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Abstract 

Fluctuation of groundwater levels around the world is an important theme in hydrological research. Rising 
water demand, faulty irrigation practices, mismanagement of soil and uncontrolled exploitation of aquifers are 
some of the reasons why groundwater levels are fluctuating. In order to effectively manage groundwater re-
sources, it is important to have accurate readings and forecasts of groundwater levels. Due to the uncertain and 
complex nature of groundwater systems, the development of soft computing techniques (data-driven models) in 
the field of hydrology has significant potential. This study employs two soft computing techniques, namely, ex-
treme learning machine (ELM) and support vector machine (SVM) to forecast groundwater levels at two obser-
vation wells located in Canada. A monthly data set of eight years from 2006 to 2014 consisting of both hydro-
logical and meteorological parameters (rainfall, temperature, evapotranspiration and groundwater level) was 
used for the comparative study of the models. These variables were used in various combinations for univariate 
and multivariate analysis of the models. The study demonstrates that the proposed ELM model has better fore-
casting ability compared to the SVM model for monthly groundwater level forecasting. 

Key words: extreme learning machine (ELM), forecasting, groundwater level, support vector machine (SVM), 
water resource management 

INTRODUCTION 

Groundwater is an important source of freshwater 
worldwide and has a variety of domestic, industrial, 
and agricultural applications. It plays an integral role 
in supporting various types of ecosystems, particu-
larly in arid climates [LI et al. 2014; PÉREZ- MARTIN 
et al. 2014; TODD, MAYS 2005]. This finite resource 
is often overexploited, resulting in dangerously low 
levels of groundwater around the world. As such, it is 
becoming increasingly important to improve the man-

agement of groundwater. MOHANTY et al. [2013] 
suggest that an overall groundwater management 
strategy depends on various factors, including avail-
ability of accurate information, financial support, pol-
icy framing and implementation. However, another 
key component of groundwater management is being 
able to forecast groundwater levels with a high degree 
of accuracy. The precise prediction of groundwater 
levels can help policymakers resolve the best ap-
proach to groundwater management problems 
[EMAMGHOLIZADEH et al. 2014].  
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Modelling of groundwater levels depends on var-
ious hydro-meteorological parameters; therefore, 
physically-based models have often been the preferred 
method to capture the complex and dynamic hydro-
geological phenomena. However, insufficient 
amounts of accurate hydrogeological data as well as a 
lack of accuracy during data collection and pre-
processing are common issues that arise when using 
physically-based models, particularly in underdevel-
oped and developing countries. This study investi-
gates the suitability of extreme learning machines to 
forecast groundwater levels. 

PREVIOUS RESEARCH 

In the past decade, various studies have investi-
gated the advantages and disadvantages of conceptu-
al-based models. Subsequently, their performance has 
been compared with data-driven models such as arti-
ficial neural networks (ANN) [DALIAKOPOULOS 2005; 
MASKEY et al. 2000; MOHAMMADI 2008; MOHANTY 
et al. 2013]. A comparative study suggests that con-
ceptual-based models require many parameters for 
calibration and have large computation times. In prac-
tice, however, poor model performance and associated 
uncertainties of such models can be attributed to data 
collection cost and time as well as inaccessibility of 
sites [KIM et al. 2005]. Data-driven models are able to 
develop interrelationships between input-output vari-
ables and generalize complex phenomena with high 
accuracy and minimal computation time [PLATT 
1999]. ADAMOWSKI and CHAN [2011] brought atten-
tion to the relative importance of numerical models 
(for capturing the complex underlying processes) and 
data-driven models (for accurate prediction with 
a limited data set) when modelling a particular site. 

