi.org/10.1109/MC.2004.172
https://doi.org/10.1007/s10270-019-00724-1
https://doi.org/10.1145/3417990.3421407
https://doi.org/10.1109/IEEESTD.2012.6228486
https://doi.org/10.1109/IEEESTD.2012.6228486
https://doi.org/10.1016/j.scico.2020.102497
https://doi.org/10.1016/j.scico.2020.102497
https://doi.org/10.1007/978-3-642-16277-0_4
https://doi.org/10.1007/s11219-018-9423-9
https://doi.org/10.1145/2422518.2422527
https://doi.org/10.1007/s10270-010-0157-9
https://doi.org/10.1109/TSE.2009.67
https://doi.org/10.1109/TSE.2009.67
https://doi.org/10.1109/REW.2019.00027
https://doi.org/10.5220/0006274502080219
https://doi.org/10.1007/3-540-54415-1_49
https://doi.org/10.1007/3-540-54415-1_49
https://doi.org/10.1007/s10270-014-0399-z

616 Software Quality Journal (2023) 31:575–617

1 3

Purchase, H. C., Allder, J., & Carrington, D. A. (2000). User preference of graph layout aesthetics: A UML
study. In: Graph Drawing, 8th International Symposium, LNCS, 1984. Springer, pp. 5–18. https:// doi.
org/ 10. 1007/3- 540- 44541-2_2

Ratiu, D., Voelter, M., & Pavletic, D. (2018). Automated testing of DSL implementations - experiences from
building mbeddr. Software Quality Journal, 26(4), 1483–1518. https:// doi. org/ 10. 1007/ s11219- 017- 9390-6

Romero, A. G., Schneider, K., & Ferreira, M. G. V. (2014). Using the base semantics given by fUML for verifica-
tion. In: MODELSWARD 2014. SciTePress, pp 5–16. https:// doi. org/ 10. 5220/ 00046 62400 050016

Seidewitz, E. (2003). What models mean. IEEE Software, 20(5), 26–32. https:// doi. org/ 10. 1109/ MS. 2003.
12311 47

Seidewitz, E. (2014). UML with meaning: executable modeling in foundational UML and the alf action lan-
guage. In: SIGAda annual conference on High integrity language technology HILT. ACM, pp 61–68.
https:// doi. org/ 10. 1145/ 26631 71. 26631 87

Seidewitz, E., & Tatibouet, J. (2015). Tool paper: Combining Alf and UML in modeling tools - an example
with Papyrus -. In: OCL@MoDELS, vol 1512. CEUR-WS.org, pp 105–119.

Selic, B. (2004). On the semantic foundations of standard UML 2.0. In: Formal Methods for the
Design of Real-Time Systems, LNCS, vol 3185. Springer, pp 181–199, https:// doi. org/ 10. 1007/
978-3- 540- 30080-9_6

Selic, B. (2012). The less well known UML - A short user guide. In: 12th Int. School on Formal Methods,
Advanced Lectures, LNCS, vol 7320. Springer, pp 1–20. https:// doi. org/ 10. 1007/ 978-3- 642- 30982-3_1

Semeráth, O., Babikian, A. A., Chen, B., et al. (2021). Automated generation of consistent, diverse and
structurally realistic graph models. Software and Systems Modeling, 20(5), 1713–1734. https:// doi. org/
10. 1007/ s10270- 021- 00884-z

Søndergaard, H., Korsholm, S. E., & Ravn, A. P. (2017). Conformance test development with the Java mod-
eling language. Concurrency and Computation: Practice and Experience, 29(22). https:// doi. org/ 10.
1002/ cpe. 4071

Störrle, H. (2014). On the impact of layout quality to understanding UML diagrams: Size matters. In: MOD-
ELS, Lecture Notes in Computer Science, vol 8767. Springer, pp 518–534. https:// doi. org/ 10. 1007/
978-3- 319- 11653-2_ 32

Wiesmayr, B., Zoitl, A., & Rabiser, R. (2021). Assessing the usefulness of a visual programming IDE for
large-scale automation software. In: 2021 ACM/IEEE 24th Int. Conf. on Model Driven Engineering
Languages and Systems (MODELS). IEEE. https:// doi. org/ 10. 1109/ model s50736. 2021. 00037

