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Assessing the utility of 
autofluorescence-based pulmonary 
optical endomicroscopy to predict 
the malignant potential of solitary 
pulmonary nodules in humans
Sohan Seth1,*, Ahsan R. Akram2,*, Paul McCool3, Jody Westerfeld4, David Wilson4, 

Stephen McLaughlin3, Kevin Dhaliwal2 & Christopher K. I. Williams1

Solitary pulmonary nodules are common, often incidental findings on chest CT scans. The investigation 
of pulmonary nodules is time-consuming and often leads to protracted follow-up with ongoing 
radiological surveillance, however, clinical calculators that assess the risk of the nodule being 
malignant exist to help in the stratification of patients. Furthermore recent advances in interventional 
pulmonology include the ability to both navigate to nodules and also to perform autofluorescence 
endomicroscopy. In this study we assessed the efficacy of incorporating additional information from 
label-free fibre-based optical endomicrosopy of the nodule on assessing risk of malignancy. Using image 
analysis and machine learning approaches, we find that this information does not yield any gain in 
predictive performance in a cohort of patients. Further advances with pulmonary endomicroscopy will 
require the addition of molecular tracers to improve information from this procedure.

A pulmonary nodule is de�ned as a focal rounded or irregular opacity in the lung, which can be well or poorly 
de�ned, measures less than 30 mm, is surrounded by aerated lung and is not associated with atelectasis or lymph 
node enlargement (see Fig. 1)1. �ey are common �ndings on computed tomography (CT) scans and cause 
both clinical and diagnostic uncertainty as they may represent benign disease or an early treatable lung cancer.  
Lung cancer remains the most common cancer in men worldwide and the fourth most common cancer in women 
in terms of incidence, and the most common cause of cancer-related deaths in men and second to breast cancer  
in women2. If a pulmonary nodule is diagnosed as malignant then treatment at early stage (such as stage I) 
o�ers a 73% chance of 5-year survival, whereas in late stage disease (such as stage IV) this is reduced to 13%3. 
Consequently there has been considerable interest in the early identification of patients with lung cancer. 
However, no single clinical variable or sign seen on radiological assessment can inform us whether a nodule is 
benign or malignant with absolute certainty, and current recommendations rely on the assessment of risk using a 
combination of clinical and radiological variables4,5 (see supplementary information on risk calculators for more 
details). �ese risk calculators demonstrate good operator characteristics in clinical cohorts4,5, but for individual 
patients the risk ascribed may still require progression to unnecessary invasive tests for benign diagnosis. With 
the increased use of CT scans in clinical practice6, and the targeted screening of high risk individuals for lung 
cancer,7 the detection of nodules will increase, and observational management may extend to four years of obser-
vation8 causing signi�cant uncertainty over a long period of time. �erefore, any minimally invasive method of 
obtaining a more de�nitive diagnosis has the potential to minimise many years of CT surveillance, prevent (where 
unnecessary) or expedite (where necessary) surgical treatments, and thus reduce harm in both groups.
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Bronchoscopy with techniques including endobronchial ultrasound and navigational technology has 
meant almost all of the lung parenchyma can be accessed by endobronchial means. �erefore, new technol-
ogies that allow confocal imaging of the lung parenchyma at cellular resolution by the passage of a thin �ber 
down the working channel of a bronchoscope, such as �bered confocal �uorescence microscopy (FCFM)—an 
optical endomicroscopy technique—may have a potential role in the management of patients with nodules 
(see supplementary information on FCFM imaging for more details), but this role has not been fully de�ned. 
Pulmonary FCFM imaging has been performed on patients with respiratory disease in multiple centers around 
the world and has an excellent safety pro�le9. Furthermore, in pulmonary FCFM imaging, some groups have 
reported the use of computer-aided analysis for the classi�cation of images from healthy individuals versus 
pathological conditions10–12 (see supplementary information on FCFM image analysis for more details). �ese 
studies have found that the healthy alveolar structure can be discriminated from pathological quite e�ectively in 
label-free (auto�uorescence only) FCFM imaging (86.3% and 95.1% for never smokers and current or ex-smokers 
respectively12). Further work by the same authors10,11 on separating normal lungs (nonsmoking or smoking 
healthy) from pathological lungs (diagnosed with lung disease from abnormal growth detected via CT scan) 
from FCFM images has demonstrated that classi�cation between pathological and healthy in both current or 
ex-smokers and never smokers can be improved further using advanced image analysis and machine learning 
tools. Finally, it has also been demonstrated that with the application of methylene blue (a contrast agent 
instead of label-free) and using the Cellvizio system operating at 660 nm wavelength, the diagnosis of bronchial 
cancerous lesions can have a 90% classi�cation accuracy13. However, there have been no reports of label-free 
(auto�uorescence only) FCFM to determine benign from malignant nodules in an automated manner. �erefore, 
the aim of this study was to assess the e�cacy of automated computational analysis of FCFM images from a 
clinical cohort of patients with pulmonary nodules in improving the operating characteristics of the available 
nodule risk calculators.