Recently, the use of artificial intelligence (AI) 
approaches such as genetic programming (GP), artifi-
cial neural networks (ANN), and support vector ma-
chines (SVM) for use in water resources problems has 
gained popularity. GP has been successfully used in 
many water management problems and researchers 
have concluded that GP simulation equations decrease 
computational effort by using common simulation 
packages that can yield results with acceptable accu-
racy [FALLAH-MEHDIPOUR et al. 2013; 2014; RABU-
NAL et al. 2007; SAVIC et al. 1999]. ANNs have been 
successfully used in many fields and are capable of 
describing highly nonlinear and complex hydrological 
processes. The ANN approach to groundwater level 
prediction has been successfully applied by many re-
searchers [ALMASRI, KALUARACHCHI 2005; BANER-
JEE et al. 2009; EMAMGHOLIZADEH et al. 2014; MO-
HANTY et al. 2013; SETHI et al. 2010; SREEKANTH et 
al. 2009; YOON et al. 2007]. 

The basis of support vector machines was devel-
oped by VAPNIK [1995]. The SVM approach over-
comes common problems associated with ANNs (lo-
cal minimum and the network over fitting) as it is 
based on structural risk minimization (SRM) instead 

of the empirical risk minimization (ERM) concept of 
ANNs. This new concept in SVM has two unique fea-
tures, including excellent generalization capability 
and sparse representation, resulting in a superior fore-
casting model when compared to traditional data-
driven models. Furthermore, the SVM solution is al-
ways unique and global as its implementation requires 
the solution of a convex quadratic constrained optimi-
zation problem [SCHÖLKOPF, SMOLA 2002]. The ap-
plication of SVM in water resources problems is re-
cent and has been found to be more efficient than the 
traditional soft computing techniques [BEHZAD et al. 
2009; SAFAVI, ESMIKHANI 2013; SURYANARAYANA et 
al. 2014; TRIPATHI et al. 2006]. Although SVM has 
been used successfully in many fields of research, its 
output depends on the choice of employing a suitable 
kernel function and its parameters. The hyper parame-
ters of SVM are heuristic and generally selected by 
a trial and error process which can be time consum-
ing.  

HUANG et al. [2004] proposed a data-driven algo-
rithm for a single-layer feed forward neural network 
(SLFN) known as extreme learning machine (ELM) 
which significantly reduces the computational time 
required for training a neural network. Studies using 
ELM have yielded very fast learning times with good 
generalization performance due to the fact that the 
ELM simplifies the entire training process [HUANG et 
al. 2004; LIANG et al. 2006; MOHAMMADI et al. 
2015a, b; SHAMSHIRBAND et al. 2015a, b]. A recent 
study by HUANG et al. [2015] further showed that the 
ELM algorithm overcomes the problem of slow learn-
ing speed associated with traditional methods such as 
the back-propagation method and yields a better per-
formance due to its ability to obtain the smallest train-
ing error and norm of weight. Thus, the ELM algo-
rithm has gained popularity in various scientific fields 
such as the forecasting of coal mine water inrush 
[ZHAO et al. 2013], non-stationary time series predic-
tion [WANG, HAN 2014], estimation of monsoon rain-
fall [ACHARYA et al. 2014], estimation of wind speed 
distribution [SHAMSHIRBAND et al. 2015a], and sales 
forecasting [SUN et al. 2008]. However, few studies 
exist that explore the predictive ability of ELM for 
groundwater level forecasting. NURHAYATI et al. 
[2013] conducted a study to test the use of ELM for 
forecasting groundwater levels on tidal lowlands in 
Indonesia. In this study, backward propagation ANN 
(BPANN) was used for validation, and the results 
showed that the training result and the groundwater 
prediction using ELM yielded better results than 
BPANN methods.  

The focus of the present study is to explore the 
suitability of the ELM method to forecast monthly 
groundwater levels. The performance of ELM is fur-
ther compared and validated using SVM, which has 
been found by many researchers to be superior to oth-
er methods such as ANN GP and neuro-fuzzy models 
[BEHZAD et al. 2009; HE et al. 2014; PRADHAN 2013; 
SAFAVI, ESMIKHANI 2013; SURYANARAYANA et al. 
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2014; YOON et al. 2011]. The goal of this comparative 
study is to test the use of ELM and SVM models to 
forecast groundwater levels at two on-site well loca-
tions with a one-month lead time.  

