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ABSTRACT
The least-squares (or Lomb–Scargle) periodogram is a powerful tool that is routinely used in

many branches of astronomy to search for periodicities in observational data. The problem of

assessing the statistical significance of candidate periodicities for a number of periodograms

is considered. Based on results in extreme value theory, improved analytic estimations of false

alarm probabilities are given. These include an upper limit to the false alarm probability (or

a lower limit to the significance). The estimations are tested numerically in order to establish

regions of their practical applicability.
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1 I N T RO D U C T I O N

When analysing astronomical time series, it is often necessary to

choose between at least two hypotheses, a base one H and an alter-

native one K, based on the data array. In the signal detection prob-

lem, it is necessary to check whether the observations are consistent

with some base model or whether they contain an extra determin-

istic signal. Under the presence of random errors, such problems

can be solved only in a probabilistic sense. It is possible to make

two types of mistakes, namely the false retraction of H (the false

alarm) and the false non-retraction of H (the false non-detection).

False alarms are generally believed to be the more dangerous, and

hence the problem of the estimation of the false alarm probability

(hereafter FAP) associated with a candidate signal is very important.

Given some small critical value FAP∗ (usually between 10−3 and

0.1), we can claim that the candidate signal is statistically significant

(if FAP < FAP∗) or is not (if FAP > FAP∗).

For the Lomb (1976)–Scargle (1982) periodogram (hereafter the

L–S periodogram), the base hypothesis is that the observations in-

corporate only zero-mean uncorrelated and Gaussian errors (also

called the white Gaussian noise). The alternative hypothesis is that

a sinuous harmonic is also present. Every single value of the L–S

periodogram represents a test statistic for the corresponding prob-

lem of hypothesis testing. In routine practical cases, however, the

period of a possible signal is not known a priori, and it is necessary

to scan many periodogram values within a wide frequency range.

In this case, the FAP is provided by the probability distribution of

the maximum periodogram value under the base hypothesis (i.e. no

signal in the data). Existing methods of calculating this distribution

for a continuous frequency range require time-consuming Monte

Carlo simulations. The aim of the present paper is to propose ana-

lytic approximations that could allow Monte Carlo simulations to

be avoided (at least in many practical cases). Such approximations
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of the distribution of the maximum have already been constructed

by mathematicians specializing in the field of extreme values of

random processes. In Section 3, these results are adapted for and

extended to the specific features of the periodogram analysis of as-

tronomical time series. In Section 4, numerical simulations are used

to explore the quality of the analytic results and to show regions of

their practical applicability.

2 G E N E R A L F O R M U L AT I O N S

Let us recover the principles of the periodogram analysis in a some-

what more general formulation than is usually used.1

Let x1, x2 . . . xN be observations made at N epochs t1, t2, . . .

tN . The errors of xi are assumed to be independent and Gaussian

with standard deviations σ i . Each value of the periodogram can be

recovered as a test statistic that allows one to calculate how likely

is the hypothesis that the data contain a signal of a given frequency

f. Mathematically, it should be checked whether the observations

are fitted well by some base model having only dH free parameters

θH, or whether they require an enlarged model of dK parameters

θK = {θH,θ}, with d = dK−dH parameters θ of an extra periodic

signal. We will assume that, for any fixed frequency, both models

are linear, and construct them by means of dH and dK base functions

forming vectors ϕH(t) and ϕK(t, f ) = {ϕH(t),ϕ(t, f )}. Thus the

base model to be fitted is μH(t,θH) = θH ·ϕH(t), the model of the

signal is μ(t, θ, f ) =θ · ϕ (t, f ), and the complete model to be fitted

is μK(t,θK, f ) = θK · ϕK(t, f ) = μH(t,θH) + μ(t,θ, f ). We

wish to test whether the hypothesis H : θ = 0 should be rejected in

favour of the alternative K( f ) : θ �= 0.

For the L–S periodogram, dH = 0, d = 2, and the signal

model is given by a harmonic function θ1 cos ωt + θ 2 sin ωt (here

ω = 2π f). Schwarzenberg-Czerny (1998a,b) considered cases with

1 Much of the mathematical notation used in the present paper is described

in Appendix A.
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dH = 0 and arbitrary d. Ferraz-Mello (1981) put dH = 1 and added

a floating constant term to the harmonic model with d = 2, and

Cumming, Marcy & Butler (1999) accounted in addition for a pos-

sible linear trend (dH = 2).