Methods
Dataset: demographic, clinical, radiological and imaging information. All data described includes 
retrospective analysis of a prospectively collected cohort. �e study was approved by the Western Institutional 
Review Board (Puyallip, WA, USA). All procedures were undertaken using standard bronchoscopy, with the aid 
of superDimensionTMNavigation System (Covidien Inc., MN, USA) and imaging with 488 nm CellvizioTM(Mauna 
Kea Technologies, Paris, France) system. We display each variable name as variable name. For each patient, clinical 
data, including patient demographics, such as age and sex, and clinical risk factors for malignancy, such as smok-
ing history (smoker and smoking pack years), previous extracthoratic cancer, and family history of lung cancer, 
were recorded in a blinded fashion. Furthermore, CT scans of the index presentation were independently reviewed 
on a picture archiving and communication system (PACS) (Carestream Vue PACS, 11.4, Rochester NY, USA)  
and the maximal lateral diameter (nodule size) of nodules on axial scanning were recorded, as well as the number 
of nodules, location of nodule (upper lobe), margin of nodule (spiculation), density of nodule (nodule type) and 
presence of emphysema. Malignant lesions were con�rmed by either one of i) biopsy, ii) brushing of area or iii) 
washings of area con�rming the presence of malignant cells, or the growth of a nodule during an interval scan 
and subsequent con�rmation of malignancy. A nodule was considered benign if there was either i) no evidence of 
malignancy on histology/cytology and there was no interval growth (or resolution) on CT follow up for up to two 
years or ii) the pathology con�rmed an alternative non-malignant diagnosis. All pathology results were provided 
by the pathology department of the Columbus Lung Institute, Indiana, USA. �e nodule cohort consisted of 112 
patients: of these 12 were excluded as the FCFM videos were corrupted and 9 were excluded as the nodule was 
not reached on FCFM imaging. �erefore the �nal cohort consisted of 91 complete patient datasets, of which 25 
(27%) were due to malignant cause, and 66 (73%) due to a benign cause. For each video, on-target frames (where 
the distal end of the �bre had reached the nodule) were extracted manually to remove non-relevant informa-
tion of adjacent normal lung, bronchial imaging or movement artefact. On-target frames were not necessarily 
contiguous, i.e., the operator could visit the nodule multiple times, and we extracted all such segments, i.e., each 
video can have multiple on-target sequences. In total, across the 91 FCFM videos a total number of 16795 frames 

Figure 1. (a) CT scan demonstrating pulmonary nodule, (b) normal elastin structure, (c) abnormal elastin 
structure at nodule. Notice that abnormal structure may appear due to benign or malignant cause.
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(quartiles number of frames per video: 97, 159 and 219) were considered on target (see supplementary informa-
tion on representative frames for examples of on-target frames). FCFM frames are circular with the dimension of 
the enclosing square being about 500 ×  500 pixels.

Feature extraction. From a review of the existing literature we utilize three feature extraction strategies: 
local binary patterns (LBP), scale-invariant feature transformation (SIFT), and scattering transformation. For 
each video, we extract image features from each frame independently, and then combine them (as an average over 
the feature space) to represent the video as a whole. �us, the feature extraction does not explicitly depend on the 
number of frames per video. Additionally, we observe that the distribution of the number of frames per video for 
benign and malignant subjects are similar (t-test p-value 0.26).