To achieve the aforementioned goals, considera-
tion is given to the following four different types of 
input parameters: mean monthly groundwater level 
(h), mean monthly temperature (T), monthly evapo-
transpiration (ET) and monthly precipitation (P). The 
performance assessment is conducted via three broad-
ly utilized statistical indicators to attain reliable re-
sults. 

METHODS 

SUPPORT VECTOR MACHINE (SVM) 

VAPNIK [1995] proposed a kernel-based algo-
rithm as an SVM based on the Vapnik–Chervonenkis 
(VC) theory, which is now considered to be one of the 
leading techniques for pattern classification and func-
tion approximation. SVM can be used for applications 
in diverse scientific fields due to the fact that it has 
good generalization ability, is less prone to over-
fitting, and it allows for simultaneous minimization of 
estimation errors. SVMs use kernel functions that 
make the original inputs linearly separable in 
a mapped high dimensional feature space [QU, ZUO 
2010].  

However, the main advantage of SVM is that it 
not only has the strength of ANN, but at the same 
time it can overcome some of the widely discussed 
deficiencies associated with ANN [ASCE… 2000]. In 
SVM, the threshold of the network and the final set of 
optimal weights can be interpreted, unlike ANN 
where the threshold of the network and the final set of 
optimal weight cannot be interpreted. The network 
training in ANN is time-consuming and a multi-
dimensional input structure provides more tunable 
parameters, unlike SVM, where an optimal structure 
is the solution of the quadratic optimization problem 
and the number of tunable parameters does not in-
crease with the size of input variables. DIBIKE et al. 
[2001] suggested that SVM is more efficient than 
ANN in dealing with a multi-dimensional input.  

The SVM equations are formulated as per Vap-
nik's theory, that if {(I1, T1), …, (IN, TN)} are assumed 
as the given training data sets, where Ik ∈ Rn refers to 
the space of input variable, Tk ∈ R refers to the space 
of target value and N represents the length of the 
training data. The linear regression of SVM is esti-
mated by solving [VAPNIK 1995] Eq. (1):  

 minimize ∑ =
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Subject to  
Tk – 〈w, Ik〉 – b ≤ εk + ξ 

〈w, Ik〉 + b – Tk ≤ εk + ξ* 

ξk, ξk
* ≥ 0,   k = 1, …, N 

where w denotes weight vector, b is a bias, C repre-
sents the regularization constant, ε is the error toler-
ance range of the function, and ξ, ξ* are the slack vari-
ables. The schematic representation of SVM is de-
picted in Figure 1. 

 
Fig. 1. Schematic representation of the process followed  

in SVM; source: own elaboration 

EXTREME LEARNING MACHINE (ELM) 

To overcome the deficiencies of traditional soft 
computing techniques, HUANG et al. [2004] proposed 
a simple three-layer structure algorithm, ELM. In the 
ELM structure the input weight (connection between 
input layer and hidden layer) and the bias values (in 
the hidden layer) are randomly generated. ELM ana-
lytically calculates the output weight matrix between 
hidden layers and output layers through a simple gen-
eralized inverse operation of the hidden layer output 
matrix. Generally, ELM has interpolation capability 
and universal approximation capability [HUANG et al. 
2006], making ELM a promising time series predic-
tion tool. Mathematically, ELM can be formulated as 
a function with L hidden nodes and N training sam-
ples, as follows [HUANG et al. 2006]: 
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where xj ∈ ℜn is the input vector, Win(i) ∈ ℜn is the 
input weight vector, Win(i)·xj represents the inner prod-
uct of Win(i) and xj, bi ∈ ℜn represents the bias of the 
ith hidden node, g(·) denotes the approximation func-
tion (sigmoid), wi ∈ ℜn is the output weight matrix 
and yj ∈ ℜ denotes the simulated output of ELM. In 
the ELM algorithm, the input weight and bias are ran-
domly chosen at the initial stage. 