An optimal statistical test for solving such problems in general is

developed in chapter 7 of Lehman (1959). First, the minima are com-

puted (by θH,K) of the function χ2 = 〈(x −μK)2〉 under hypotheses

H and K( f ). This can be done by means of any accessible linear

least-squares algorithm (see also Schwarzenberg-Czerny 1998a,b).

If the σ i are known precisely, both minima, χ2
H and χ2

K( f ), can be

computed, and the least-squares periodogram can be defined as an

advance in χ 2 provided by the transition from H to K( f ):

z( f ) = [
χ 2
H − χ 2

K( f )
]
/2. (1)

The error variances are often not known precisely and have to be

estimated from the time series, explicitly or implicitly. It is usu-

ally assumed that σ i = κσ meas,i , where the ‘measured’ uncertainties

σ meas,i determine the weighting pattern of the time series, whereas

the coefficient κ is unconstrained. In this case, only the ratio χ2
H/χ 2

K
can be computed exactly, and the periodogram (1) has to be modi-

fied. We will consider the following modified periodograms:

z1( f ) = NH
χ 2
H − χ 2

K( f )

2χ 2
H

, z2( f ) = NK
χ2
H − χ 2

K( f )

2χ 2
K( f )

,

z3( f ) = NK
2

ln
χ2
H

χ 2
K( f )

. (2)

Here, NH = N −dH and NK = N −dK are the numbers of degrees

of freedom in χ 2
H and χ 2

K, respectively. The periodograms z1(f )

and z2(f ) are the well-known normalizations of z(f) by variances of

residuals under the respective hypotheses. All periodograms (2) are

entirely equivalent because they are unique functions of each other:

2z1/NH = 1 − e−2z3/NK , 2z2/NK = e2z3/NK − 1,

(1 − 2z1/NH)(1 + 2z2/NK) = 1.
(3)

3 FA L S E A L A R M P RO BA B I L I T Y

Let us pick any of the periodograms introduced above and de-

note it by Z(f). If the frequency of a possible signal were known,

the FAP could be retrieved as FAPsingle = 1 − Psingle(Z), where

Psingle(Z) is the cumulative distribution function of Z(f) (taken un-

der the base hypothesis). Under the hypothesis H, the statistic 2z
follows a χ2-distribution with d degrees of freedom, 2z2/d obeys

a Fisher–Snedecor F-distribution with d and NK degrees of free-

dom, and 2z1/NH obeys a beta-distribution with the same numbers

of degrees of freedom (Lehman 1959; section 7.1). Using relations

(3), the distribution function of z3 can be easily derived. The corre-

sponding expressions of false alarm probability for d = 2 are given

in Table 1. Note that the third modified periodogram obeys exactly

the same distribution as the basic one if d = 2.

Now let us assume that we scan all frequencies from the interval

[0, f max] and look for the maximum value Zmax = max[0, fmax] Z ( f ).

Then the false alarm probability associated with this maximum is

FAP max = 1 − Pmax(Zmax, f max), where Pmax(Zmax, f max) denotes the

cumulative distribution function of Zmax (under the base hypothe-

sis). The precise expression for the latter distribution is not known

even for equally spaced time series. It is always possible to use

Monte Carlo simulations to obtain this function, but it is very time-

consuming, especially for the most important region of low FAPs

(high significances). The function Pmax(Z, f max) is often computed

Table 1. FAPs for the Lomb–Scargle periodogram and its modifications

(d = 2).

Z(f) FAPsingle(Z) τ (Z, f max), approximately

z(f) e−Z W e−Z
√

Z

z1(f )
(

1 − 2Z
NH

) NK
2 γH W

(
1 − 2Z

NH

) NK−1

2
√

Z

z2(f )
(

1 + 2Z
NK

)− NK
2 γK W

(
1 + 2Z

NK

)− NK
2

√
Z

z3(f ) e−Z γK W e
−Z

(
1− 1

2NK

)√
NKsinh Z

NK

The factors γH,K =
√

2
NH,K


( NH
2 )/
( NH−1

2 ) can be neglected for

NH � 10. If the spectral leakage is low, FAP max ≈ τ (Z, f max) for realistic

values of parameters. See text for detailed discussion.