Local binary patterns. Local Binary Patterns (LBP) are intensity scale and rotation invariant (but not spatial 
scale invariant) features extensively used in texture classi�cation14. LBP �nds local patterns around each pixel of 
an image and encodes them as a binary vector. To elaborate, the intensity values at equispaced angles 2πp/P where 
P ∈  {1, … , P} on a circle of radius R around a pixel is compared with the intensity value at the center pixel. For 
each of these values, if it is greater than or equal to the center value then it is represented as 1 and 0 otherwise. 
�is results in a P dimensional binary vector for each pixel in the image (for which a circle can be drawn). To 
make this representation rotation-invariant the binary vectors that are invariant to circular bit shi� are combined 
together. Additionally, it is observed that there are only a very few binary vectors that appear commonly in the 
images, and the rest are usually less informative14. �ese dominant vectors are called ‘uniform’ and are identi�ed 
to have less than 3 bit transitions, e.g., 00110000 has two bit transitions. Ojala et al.14 show that better classi�cation 
is attained when only the uniform vectors are considered and the rest are accumulated as a miscellaneous vector. 
�ese binary vectors are represented as integers, and the image is represented as a histogram over these integers. 
It is also suggested to perform a multiresolution analysis where features are extracted over multiple radii (since 
the features are not spatial scale invariant) with P varied accordingly, and concatenating the resulting histograms. 
Since our frames are circular rather than square, we modify the original implementation slightly. We extract 
binary vectors at each pixel within the circle. A more cautious implementation would ignore pixels at and around 
the boundary given the radius of the circle, but we ignore this for simplicity since such pixels are about 1% of total 
pixels. For each video, we take the mean of histograms over all on-target frames, which is also a histogram (by vir-
tue of the mean). We extract LBP histograms with following (R, P) combinations (1, 8), (2, 16), (3, 24), and (4, 24)  
and concatenate them to get a 80 dimensional feature vector.

Scale-invariant feature transformation. �e scale-invariant feature transformation (SIFT) is another 
widely popular feature extraction tool applied in object recognition15. �e core idea of SIFT is to �nd a set of 
scale and rotation invariant features that are representative of the image. Each SIFT feature is a 128 dimensional 
vector (4 ×  4 histograms over 8 quantized angles) that re�ects the gradients of the image around a keypoint along 
the quantized angles, and each image is represented as a collection of SIFT features extracted at appropriate key-
points. �is process is repeated over all training images. �e resulting SIFT features from all training images are 
clustered, and each cluster center is recognized as a visual word. Finally, both the training and testing images are 
represented as histograms over the visual words by assigning their respective SIFT features to visual words. �e 
number of clusters is user-de�ned. Dense SIFT16 is a modi�cation of SIFT where the SIFT features are extracted 
at equispaced pixels of the image (instead of selected keypoints) and at �xed scale and rotation (0 radians) to 
simplify computation. �is is repeated over multiple scales to induce scale invariance, and the SIFT features 
(over all scales) are pooled together before clustering. Since we have multiple videos, each with multiple frames, 
extracting SIFT features for multiple scales at each pixel location proves to be quite memory intensive. Instead, for 
each video, we extract SIFT features at random locations (within the circle), at random scales (from {2, 4, 6, 8, 10})  
and at random on-target frames. We limit the maximum number of SIFT features per video to 8192. Given a set 
of training videos, we �nd 1024 visual words. �us, we represent each training and testing video as a histogram 
over a 1024 dimensional vector. We also explored di�erent number of clusters (512 and 2048) and found them to 
perform worse.

Scattering transformation. �e scattering transformation is a relatively novel feature extraction method 
that resembles a convolutional neural network with known �lters which are dilated and rotated wavelets of a given 
family, i.e., ψ ψ=

−u j r r u( ; , ) 2 (2 )j j2 1 , where j is the magnitude of dilation, r is the rotation, and ψ is the mother 
wavelet, e.g., Morlet wavelet17. At each layer of the network the scattering transformation consists of two steps, 
�rst, transforming the output image of the previous layer (with a given dilation and rotation) with the series of 
�lters with increased dilation (relative to the previous layer), i.e., >j j

l l2 1
 if l2 >  l1 where l denotes layer, and all 

possible rotations (usually L equispaced ones between 0 and π), and second, taking the modulus of the resulting 
image. �is resulting image is then passed on to the next layer, and a smoothed (with a �lter φ φ=u J u( ; ) 2 (2 )J J2 ) 
and downsampled (by 2J where J is the total number of dilations) image (i.e., a set of coe�cients) is kept as a fea-
ture. �us the total number of features extracted by scattering transformation with J dilations, L rotations, and m 
layers is ∑