Equation (2) can be written compactly in the form 
[HUANG et al. 2006]: 
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where, Y = [y1, …, yN]T, and w = [w1, w2, …, wL]T. 
Matrix A is called the hidden layer output matrix of 
ELM [HUANG et al. 2011]; the ith column of A is the 
ith hidden node's output vector with respect to inputs 
x1, x2, …, xN and the jth row of A is the output vector 
of the hidden layer with respect to input xj. If the 
ELM model with L hidden nodes is able to learn these 
N training samples with no residuals, w can be pre-
dicted, such that [HUANG et al. 2011]: 

 j
L

i ijiini tbxWgw =+⋅∑=1 )( )(   j = 1, ..., N (3) 

where tj represents the target output. Eq. (3) can be 
further expressed as: 

 Aw = T (4) 

where T = [t1, …, tN]T, is the target vector. The ran-
dom selection of  and  convert Eq. (4) into 
a linear parameter system such that the minimum 
norm least squares solution of the linear parameter 
system can further be written as [HUANG et al. 2011]: 

 w = A†T 

where A† is the Moore–Penrose generalized inverse of 
the hidden layer output matrix A. In practice, A† is 
calculated using the singular value decomposition 
(SVD), and then the non-zero singular values con-
struct the output weights. However, when L and N are 
large, the computation complexity of the SVD de-
composition impacts the learning speed of ELM im-
mensely. The architecture of ELM is given in Figure 2. 

 
Fig. 2. Schematic representation of the process  

followed in ELM; source: own elaboration 

STUDY AREA  

The locations selected for this study are in British 
Columbia, Canada (Fig. 3). In the study area, ap-
proximately 1 million people are estimated to use 
groundwater supplied by hundreds of aquifers across 
the region. The study site is highly hydro-climatically 
complex, and hydrological parameters like precipita-
tion, temperature, humidity are closely related to 
physical changes in the Pacific Ocean (i.e. currents, 
salinity, etc.). In Canada, precipitation varies from 
4000 mm·y–1 (in the west) to 200 mm·y–1 in the rain 

shadow regions of North America [MOORE, MCKEN-
DRY 1996]. The coastal areas, like the selected study 
site, have a mild climate with summer daytime tem-
peratures around 20°C and mild winters. The central 
regions in Canada experience a comparatively hot 
summer (July temperatures are 30°C or more) and 
a colder winter. The northern region is the coldest part 
with severe snowy winter and a short summer.  

 
Fig. 3. Study area with selected well (W262 and W303)  

and meteorological stations (M262 and M303);  
source: own elaboration 

Climate change also has an impact on various hy-
drological variables such as temperature, precipita-
tion, evapotranspiration, and ultimately, runoff [AL-
LEN et al. 2014]. Changes to these variables also have 
a large impact on the groundwater recharge system. 
Moreover, at many sites, significant inter-annual vari-
ability in water levels is expected to have occurred 
due to natural and/or anthropogenic causes which can 
threaten water supplies for domestic consumption, 
hydroelectric generation and irrigation.  

The well network in British Columbia was estab-
lished for monitoring of groundwater levels over time 
in areas of high human use. The information on 
groundwater level fluctuations helps in understanding 
the aquifer properties, patterns of human use and cli-
matic conditions of the area [GURDAK et al. 2009]. 
The well network in the study area has 119 groundwa-
ter level observation wells of which 78% have a stable 
or increasing water level, 9% have a large rate of de-
cline (greater than 10 cm·y–1), and 13% show a mod-
erate rate of decline (3 to 10 cm·y–1) [Ministry of En-
vironment undated]. 

In this study, two sites which show a decline rate 
greater than 10 cm·y–1 in the water level were se-
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lected. These wells are established in areas of human 
settlement, and collect data automatically to provide 
an understanding of how specific aquifers are replen-
ished and how ongoing use is affecting water avail-
ability. The selected wells are part of an area where 
well density is very high and which represents a sig-
nificant part of the aquifer. Well 262 covers the west-
ern part of the aquifer and well 303 covers the eastern 
part. The input parameters used in this study are 
monthly total rainfall (P), mean monthly temperature 
(T), monthly evapotranspiration (ET) and monthly 
average groundwater level (h). The information on 
precipitation and temperature was obtained from the 
Government of Canada [undated], whereas the evapo-
transpiration data was obtained from a non-profit as-
sociation [Farmwest undated]. Furthermore, the data 
of groundwater levels from January 2006 to Decem-
ber 2014 were obtained online from Environment 
Canada’s database.  