(Schwarzenberg-Czerny 1998a,b) as

Pmax(Z , fmax) ≈ Psingle(Z )Nind( fmax), (4)

where N ind(f max) is an effective ‘number of independent frequencies’

found within [0, f max]. There is no general analytic expression for

the quantity Nind, but a common method is to use a short Monte

Carlo simulation to assess it and then to extrapolate (4) to low FAPs

(Cumming 2004; Horne & Baliunas 1986). However, the multiple-

trial formula (4) is only heuristic and is not necessarily precise

even for equally spaced observations that do not produce significant

aliasing.

A better estimation of Pmax(Z, f max) can be obtained using the

theory of stochastic processes. The theory of extremes of random

processes is developed in depth in the mathematical literature. For

our aims, it is worthwhile to mention the series of works by Davies

(1977, 1987, 2002). This author considered (in rather general for-

mulations) extreme value distributions for χ2, F, and beta random

processes that can include our periodograms z and z1,2 as special

cases. The main result of these works is an analytic lower limit

to the corresponding extreme value distributions. This result is po-

tentially very useful for astronomical applications, because it yields

directly an upper limit to the false alarm probability and a lower limit

to the significance of a candidate periodicity. However, the formulae

published in the cited papers are not yet ready for use and require

some adaptations to specific applications. Moreover, these results

can be improved so that they provide not only an upper limit but

also a uniform approximation to the false alarm probability, which

would be useful in the case of low spectral leakage.

A brief description of these results, adapted for the uneven time

series analysis and with details of my extensions, is given in Ap-

pendix B. Summarizing them, the ‘Davies bound’ can be written

as

FAPmax(Z , fmax) � FAPsingle(Z ) + τ (Z , fmax). (5)

The function τ will be specified below. If the aliasing effects can be

neglected within the frequency band being scanned,2 and if fmax is

large enough, then

Pmax(Z , fmax) ≈ Psingle(Z ) e−τ (Z , fmax). (6)

The right-hand side in (5) should approach the FAP more closely

for large Z (even the asymptotic equality under Z → ∞ is expected,

2 This means that the spectral window of the time series has no significant

peaks in the doubled frequency band [0, 2 f max], except for the main one at

f = 0.
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but not proved strictly yet). In general, the quantity τ (Z, f max) looks

like

τ =
(

z

π

) d−1
2 e−z

2π
A( fmax) (7)

for the basic least-squares periodogram (1) and like

τ = γ

2π
A( fmax) ×

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(
2z1

πNH

) d−1
2

(
1 − 2z1

NH

) NK−1

2 ,(
2z2

πNK

) d−1
2

(
1 + 2z2

NK

)− NH
2

+1
,(

2
π

sinh z3

NK

) d−1
2 e

−z3

(
1+ d−3

2NK

) (8)

for the modified periodograms (2). Here, the coefficient γ =

( NH

2
)/
( NK+1

2
). Note that the asymptotic (2/NH,K)(d−1)/2γ → 1

holds true for N → ∞. The factor A(f max) depends on the bases ϕ
and ϕH, on the time series sampling, and on the weighting pattern.

Unfortunately, the general form of A(f max), obtained in Appendix

B, is not simple. For now, let us restrict ourselves to the L–S pe-

riodograms and neglect the aliasing effects. In the next section we

will show that such an approximation for A(f max) works well even

for strong aliasing. Of course, it is perfectly possible to calculate

A(f max) numerically from the formulae given in the Appendix, such

calculations are still much less computationally expensive than the

Monte Carlo simulation of Pmax(Z, f max). The practicalityof the ex-

pressions (5, 6) will be explored numerically in the next section.

To derive A(f max) from the formula (B7), we calculate the eigen-

values of the matrix M, which is defined by the group of equalities

(B4). To do this, we have to concretize the functions ϕ (t, f). For the

usual L–S periodogram, the harmonic base

ϕ(t, f ) = {cos ωt, sin ωt} (ω = 2π f ) (9)

produces the matrices

Q = 1

2

(
1 + cos 2ωt sin 2ωt

sin 2ωt 1 − cos 2ωt

)
,

S = π

( −t sin 2ωt t̄ + t cos 2ωt

−t̄ + t cos 2ωt t sin 2ωt

)
,

R = 2π2

(
t2 − t2 cos 2ωt −t2 sin 2ωt

−t2 sin 2ωt t2 + t2 cos 2ωt

)
,

M = Q−1(R − STQ−1S). (10)

If we consider the alias-free case, the terms in (10) containing sine

and cosine functions of frequencies 2f � 2f max are averaged out.