Zschaler, S., Bousse, E., Deantoni, J., et al. (2023). A generic framework for representing and analyzing
model concurrency. Software and Systems Modeling. https:// doi. org/ 10. 1007/ s10270- 022- 01073-2

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Márton Elekes is a PhD student at the Budapest University of Tech-
nology and Economics. His research interests include software testing
and graph databases. He is a contributor of the LDBC Social Network
Benchmark. He participates in the Arrowhead Tools and EMBrACE
EU projects.

https://doi.org/10.1007/3-540-44541-2_2
https://doi.org/10.1007/3-540-44541-2_2
https://doi.org/10.1007/s11219-017-9390-6
https://doi.org/10.5220/0004662400050016
https://doi.org/10.1109/MS.2003.1231147
https://doi.org/10.1109/MS.2003.1231147
https://doi.org/10.1145/2663171.2663187
https://doi.org/10.1007/978-3-540-30080-9_6
https://doi.org/10.1007/978-3-540-30080-9_6
https://doi.org/10.1007/978-3-642-30982-3_1
https://doi.org/10.1007/s10270-021-00884-z
https://doi.org/10.1007/s10270-021-00884-z
https://doi.org/10.1002/cpe.4071
https://doi.org/10.1002/cpe.4071
https://doi.org/10.1007/978-3-319-11653-2_32
https://doi.org/10.1007/978-3-319-11653-2_32
https://doi.org/10.1109/models50736.2021.00037
https://doi.org/10.1007/s10270-022-01073-2

617Software Quality Journal (2023) 31:575–617

1 3

Vince Molnár is an assistant professor at the Budapest University of
Technology and Economics. His main research field is model-based
development and formal methods, with the primary focus on concur-
rent, distributed and safety-critical systems. He is the leader of the
development of the Gamma Statechart Composition Framework and
also contributed to the development of the PetriDotNet and the Theta
model checking frameworks. He participates in the EU projects
EMBrACE and ADVANCE, and various industrial cooperations,
including one with NASA-JPL. As a member of the SysMLv2 Sub-
mission Team, he works on the execution semantics of the new sys-
tems modeling language.

Zoltán Micskei received the M.S. and Ph.D. degree in software engi-
neering from the Budapest University of Technology and Economics
in 2005 and 2013. He is currently an associate professor at the same
university, leading the Critical Systems Research Group. His research
interests include software testing and model-based engineering with a
focus on empirical studies. Dr. Micskei is a Senior Member of ACM.
A publication he co-authored won the Most Influential Regular Paper
award for the Journal on Software and Systems Modeling in 2021. He
received the Kalmár Award from NJSZT in 2021.

	Assessing the specification of modelling language semantics: a study on UML PSSM
	Abstract
	1 Introduction
	2 Overview of UML PSSM
	2.1 Short history of UML state machines
	2.2 Informal semantics of UML state machines
	2.3 Precise operational semantics of fUML and PSSM
	2.4 Overview of the PSSM test suite
	2.5 Tools: Implementations, simulators and verifiers

	3 Challenges of assessing modelling language semantics
	3.1 Understanding stakeholder viewpoints
	3.2 Assessing views provided by specification artefacts
	3.3 Misaligned understandings of the semantics

	4 Assessing the PSSM specification
	4.1 Steps of assessing the PSSM specification
	4.2 Reviewing the specification and test cases
	4.2.1 Revisiting transition firing and orthogonal regions
	4.2.2 Explicit definition of concepts in the semantic domain
	4.2.3 Exact representation of semantic concepts
	4.2.4 Emergent behaviours need explanation and systematic testing
	4.2.5 Test architecture for conformance test suites
	4.2.6 Test design: specifying expected results in tests

	4.3 Executing the test cases in a simulator

	5 Discussion
	5.1 Recommendations for language specifications
	5.1.1 Representation of semantic domain
	5.1.2 Abstraction level of execution steps

	5.2 Recommendations for test suites
	5.2.1 Derived test oracles
	5.2.2 Rigorous check of execution
	5.2.3 Representation of alternative execution traces
	5.2.4 Creating tests using more diverse test design techniques
	5.2.5 Separate tests for conformance testing and for readers

	5.3 Recommendations for tooling
	5.4 Threats to validity

	6 Related works
	7 Conclusion
	References