MODEL DEVELOPMENT 

PARAMETRIC ANALYSIS 

In most of the previous studies conducted, 
a combination of input parameters was selected at 
random and the final parameters were obtained after 
a number of simulations. This study analyses the im-
pact of individual input parameters on the accuracy of 
groundwater level forecasts. The methodology is 
based on the monthly lead time as it encompasses the 
long-term trend, which is fundamental to the resolu-
tion of many complex problems regarding the avail-
ability and sustainability of groundwater. Extensive 
amounts of monthly data are required to assess many 
different properties including: the effect of climate 
variability, monitoring and management of regional 
aquifer development, effects of groundwater with-
drawals and other hydrologic stresses on groundwater 
availability, land subsidence, changes in groundwater 
quality, and surface water-groundwater interaction. 

The ELM models are developed by considering 
groundwater levels for the current month (ht) and pre-
vious month (ht–1) while the other meteorological pa-
rameters (Pt, Tt, ETt) are taken only for the current 
month. In the case of SVM, the input structure con-
sists of groundwater levels for the current month (ht) 
and previous month (ht–1) and meteorological parame-
ters (Pt, Tt, ETt) for the current month as well as the 
values (Pt–1, Tt–1, ETt–1) of the previous month.  

DEVELOPMENT OF ELM MODELS 

The ELM models for groundwater level predic-
tion for both wells (W262 and W303) are developed 
using the MATLAB R2014a program which is used 
for both a univariate and multivariate analysis. The  
data set from January 2006 to December 2012 is used 
for training the model, while the data set from January 
2013 to December 2014 is used for testing the devel-

oped ELM. The monthly data for all input variables 
are normalized in the range of (–1, +1), keeping target 
values in the original form for ELM. In the case of the 
univariate analysis, only the past groundwater level 
data (h) is used as an input to the developed model, 
while in the multivariate analysis four variables (P, T, 
ET, and h) in various combinations are used as input 
data. In the development phase, the past data of each 
variable is considered from time lag t to t–4 month 
(current month to four previous months) on the basis 
of the developed correlation between the original and 
lagged data. The best ELM model is the model with 
an optimal number of hidden neurons (50 for both the 
wells) with highest values of statistical indicators 
among the various model input combinations and is 
developed for both the observation wells. 

DEVELOPMENT OF SVM MODELS 

LIBSVM toolbox [CHANG, LIN 2011] with 
MATLAB R2014a program is used for the develop-
ment of the SVM models to forecast groundwater lev-
els. The accuracy of the SVM model and its generali-
zation ability depends on the selection of suitable ker-
nels and its parameters. In this study, several SVM 
models for different input structures are developed 
and for each model, the kernel function (Radial Basis 
Function) is kept constant, while the model parame-
ters (regularization constant, C; insensitive loss func-
tion, ε; and parameter of radial basis function, γ) are 
estimated by a trial and error method. The parameters 
C, ε, and γ for the best SVM model are estimated as 
1.67, 0.38, 0.86 (for W262) and 1.44, 0.38, 0.018 (for 
W303), respectively. The developed SVM models 
utilized all input parameters (P, T, ET, and h) in dif-
ferent combinations with a time lag starting from the 
current month (t) to the previous four months (t–4). 
The best SVM model is the model with suitable ker-
nel function, optimized model parameters (C, ε and γ), 
and the highest values of statistical indicators among 
the various model input combinations. 