Under this approximation, M ≈ 4π2
Dt I, where Dt = t2 − t̄2

is the weighted variance of the observational epochs. Then both

eigenvalues required are equal to the constant 4π2
Dt and A(f max) ≈

2π3/2 W, where W = f maxTeff is a rescaled frequency bandwidth and

Teff = √
4πDt is the effective time series length. If ti are spanned

uniformly and all σ i are equal, then Teff almost coincides with the ac-

tual time series span. Table 1 contains the alias-free approximations

of τ (Z, f max) for all L–S periodograms considered. These expres-

sions and the ones in (5, 6) can be used to obtain the corresponding

alias-free approximation of Pmax(Z, f max) and its Davies bound. We

routinely deal with large values of z and W. In this case, either the

factor Psingle(Z) in (6) or the term FAP single(Z) in (5) can be safely

neglected. For instance, for the usual L–S periodogram,

Pmax(z, fmax) ≈ (1 − e−z) e−W e−z√z ≈ e−W e−z√z . (11)

Such alias-free approximations are valid if fmax is well resolved

(W � 1) and if the spectral leakage is low. Only the latter assumption

is practically significant. If one considers strong spectral leakage,

the approximate inequality

FAPmax(z, fmax) � e−z + W e−z
√

z ≈ W e−z
√

z (12)

holds true for the basic L–S periodogram. The relations (11, 12) are

equally valid if the base model is not empty but includes a low-order

polynomial drift and/or several harmonics of fixed frequencies that

can be considered as independent of any frequency within the range

being scanned.

For large N, every modified periodogram z1,2,3 obeys approxi-

mately the same extreme value distribution as the basic one. How-

ever, this convergence is not uniform in Z. It is easy to derive from (7,

8) that, for the periodograms z1,2(f ), an extra condition Z � √
N

must be satisfied to keep the relative errors of the FAP low. This

condition is rarely satisfied in practice. For the periodogram z3, a

corresponding condition Z � N is mild and is often satisfied in prac-

tical applications. This fact means that we need to consider the third

modified periodogram more closely. The log-likelihood function of

our Gaussian observations is given by

lnL = −χ 2/2 −
N∑

i=1

ln σi + const. (13)

As we adopted σ i = κ σ meas,i , this expression can be rewritten as

lnL = −χ̃ 2/(2κ2) − N ln κ + const, where χ̃ 2 does not depend on

κ . Maximizing lnL by κ under the hypotheses K and H yields that

the logarithm of the ratio of the corresponding likelihood maxima

is equal to (NK/N )z3.

4 N U M E R I C A L S I M U L AT I O N S

We now test the analytic results introduced above. For this purpose,

we will use simulations of time series of N quasi-random data points

imitating the white Gaussian noise. The temporal moments ti cover

a segment of length T. The uncertainties σ i are equal to each other

unless otherwise stated. For every simulation discussed below, no

fewer than 105 Monte Carlo trials were generated (ti and σ i were,

of course, fixed during every such simulation). This should provide

accuracies of simulated FAPs of about 1 per cent for FAP = 0.1 and

of about 10 per cent for FAP = 10−3. The simulated tail of FAP <

10−3 often showed unstable deviations comparable with the FAP.

If the time series consists of a large number of equally spaced

observations, any aliasing should be negligible. Indeed, in such a

case the Davies bound (12) appears very sharp (for FAP < 0.1)

and the analytic approximation (11) perfectly follows the simulated

distribution (Figs 1 and 2). However, even time series do not allow

frequencies higher than the Nyquist frequency f Ny = (N − 1)/(2T) to

be searched. An uneven time series allows much higher frequencies

to be accessed. However, this access cannot be entirely ‘free of

charge’. Within a wide frequency range (f max � f Ny), an essential

aliasing is normally present purely as a result of random fluctuations

of observational moments, even if there is no physical reason for

their gapping. Thus we may expect that for W � N a significant

‘natural’ aliasing should take place. According to the numerical

results shown in Fig. 1, the alias-free approximation indeed becomes

significantly less precise when N decreases, but for large FAP only

(larger than a few per cent, say). Even for W > 100 N the loss of

precision remains moderate for important practical values of the

FAP. We can use (11) for practical calculations even if W is 10 times

larger than N (or even larger, depending on the desired precision).