−
=N L C2 J

i
m i

k
J2

0  where N is the number of pixels in the image. �e scattering transformation parameters 
can be chosen by cross-validation, but some default values are o�en used, e.g., 2J =  log2N such that at each layer 
the smoothing and downsampling only results in a single coe�cient. Following existing literature13, we extract the 
largest square within each imaging circular image, and resize it to 128 ×  128, and choose J accordingly. We use 
m =  2 and L =  8 which results in 1401 coe�cients. For each video we take the mean of scattering features over 
on-target frames. Since di�erent videos have di�erent dynamic ranges, we normalized each frame to [0, 1] before 
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extracting scattering features. We also experimented with transforming the image with histogram equalization 
before extracting the scattering features, however, this did not improve the performance.

Classification. From a review of existing literature we use the following three classi�ers: Lasso generalized 
linear model (GLM), Gaussian process classi�er (GPC), and random forest (RF). For all three classi�ers, we use 
the standard Matlab implementations. Discriminative classi�ers, such as the three above, can implicitly handle 
non-extreme class imbalance (by extreme class imbalance we imply worse than 10:118). Since the class proportion 
in our cohort of benign and malignant subjects is rather modest (3:1), explicit correction has not been applied. 
Also, in the context of feature extraction, LBP and scattering features are extracted for each frame separately, and 
therefore, they do not depend on the class proportions. SIFT features, on the other hand, are extracted from the 
entire training set, and in case of extreme class imbalance they can be extracted for each class separately.

Lasso Generalized Linear Model. Least absolute shrinkage and selection operator (lasso) generalized lin-
ear model (GLM) solves the following problem,

∑ β β λ β− +
β β

=n
L y xmin

1
( , , ) ,

(1)i

n

i i
, 1

0 1
0

where n is the number of samples, (β0, β) is the set of coe�cients to be learned, λ is the regularization parameter 
which penalizes non-sparse solutions, and L is the log-likelihood of a suitable probabilistic model19. We use 
log-likelihood of the Bernoulli distribution as L, and the logit link function to relate the output of linear function 
β β+
Τx 0 to a valid probability value. We use 5-fold cross validation to choose the best value of λ among 100 

potential candidates between 0 and λmax (the smallest λ that gives β =  0). We use Lasso GLM rather than standard 
logistic regression to tackle the large p small n problem, i.e., a large feature set and small sample size. We use the 
implementation lassoglm in Matlab.

Gaussian process classifier. Gaussian process classi�er (GPC) is a nonlinear classi�cation strategy that 
assumes the following model,

κ| = + − =p y f yf p f mx x( , )
1

2
(1 erf( ( )/ 2 )), ( ) GP( , )

(2)

where GP(m, κ) denotes a Gaussian process with mean  =f mx x( ) ( ) and covariance function 
 κ′ ′ ′− − =f m f mx x x x x x( ( ) ( ))( ( ) ( )) ( , )20. We use a constant mean function m(x) =  m, and an isotropic 
squared exponential (Gaussian) kernel (diagonal covariance σI). We learn the hyperparameter values (mean m 
and width σ and height s of the squared exponential kernel) by maximizing the marginal likelihood function. We 
use the mean output value, median inter-sample distance, and 1 as initial guesses for the hyperparamers. We use 
expectation propagation to approximate the posterior Gaussian process. We use the Matlab implementation avail-
able at http://www.gaussianprocess.org/gpml/code/matlab/doc/.

Random forest. Random forest (RF) is an ensemble of decision trees21. Each decision tree is formed by creat-
ing a split using the best predictive variable selected from a random subset of variables untill the leaf node has too 
few samples to split. We set the minimum samples at the leaf node to 3, and at each node sample ceil n( ) varia-
bles randomly from the original pool of variables. We use the implementation TreeBagger in Matlab with 100 
trees.