MODEL PERFORMANCE EVALUATION  

The performance of the developed models is 
evaluated using several widely used statistical tests. 
The coefficient of determination (R2) indicates the 
degree of correlation between two variables. It is 
a measure of how well the model is able to develop 
a relationship between observed and predicted vari-
ables. R2 is given as: 
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Root mean square error (RMSE) indicates model 
performance by measuring the difference between 
observed and predicted values. RMSE is given as:  
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Nash–Sutcliffe efficiency criterion (NS) is used to 
assess the predictive ability of hydrological models. It 
is a normalized measure that compares the mean 
square error generated by the model to the variance of 
the target output. NS is given as:  
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where in all three equations, n is the number of data, h 
is the groundwater level (m) and the subscripts o and 
p denote the observed and predicted values, respec-
tively. 

RESULTS AND DISCUSSION 

In this research work, an ELM model is employed 
to predict monthly groundwater level. To demonstrate 
the merit of the developed ELM model, its prediction 
performance is evaluated by providing comparisons 
with the SVM model. To assess the performance of 
the developed ELM and SVM models, a statistical 
comparison between the predicted and measured val-
ues of groundwater levels is performed using the sta-
tistical indicators:  coefficient of determination (R2), 
root mean square error (RMSE) and Nash–Sutcliffe 
efficiency criterion (NS).  

The developed ELM and SVM models are evalu-
ated by using different combinations of more corre-
lated input variables (Table 1). For both study sites 
(W262 and W303), ELM models are more accurate in 
predicting the groundwater levels up to one month 
ahead compared to the SVM models. In the case of 
W262, the best ELM model for one month ahead pre-
diction (ht+1) has input variables of {ht, ht–1} where 
ht+1 is the average groundwater level one month 
ahead, ht is the groundwater level of the current 
month, and ht–1 is the groundwater level of the previ-
ous month. However, in the case of W303, the best 
ELM model is achieved when the current month tem-
perature (Tt) is also included. The best SVM model 
for W262 is obtained when the average groundwater 
level (h) and monthly precipitation (P) are considered, 
and the input set is given as {ht, ht–1, Pt, Pt–1}, where 
Pt is the total precipitation of the current month and 
Pt–1 is the total precipitation of the previous month. 
For W303, the best SVM model is achieved when the 
average temperature of the current month, Tt and av-
erage temperature of the previous month, Tt–1 are in-
cluded. Thus, the input set for the models is given as 
{ht, ht–1, Pt, Pt–1, Tt, Tt–1}. Moreover, for W303, 
groundwater levels were significantly impacted by 
seasonal variability in temperature as heavy snowfall 
during the winter lead to increased groundwater re-
charge as the snow melted. 

Table 1. Performance of ELM and SVM with different hy-
drological and meteorological inputs for selected wells 
(W262 and W303) 

R2 RMSE NS Input set 
W262 W303 W262 W303 W262 W303

ELM 
{ht, ht–1} 0.901 0.755 0.053 0.681 0.885 0.742
{ht, ht–1, Pt} 0.916 0.828 0.072 0.648 0.794 0.767
{ht, ht–1, Tt} 0.879 0.862 0.072 0.502 0.796 0.860
{ht, ht–1, ETt} 0.882 0.800 0.085 0.734 0.715 0.700

SVM 
{ht, ht–1} 0.898 0.731 0.088 0.714 0.688 0.717 
{ht, ht–1, Pt, Pt–1} 0.845 0.726 0.074 0.708 0.782 0.721 
{ht, ht–1, Pt, Pt–1,  
Tt, Tt–1} 0.725 0.788 0.092 0.637 0.661 0.775 

{ht, ht–1, ETt, ETt–1} 0.706 0.728 0.089 0.715 0.684 0.716 

Explanations: R2 = determination coefficient, RMSE = root mean 
square error, NS = Nash–Sutcliffe efficiency criterion, ht = 
groundwater level for the current month, ht–1 = groundwater level 
for the previous month, Pt = precipitation for the current month, Pt–1 
= precipitation for the previous month, Tt = temperature for the 
current month, Tt–1 = temperature for the previous month, ETt = 
evapotranspiration for the current month, ETt–1 = evapotranspiration 
for the previous month. 
Source: own study. 