When a ‘physical’ spectral leakage is large, the quality of the

alias-free approximation depends on the frequency range too. If

fmax does not exceed the Nyquist frequency of periodic breaking
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Figure 1. Simulated versus analytic FAP for the Lomb–Scargle peri-

odogram with no forced data gapping. Simulations for 1000 evenly, and

100 and 30 randomly spaced observations, 105 Monte Carlo trials, and

f max T = 50, 500, 5000 (bunches from left to right). In the even cases, the

simulated curves almost coincide with their alias-free approximations. As

the Nyquist frequency is exceeded, there is no curve for the even case with

f max T = 5000. All graphs of analytic expressions are plotted for Teff = T
(this equality holds true within a few per cent for the three time series used

here).
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Figure 2. Simulated versus analytic FAP for the modification z2 of the

Lomb–Scargle periodogram: 100 evenly spaced observations, 105 Monte

Carlo trials, f max T = 50. For comparison, the theoretical distribution curves

for the periodograms z and z1 are also plotted (the curve for z3 almost

coincides with that for z and is not shown).

of observations, the interval [0, f max] is free from aliasing and we

can use (11) without significant loss of precision. If the frequency

range increases, the model (11) deviates from the real distribution

and overestimates the FAP. Such a simulation is shown in Fig. 3.

In this example, the frequency of periodic data breaks corresponds

to f max T = 9 and the respective Nyquist frequency corresponds

to half of this value (f maxT = 4.5, just before the value f maxT = 5

corresponding to the first simulation curve in Fig. 3).

Although errors of the alias-free model may become practically

significant for some extremal situations, they are not very large and

(more importantly) are not fatal. The significance of a candidate

periodicity is underestimated. This underestimation does not favour

false alarms. The aliasing may decrease the detectability of low-

amplitude signals (if numerical simulations are not used). In this

case, the error of the threshold level (i.e. the critical level z∗, corre-

sponding to a given FAP∗) is more important. Examination of Fig. 3

shows that the relative shift � z∗/z∗ does not exceed 10 per cent for

FAP < 0.1. As the amplitude of the corresponding signal scales as√
z, this translates into only a 5 per cent relative error of the am-
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Figure 3. Simulated versus analytic FAP for the Lomb–Scargle peri-

odogram with forced data gapping. N = 100 observations were clumped

in 10 equal groups, and each group spans (randomly) only a fifth of its nat-

ural duration. About 1.7 × 105 Monte Carlo trials were used, f max T = 5,

50, 500, 5000 (from left to right).

plitude threshold. Recall that this 5 per cent offset corresponds to a

very strong aliasing. Such spectral leakage takes place, for instance,

for a sequence of observations that are made over 10 d with only

4.8 night hours in a day, or over 10 yr with only 2.4 observational

months in a year.

Note that the multiple-trial formula (4) can work well only in

restricted regions. When constructed from a short Monte Carlo sim-

ulation, it can fit the centre of the distribution well (i.e. large FAPs),

but fails to fit low FAPs. This is the case even for negligible alias-

ing. The spectral leakage strongly perturbs the distribution centre but

only weakly affects its high-significance tail. Hence, any multiple-

trial models constructed from short Monte Carlo simulations cannot

be extrapolated to the most important region of low FAPs. Such ex-

trapolation overestimates the statistical significance of candidate

periodicities, and favours false alarms.

The last pair of Monte Carlo simulations in this paper deals with

real astronomical time series. Epochs and standard errors of 153

and 35 radial velocity measurements of the stars 51 Pegasi and 70

Virginis obtained with the ELODIE spectrograph (Naef et al. 2004)