Combining classifiers. We have two information sources for each subject: the clinical and radiological 
information comprising 12 features, and the FCFM video information where the number of features depends 
on the feature extraction strategy utilized. Our goal is to combine these two information sources, and observe if 
we do better. �is can be done in two ways, �rst, concatenating the information sources since both are vectors 
and then using a classi�er; or second, combining the outputs of two classi�ers learned from the two information 
sources separately. We chose the latter since the length of the vectors from two information sources vary signi�-
cantly, e.g., 12 versus of the order of 100–1000, and �nding relevant variables for prediction becomes challenging 
given only a few training samples, e.g., of the order of 100 (see Results section).

Let y0 and y1 be the indicators for benign and malignant classes respectively, and let x1 and x2 be the input 
vectors for clinical and imaging features respectively. We combine the probability of malignancy p(y1|x1) given by 
either risk calculator4,5, and probability of malignancy p(y1|x2) given by any one of the imaging based classi�er in 
one of the following ways,22,23

∑| = −
=

‐ y y ysum rule x x x: : p( , ) p( ) p( ), and
(3)

k
i

k i k1 2
1

2

α =
α

‐ y cm y yintegration x x x x: : p( , ) (p( ), p( )), (4)k k k1 2 1 2

where c is a normalizing constant, P(yk)’s are the prior class probabilities, and mα is function of two probability 
values that includes many standard combinations such as arithmetic mean (α =  − 1), geometric mean (α =  1), 
min and max (α =  ∞ , − ∞ ) etc. as special cases (see supplementary information on combining classi�ers for more 
details).

http://www.gaussianprocess.org/gpml/code/matlab/doc/
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We do not need to explicitly train a classi�er on the clinical and radiological information source since we have 
access to well-established risk calculators. We utilize cross-validation to test the performance of imaging informa-
tion. To elaborate, we divide 91 videos in 5 groups  i,i  = 1, 2, 3, 4, 5. To compute the benignity-malignancy 
probability of a video in group i  we train a classi�er with the remaining four groups ≠j i,j . A�er repeating this 
process for each group, these probability values are treated as the output of the image based classi�er. We evaluate 
the performance of each method in terms of area under the receiver operating characteristics (ROC) curve or 
AUC in short.

Results
�e clinical features of our clinical cohort are broadly consistent with the previously published cohorts (see sup-
plementary information on clinical characteristics of the cohort for details).

Classification using clinical information. To assess the ability of an experienced FCFM operator in dis-
tinguishing the nodule type from FCFM texture, the on-target frames were reviewed by a blinded clinical expert. 
Each set of frames for a corresponding patient was annotated as benign or malignant, which was possible in 83 of 
the 91 videos. �ese annotations were then used as a feature along with the 12 features we have to predict malig-
nancy. Figure 2a presents the AUC achieved by �tting the clinical information in the existing risk calculators4,5, 
and two linear logistic regression models trained by us with 12 features and 13 features respectively, where the 
13-th feature is the annotations by the clinical expert. In the last two cases the output probabilities of the classi�-
ers for each video is obtained by 5 fold cross-validation. We observe that both the models trained by us perform 
worse than the existing models. A possible reason for this might be that we use many fewer samples to learn the 
models compared to the previous studies. We also observe that the performance deteriorates slightly when we 
use expert annotations as feature, demonstrating the di�culty of the classi�cation task since there is little visual 
di�erence between the two group of videos ( see Fig. 1 in supplementary information for an illustration ). Since 
we use all 91 subjects for evaluating our method in the following sections, we present the corresponding AUCs 
in Fig. 2b.

Classification using imaging information. We assess the ability of FCFM imaging information alone in 
classifying subjects as benign or malignant. Figure 3a presents the performance of di�erent feature extraction and 
classi�cation methods. We also present the empirical distribution (0.05 and 0.95 quantiles) of AUC when the clas-
si�er output has been drawn randomly from a uniform distribution, where AUC ≈  0.5 implies classi�cation by 
random chance. We observe that almost all of the feature extraction and classi�cation strategies perform within 
the random classi�er con�dence interval. However, scattering features with a nonlinear classi�er do show an 
AUC above the con�dence intervals. Figure 3b presents the performance of di�erent feature extraction methods 
and di�erent classi�ers trained on image features and clinical features concatenated. Although the inclusion of 
clinical information improves the classi�cation performance, it is still considerably below those of the risk calcu-
lators using clinical features alone.