The statistical analysis for both sites is presented 
in Table 2. The best ELM models for the W262 and 
W303 sites have testing RMSE values of 0.053 m and 
0.502 m, respectively, and are superior to the best 
SVM models with values of 0.074 m and 0.637 m, 
respectively. Lower RMSE values indicate that the 
best ELM model can successfully generalize the com-
plex system close to the observed data. This argument 
is further supported by the general statistics given in 
Table 3.  

Table 2. Performance of best ELM and SVM models for 
groundwater level prediction for well 262 and well 303 for 
a one-month lead period 

Model Well  
number R2 RMSE NS 

W262 0.901 0.053 0.885 ELM 
W303 0.862 0.502 0.860 
W262 0.845 0.074 0.782 SVM 
W303 0.788 0.637 0.775 

Explanations: R2, RMSE, NS as under Table 1. 
Source: own study. 

The best ELM model for W262 and W303 has R2 
values in the testing phase of 0.901 and 0.862, respec-
tively, and simulates better than the best SVM model 
with R2 values of 0.845 and 0.788 respectively. Simi-
larly, the best ELM model for W262 and W303 has 
a Nash efficiency of 0.885 and 0.860, respectively, 
and performs better than the best SVM model, which 
has a Nash efficiency of 0.782 and 0.775, respec-
tively. The higher R2 and Nash efficiency values indi-
cate that the ELM model has a greater ability to pre-
dict and generalize complex nonlinear systems when 
compared to the best SVM model for both wells.  
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Table 3. General statistics of the observed and simulated 
groundwater level for well 262 and 303 

Well 
number Statistics Observed 

time series 
ELM model 

output 
SVM model 

output 
min 56.83 56.82 56.80 
max 57.33 57.31 57.17 
mean 57.02 57.02 56.99 
median 56.99 57.03 56.98 
mode 56.86 56.85 56.80 
SD 0.1642 0.1578 0.1225 

262 

range 0.500 0.494 0.378 
min 21.77 21.49 22.01 
max 26.82 26.10 26.34 
mean 24.35 24.29 24.27 
median 24.32 24.42 24.37 
mode 24.52 21.49 22.01 
SD 1.372 1.246 1.231 

303 

range 5.050 4.608 4.328 

Source: own study. 

Likewise, Table 3 presents the comparison between 
the prediction ability of ELM and SVM for W262 and 
W303. The best SVM model overestimates the target 
values for both wells, while the best ELM model sim-
ulates the target output closer to the observed 
groundwater level at both locations.  

To graphically analyse the capability of the de-
veloped ELM and SVM models for the two wells, the 
predicted values are plotted against the measured data. 
Figure 4 compares observed and predicted groundwa-
ter levels in the testing phase at W262 for the best 
ELM and SVM models. Figure 5 makes the same 
comparison for the W303 site. The best SVM model  
 

 

 
Fig. 4. The predicted groundwater level curve by best ELM 
model (a) and SVM model (b) and observed groundwater 
level curves for one-month ahead prediction at well 262 

during testing period; source: own study 

 

 
Fig. 5. The predicted groundwater level curve by best ELM 
model (a) and SVM model (b) and observed groundwater 
level curves for one-month ahead prediction at well 303 

during testing period; source: own study 

overestimates the target values for both wells, while 
the best ELM model simulates the target output closer 
to the observed groundwater level at both locations. 

Further, the line of best fit of predicted ground-
water level by ELM and SVM against the measured 
data for the testing phase are illustrated, respectively, 
in Figures 6 and 7 for W262 and W303. The plots 
clearly show that SVM overestimates/underestimates 
many points for both the wells and ELM predicts the 
groundwater level with a lower degree of overestima-
tion/underestimation. It is also observed that the ELM 
model is able to capture the underlying dynamics of 
groundwater level variations and predicts the lower 
and higher groundwater level values closely to ob-
served values. In the case of SVM, lower values of 
groundwater level are estimated accurately, however 
the higher groundwater level values are overestimated 
significantly.  