are used.3 These time series are not even. For the star 51 Peg, the

effective time series length Teff ≈ 9.0 yr is close to the actual one,

T ≈ 9.2 yr, but the spectral window (Fig. 4) shows several high

peaks, indicating periodic gapping of observations. For the star 70

Vir, the time series has Teff ≈ 8.5 yr, T ≈ 7.2 yr, and possesses a

more ‘noisy’ spectral window (Fig. 5), indicating significant natu-

ral aliasing. In the first case, the simulated extreme value distribu-

tions for the L–S periodogram do not show large deviations from

alias-free models (relative error �(FAP)/FAP � 30 per cent and

�z∗/z∗ � 5 per cent for FAP < 0.1). In the second case, the simu-

lated FAP may be half of its alias-free approximation, but this may

still be tolerated because �z∗/z∗ � 10 per cent (again for FAP <

0.1). Note that both time series possess a strong leakage with a 1-d

period. Such gapping affects extreme value distributions for Pmin

= 1/f max � 2 days only. In the case of 51 Peg, this aliasing could

introduce a significant error in FAP for unrealistic frequency ranges

(for Pmin = 1/f max � 0.1 d, say). In the case of 70 Vir, the respec-

tive deviation is exacerbated by the low number of observations,

which leads to rather large errors of FAP even for Pmin = 1 d. Note

3 Note that stars 51 Peg and 70 Vir both have a planetary companion (Mayor

& Queloz 1995; Marcy & Butler 1996).
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Figure 4. Top: spectral window function for ELODIE radial velocities of

51 Peg. Bottom: simulated and analytic FAPs for this time series for 105

Monte Carlo trials, Pmin = 1/f max = 100, 10, 1 d (from left to right).
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Figure 5. As Fig. 4, but for the star 70 Vir.

also that in both cases the errors of the alias-free approximations

decrease significantly when FAP drops to values 10−3–10−2.

Finally, we need to consider the quality of the alias-free approx-

imation for the factor A(f max). Fig. 6 shows a graph of the ratio

A(f max)/(T f max) along with graphs of its alias-free approximation

and upper Carlson bound (see Appendix B). The observations were

spanned in the same way as for Fig. 3. The spectral leakage appears

only in small splashes near the Nyquist frequency of the periodic

data breaks and near its overtones (i.e. at f max T = 4.5, 9.0, 13.5). For

W > 3, the function A(f max) is well approximated by the alias-free

model regardless of the strong aliasing.
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Figure 6. The factor A(f max) and its approximations.

5 C O N C L U S I O N S

The problem of estimating the statistical significance of peri-

odogram peaks is discussed in this paper. Results published in the

field of extreme values of random processes are adapted for and

extended to the periodogram analysis of astronomical time series.

For the Lomb–Scargle periodogram and its modifications, the corre-

sponding extreme value distributions are given by closed formulae

ready for use. If the spectral leakage cannot be neglected, similar

expressions provide upper limits to the FAP (or lower limits to the

significance).

It is established numerically that the region of validity of these

approximations is large and has no sharp boundaries. Even if the

aliasing is very strong, the error of the analytic estimation of the

FAP does not favour false alarms and thus is not fatal. For strong

aliases, use of this analytic approximation slightly decreases the

sensitivity to low-amplitude signals. However, the corresponding

increase of amplitude thresholds should not exceed several per cent

in the worst practical cases (like a strong aliasing enforced by lack

of observations).

These results may be very useful in a wide variety of astronomical

applications. They will be useful especially for systematic surveys

that deal with large amounts of data consisting of many separate

time series. Indeed, it would be very difficult or even impossible

to perform Monte Carlo simulation for each such time series. By

contrast, it is easy to use the simple analytic formulae (11, 12)

or their analogues for the modified L–S periodograms. This will

eliminate the need for Monte Carlo simulations in cases for which

the observed periodogram peak exceeds the adopted threshold and

in the opposite cases for which this peak is lower than this threshold

by more than, say, 10 per cent. The rare intermediate cases are easy

to study by means of Monte Carlo simulations. It is also admissible

not to use numerical simulations at all, especially for large data sets

(N � 100). In this case, the number of undetected low-amplitude

periodicities may be increased by a negligible quantity.
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A P P E N D I X A : N OTAT I O N

We introduce the following averaging operations:

〈φ(t)〉 =
N∑

i=1

φ(ti )/σ
2
i , φ(t) = 〈φ(t)〉/〈1〉,

with σ 2
i being the error variance at the observational epoch ti . The

function φ(t) can be defined at the set of ti only; that is, it may be

a discrete sequence. The quantity 〈φ1(t) φ2(t)〉 can be treated as a

scalar product in Hilbert space (Schwarzenberg-Czerny 1998a).