Classification using clinical and imaging information. To assess the impact of the imaging informa-
tion on the clinical risk calculator performance characteristics we combine the information from imaging data to 
existing risk calculators. For each feature extraction and classi�cation strategy we choose the best classi�er combi-
nation strategy (see Fig. 4). We choose this particular combination strategy without cross-validating over di�erent 
strategies. �is risks over�tting, but we avoided cross-validating over combination strategies so as to not reduce 
the training set further. However, as we conclude that even the best classi�er combination strategy only results in 
marginal (not statistically signi�cant) improvement, it is justi�ed. Figure 5 presents the results of combining the 
imaging classi�er outputs with existing models. We observe that only scattering features with RF shows promising 
result while the rest of the feature extraction and classi�er combinations reduce the performance.

Figure 2. Comparison of existing models using clinical and demographic features4,5 versus models trained 
on our patient cohort either with or without using expert annotation as feature. AUCs are computed with 
either (a) 83 (for which expert annotation is available) or (b) 91 subjects (full cohort).
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To test if the improvement over existing models is statistically signi�cant or just random chance, we repeat the 
experiment with di�erent cross-validation splits. Figure 6 presents the result of a signtest (implementation sign-
test available in Matlab) to see if the median AUC over di�erent cross-validation splits is signi�cantly greater than 

Figure 3. Comparison of di�erent feature extraction and classi�cation methods on predicting benign 
versus malignant nodules based on (le�) only imaging features, and (right) imaging features concatenated 
with clinical features. �e vertical lines denote the median, and (0.05, 0.95) quantiles of the empirical AUC 
distribution where the classi�er output is random. LBP Lasso didn’t converge within given time for image and 
clinical features concatenated.

Figure 4. Comparison of di�erent feature extraction, classi�cation methods, and classi�er combination 
strategies on predicting benign versus malignant nodule when combined with existing models based on 
clinical and demographic information (le�) Swensen et al.4 (right) McWilliams et al.5. �e horizontal line 
represents performance using only the existing model without imaging information.
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the existing models. We observe that only scattering features with the random forest classi�er provide a promising 
result although not statistically signi�cant (p =  0.40 in both cases).

Discussion
Label-free FCFM allows imaging of auto�uorescent lung parenchyma at cellular resolution, but we have demon-
strated that there are no features seen on manual assessment or obtained through a automated feature extraction 
that improve the operator characteristics of nodule calculators over using clinical and CT radiological features 
alone in a large clinical cohort. We have used a non-biased automated approach to investigate the utility rather 
than rely solely upon human eye data extraction. Indeed, as auto�uorescenec originates from elastin and collagen 
in the lung9, it is perhaps not surprising that the remodelled extracellular matrix present around both benign and 
malignant nodules is not distinguishable without molecular pro�ling. �at said, a number of limitations to this 
work must be acknowledged. Firstly, this work formed part of a prospectively collected database, but is a retrospec-
tive analysis of the work, which carries inherent bias24. Secondly, there are the potential problems around imaging: 
although all imaging was performed by a single experienced expert operator, bias for the length of time imaging 
an abnormal area, and whether all on target frames were included in the analyses must be acknowledged as limi-
tations to the work. �is imaging modality also includes motion artefacts in the images, due to breathing and �bre 
movement, which may require removal before automated analysis. �irdly, the interpretation of the data relies on 
su�cient contrast in the imaging data and a number of videos could not be interpreted manually due to the poor 
contrast. It is to be noted that the output of the FCFM imaging are intensity values of the auto�uorescence, and the 
dynamic range of these values can be drastically di�erent for di�erent images, making it di�cult to compare them. 
Furthermore, the imaging �eld of view is small compared to the nodule size, i.e., 600 microns compared to size of 
the nodule which may be up to 30 mm, and therefore, the clinician only has a partial view of the nodule. Whilst this 
�eld of view remains comparatively small and allows for high resolution imaging, this approach allows for imaging 
at multiple sites of the nodule penumbra in a minimally invasive way and has already been shown to demonstrate 
pathological features when used for proximal large airway tumours with topical dyes. Importantly, the penumbra of 
the tumour is the key area to image and sample as intratumoral necrosis is o�en present25. Fourthly, we decided to 
analyse images irrespective of smoking status, which can have impact on the accuracy of the image analysis10,12, as 
only 13 of the overall cohort were never smokers, and only 2 subjects that were never smokers developed malignant 
nodules. However, the approaches that we have pursued in this study could be further developed and applied in a 
cohort of never smokers who develop malignant nodules to interrogate if this approach of non-label auto�uores-
cence endomicroscopy of nodules provides any additional features in this cohort. Finally, although the clinical data 
is complete, a number of cases had to be excluded due to missing/unreadable FCFM data. However, the patient 