The overestimation/underestimation of the target 
output by the ELM/SVM can be explained by the fact 
that the simulation ability of data-based models di-
rectly depends on input data. The selected input struc-
ture may not be providing the sufficient information 
to the model and hence the prediction accuracy is low. 
The magnification of error in the predicted groundwa-
ter level values can also be attributed to the structural 
shortcomings of the data-based models. SVM per-
formance depends on the proper selection of hyper 
parameters, which are selected via a trial and error 
method. Likewise, the activation function (sigmoid) 
in ELM can have a somewhat unstable performance if 
the random numbers are not selected properly. 
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Fig. 6. Scatter plot of W262 comparing observed  

and simulated target values by best ELM model (a)  
and SVM model (b) in testing phase for one-month lead 

time; source: own study 

 

 
Fig. 7. Scatter plot of W303 comparing observed  

and simulated target values by best ELM model (a)  
and SVM model (b) in testing phase for one-month lead 

time; source: own study 

CONCLUSION 

This study evaluated the ability of a new extreme 
learning machine method to predict monthly ground-
water levels. Two observation wells (W262 and 

W303) located in British Columbia, Canada were 
studied. Hydrological and meteorological parameters 
for both sites were used in various input structures for 
the comparison study between SVM and ELM soft 
computing methods. The parametric analysis indi-
cated that past groundwater level data are very impor-
tant for accurate predictions, however, the selection of 
other parameters depends on the location of the study 
site. The numerical and graphical analyses indicate 
that the ELM algorithm is capable of more precise 
monthly forecasts of groundwater levels and displays 
its superiority over SVM models. Future research ef-
forts should be directed towards using ELM models to 
predict groundwater levels at different lead times and 
at different geographical locations with varying phys-
ical characteristics. Forecasting groundwater levels 
with greater lead times will help policymakers to 
achieve better groundwater management planning.  
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Basant YADAV, Sudheer CH, Shashi MATHUR, Jan ADAMOWSKI  

Ocena zdolności ekstremalnych maszyn uczących (ELM) do przewidywania poziomu wód gruntowych 

STRESZCZENIE 

Na całym świecie fluktuacje poziomów wód gruntowych stanowią ważny temat badań hydrologicznych. Ro-
snące potrzeby wodne, błędne praktyki irygacyjne, niewłaściwa gospodarka glebowa i niekontrolowana eksplo-
atacja poziomów wodonośnych są powodami, dla których poziom wód gruntowych podlega fluktuacjom. Dla 
skutecznego zarządzania zasobami wód gruntowych istotne jest dysponowanie dokładnymi zapiskami i zdolność 
prognozowania poziomu tych wód. Rozwój technik komputerowych (modele wykorzystujące dane) w dziedzinie 
hydrologii ma istotny potencjał z powodu niepewnego i złożonego charakteru systemów wód gruntowych. 
W prezentowanych badaniach wykorzystano dwie techniki komputerowe: maszynę uczenia ekstremalnego 
(ELM) i maszynę wektorów nośnych (SVM – ang. support vector machine) do przewidywania poziomów wód 
gruntowych w dwóch studzienkach obserwacyjnych w Kanadzie. Do porównawczych badań modeli wykorzy-
stano zestaw danych miesięcznych z ośmiu lat (2006–2014), składający się z danych hydrologicznych i meteoro-
logicznych (opady, temperatura, ewapotranspiracja, poziom wody). Wymienione zmienne zastosowano w roz-
maitych kombinacjach do jedno- i wieloparametrycznej analizy modeli. Wyniki dowodzą, że model ELM ma 
lepsze zdolności przewidywania miesięcznych poziomów wód gruntowych w porównaniu z modelem SVM. 
 
Słowa kluczowe: maszyna uczenia ekstremalnego (ELM), maszyna wektorów nośnych (SVM), poziom wód grun-
towych, prognozowanie, zarządzanie zasobami wodnymi 

 
 