All vectors are assumed to be column ones by default. The no-

tation {x1, x2, . . .} corresponds to a column vector formed by the

quantities inside the braces. Similarly, {x1, x2, . . .} is a vector con-

stituted by elements of the vectors x1, x2, . . ..

I is the identity matrix.

∗T denotes the transpose of a matrix or a vector.

If x, y are vectors then x ⊗ y := xyT is a matrix constituted by

the pairwise products xi y j .

p(x1, x2, . . .) is the joint probability density of the random vari-

ables x1, x2, . . ., and p(x1 = a1, x2 = a2, . . .) is the same joint

probability density, calculated at the point (a1, a2, . . .).

A P P E N D I X B : R I C E M E T H O D A N D
P E R I O D O G R A M S

In the so-called ‘Rice method’, one considers an integer random

variable N+(Z0, f max), the number of up-crossings of a given level Z0

by the random process Z(f) within [0, f max]. The distribution function

of the maximum Zmax = max[0, fmax] Z ( f ) can be represented by the

expansion

Pr{Zmax � Z0} = Pr{Z (0) � Z0}
∞∑
j=0

(−1) j

j!
ν j , (B1)

where ν0 = 1 and ν j are the conditional factorial momenta of N+(Z0,

f max) under the condition that Z(0) � Z0. Let ν̃ j be the unconditional

factorial momenta of N+. The quantities ν j and ν̃ j are explicitly

expressed in terms of the so-called ‘Rice formulae’. For instance,

ν̃1(Z , fmax) =
∫ fmax

0

d f

∫ ∞

0

Z ′ p(Z , Z ′) dZ ′, (B2)

ν̃ j (Z , fmax) =
∫

[0, fmax] j

d f1 . . . d f j

∫
[0,∞) j

Z ′
1 . . . Z ′

j

× p(Z1 = Z , Z ′
1; . . . ; Z j = Z , Z ′

j ) dZ ′
1 . . . dZ ′

j ,

(B3)

where p(Z, Z′) is the joint probability density of Z, and Z′ = dZ/df,
both taken at the same frequency f, and p(Z1, Z′

1; . . . ; Zj , Z′
j) is the

joint probability density of the pairs Zi = Z(f i ), Z′
i = Z′(f i ). For

details on the Rice method and further references, see the paper by

Azaı̈s & Wschebor (2002).

The expected number of up-crossings plays an important role in

what follows. For the sake of convenience, we introduce the syn-

onymous notation τ ≡ ν̃1. Exact analytic expressions for τ (Z, f max)

for the periodograms z(f) and z1,2(f ) can be derived from results of

Davies (1977, 1987, 2002). Davies dealt with the case for which

the weights of measurements are equal to each other; however, his

results can be directly extended to the case of unequal weights. The

quantity τ not only provides the upper bound (5) on the FAP, but

also is expected to yield its asymptotic representation for large z
(low FAP) levels. Unfortunately, the asymptotic character of the

Davies bound was strictly proved only for restricted families of ran-

dom processes, such as stationary Gaussian and stationary χ 2 ones.

Nevertheless, this asymptotic seems to be non-specific to the dis-

tribution of the process values and to the strict stationariness (see

references and discussion in the cited works by Davies and in the

review by Kratz 2006). Hence, we can expect the asymptotic char-

acter of (5) for all of our periodograms. Note that the periodogram

2z(f) can be treated as a χ 2 random process, 2z2/d as an F process,

and 2z1/NH as a beta process, according to Davies (2002).

The high-order Rice formulae are significantly more complicated

than the first-order one. We will not compute here the high-order

Rice terms for our periodograms in the general case. However, the

calculations are significantly simplified if the long-distance correla-

tions of the periodogram can be neglected (equivalently, the aliasing

is negligible). Indeed, under the approximation stated, the density

p(Z1, Z′
1; . . . ; Zj , Z′

j) can be factorized as p(Z1, Z′
1). . . p(Zj , Z′

j) for

all frequencies except in the narrow vicinities of the diagonals f i =
f j . This property results in the fact that, if fmax is large enough to be

well resolved by the periodogram, the relations ν j ≈ ν̃ j ≈ τ j hold

true. The extreme value distribution of Z(f) is then given by (6). An

alternative way to obtain the latter expression is to assume a Poisson

distribution for N+ (Kratz 2006).