Figure 5. Comparison of di�erent feature extraction and classi�cation methods with best classi�er 
combination strategy on predicting benign versus malignant nodule when combined with existing models 
based on clinical and demographic information (le�) Swensen et al.4 (right) McWilliams et al.5. �e vertical 
line represents performance using only the existing model without imaging information.
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cohort we analyze has a number of strengths: the clinical data is complete for the parameters assessed for risk 
calculation, the study demonstrates the feasibility of reaching pulmonary nodules by FCFM imaging, it contains a 
signi�cant number of patients and it has been subject to robust feature extraction and analysis.

Given that the above approach does not show a signi�cant advantage in using FCFM information, other 
approaches must be considered; the use of an internal control for each patient by acquiring FCFM images from a 
distinct bronchopulmonary segment either alone or in conjunction with generic contrast agents or the targeted 
use of molecularly targeted optical imaging agents may all increase performance26. �e use of generic contrast 
agents for pulmonary FCFM images has previously been considered. �e use of topical methylene blue13 have 
been used to demonstrate nuclear staining in pulmonary FCFM imaging but requires the 660nm Cellvizio sys-
tem, where the auto�uorescence would not be seen. Fluorophores with compatibility at 488 nm include acri�a-
vine, which has been advocated by some groups27 but not others28 and cresyl violet, which has been demonstrated 
to provide contrast with a prototype �ber based confocal system for bronchial imaging29. Fluorescein, which 
has been extensively used and is well established with FCFM in gastrointestinal imaging to demonstrate cellu-
lar dysplasia and malignancy30, has met with limited success when administered intravenously for pulmonary 
FCFM imaging in humans31 but has been demonstrated for bronchial vasculature imaging in preclinical models32.  
Our group has also demonstrated the potential of targeted imaging with 488 nm compatible Smartprobes 
administered topically in whole large animal lung models and human lung tissue ex vivo33,26. �e potential of 
�uorescein-based Smartprobe targeted imaging in lung cancer has also been demonstrated by targeting EGFR 
mutations in cell line xenogra� mouse model34 and this approach has been demonstrated in vivo for urological 
conditions35 and oesophageal malignancy36. �erefore, the use of contrast agents or Smartprobes may allow the 
identi�cation of features speci�cally associated with malignancy that are similar to histopathological features seen 
on biopsies.

In summary, in a clinically relevant cohort of patients with pulmonary nodules, this work demonstrates that 
label-free FCFM data does not improve operator characteristics of risk calculators to distinguish benign from 
malignant nodules. �erefore, future work in the detection of benign from malignant nodules will likely need to 
include �uorescence-based tracers to see cellular structures of the nodule, but ideally should include a targeted 
molecular labeling strategy. Pulmonary nodule label-free FCFM methods may likely only show utility to inform 
the clinician if the area is abnormal, and so label-free FCFM may be used to guide sites for biopsy to improve 
diagnostic yield.

Figure 6. Comparison of di�erent feature extraction and classi�cation methods on predicting benign 
versus malignant nodule when combined with existing models based on clinical and demographic 
information (le�) Swensen et al.4 (right) McWilliams et al.5. �e bars are the median over 16 cross-validation 
splits, and the numbers are the p-value returned by a signtest to check if the median is above the vertical line. 
�e vertical line represent performance using only the existing model without imaging information.
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