The factor A(f max) in equalities (7, 8) determines the dependence

on the frequency range (the so-called bandwidth penalty). Before

considering it, let us denote ϕ′
f = ∂ϕ/∂f and define the matrices

Q = ϕ ⊗ ϕ, S = ϕ ⊗ ϕ′
f , R = ϕ′

f ⊗ ϕ′
f ,

QH = ϕH ⊗ ϕ, SH = ϕH ⊗ ϕ′
f ,

QH,H = ϕH ⊗ ϕH,

Q̃ = Q − QT
HQ−1

H,HQH, S̃ = S − QT
HQ−1

H,HSH,

R̃ = R − ST
HQ−1

H,HSH, M = Q̃
−1

(R̃ − S̃
T
Q̃

−1
S̃). (B4)

In general, all these matrices, except for the matrix QH,H, depend

on the frequency. Note the relations SH = Q′
H and ST + S = Q′.

The definitions (B4) look rather bulky, but they are significantly sim-

plified under certain conditions. For example, if the base functions
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ϕ for any f are orthogonal to the functions ϕH, then QH = SH = 0

and the matrices in (B4) labelled with a tilde are equal to the cor-

responding matrices without a tilde. Moreover, if the base ϕ is

orthonormal for any f, then Q = I,ST = −S and M = R+S2. The

last matrix M( f ) is necessarily positive-definite and possesses the

positive eigenvalues λi (f ). In fact, we need only these eigenvalues.

They satisfy the characteristic equation det(R̃−S̃
T
Q̃

−1
S̃−λQ̃) = 0.

The factor A(f max) appears implicitly in the papers by Davies after

integration of the mathematical expectation E|η| by f, where the

random vector η is Gaussian with zero mean and has statistically

independent components with Dηi = λi ( f ). Davies (1987) gave

some exact and approximate integral formulae for this expectation.

I present here (in terms of the factor A) a number of new integral

representations that may be useful in practice. The first two can be

derived easily and are given by

A( fmax) =
∫ fmax

0

d f

∮
Sd

m(n) d�, m2(n) = nTMn,

A( fmax) =
∫ fmax

0

d f

∫
x2<1

√
xTMx

dx
|x|d , (B5)

where d� denotes an infinitesimal solid angle in R
d , directed by the

unit-length integration vector n. The integration in the first formula

is performed over all possible directions within the whole space solid

angle Sd = 2πd/2/
(d/2). Note that the matrix M can be diagonal-

ized by means of a solid-body rotation of n, so that m2 = ∑
λi n2

i

and the function A(f max) is determined by the eigenvalues λi only.

The inner integrals in (B5) are equal to each other. They may be ex-

pressed in terms of the (hyper)area of an ellipsoidal (hyper)surface

in d dimensions having semi-axes qi = λ
−1/2
i . Indeed, changing the

integration variable in the inner integral in the second of equations

(B5) as x = M1/2 x̃, then x̃ = x̃ ñ (ñ2 = 1) and integrating by x̃ we

obtain∮
Sd

m(n)d� = �d

√
det M, �d =

∮
Sd

√
ñTM2ñ(

ñTMñ
) d+1

2

d�̃. (B6)

It can be directly checked that the integrand in the last expression

represents an infinitesimal (within d�̃) area element on the surface

x̃TMx̃ = x̃2ñTMñ = 1, and that �d is equal to its total area. It is not

hard to show that �1 = 2. The circumference of an ellipse, �2,

and the usual surface area of an ellipsoid, �3, can be expressed

by means of elliptic integrals (complete and incomplete, respec-

tively). For d � 4 an Abelian integral can be used to compute �d

(Tee 2005). There are useful inequalities for �d ; for example, Carl-

son’s inequality bounds the inner integrals in (B5) by the quantity

Sd
√

(λ1 + . . . + λd )/d = Sd
√

TrM/d. Finally,

A( fmax) =
∫ fmax

0

�d (q1 . . . qd )

q1 . . . qd
d f � Sd

∫ fmax

0

√
TrM

d
d f . (B7)

The latter inequality seems to be very sharp in practical situations

(Fig. 6). Note also that if every λi (f ) ≡λ then A( fmax) = Sd fmax

√
λ.

This paper has been typeset from a TEX/LATEX file prepared by the author.

C© 2008 The Author. Journal compilation C© 2008 RAS, MNRAS 385, 1279–1285

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/385/3/1279/1010111 by guest on 21 August 2022


