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Abstract

The utility of social media for both collecting and disseminating information

during natural disasters is increasingly recognised. The rapid nature of urban

flooding from intense rainfall means accurate surveying of peak depths and

flood extents is rarely achievable, hindering the validation of urban flood

models. This paper presents a real-time modelling framework to identify areas

likely to have flooded using data obtained only through social media. Graphics

processing unit (GPU) accelerated hydrodynamic modelling is used to simulate

flooding in a 48-km2 area of Newcastle upon Tyne, with results automatically

compared against flooding identified through social media, allowing inunda-

tion to be inferred elsewhere in the city with increased detail and accuracy. Data

from Twitter during two 2012 flood events are used to test the framework, with

the inundation results indicative of good agreement against crowd-sourced and

anecdotal data, even though the sample of successfully geocoded Tweets was

relatively small.

Introduction

The UK was subjected to a series of intense storms through-

out 2012, bringing severe flooding and damage totalling mil-

lions of pounds. In some cases, lives were lost. Such events

are not unique to the UK, with a similar situation reported

across Europe. The UK Environment Agency has invested

heavily in a monitoring network for major rivers, which are

used as data sources in real-time hydrodynamic models.

Accurate real-time observations are essential for forecasting

and nowcasting during incidents, and to provide validation

data for model development. However, no formalised moni-

toring network presently exists for surface water flooding

(i.e. pluvial), which tends to be short-lived and result from

convective storms which are difficult to accurately forecast.

Surface water flooding from intense rainfall poses a risk to a

substantial number of properties, estimated at 2.8 million

(Pitt, 2008; Environment Agency, 2009). At present, a system

exists to issue alerts for potential extreme rainfall; however,

there is a recognised need to extrapolate from these data the

specific areas at risk of flooding, which are often highly

localised, sometimes to the level of individual properties

(Pitt, 2008; Golding, 2009). Development of such warning

systems is hampered by a lack of data and the varied nature

of different rainfall events which might ultimately result in

flooding.

Flood modelling at the city scale is rarely considered fea-

sible. The complex nature of urban environments is prob-

lematic, characterised by gradients, narrow gaps between

buildings, culverted watercourses, and drainage networks of

varying quality and age. Steep slopes and narrow gaps can

induce supercritical flow conditions, resulting in such phe-

nomena as hydraulic jumps, and thus requiring shock-

capturing but computationally intensive models if they are

to be accurately reproduced (Mignot et al., 2006). Allowing

water to pass through the narrow gaps then requires high

grid resolutions, typically 2 m or better (Schubert and

Sanders, 2012), demanding millions of grid cells. These two

factors combined mean even for the relatively short duration

events typical for summer storms (i.e. 2 h or less), model

run-times are likely to be slower by an order of magnitude or

more than real-time.

Improved data collection and real-time modelling of

flood events allows emergency services and relevant author-

ities to make more-informed decisions about where they

direct their attention. In some instances, the areas where

explicit reports of flooding are received are not those requir-

ing the most urgent attention. Dissemination of real-time

flood extent data to the public allows them to make safer

choices when selecting routes for travel. Retrospectively,

flood extent data have applications in determining the

best location for defences, drainage upgrades, and ‘soft
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engineering’ strategies (i.e. warning systems, sandbags,

insurance, planning constraints).

Further development, validation, and implementation of

viable and accurate surface water flood warning systems

requires a step change in the volume of data collected during

and after flood events, and in the efficiency and capabilities

of hydrodynamic modelling frameworks. Clear evidence

exists that social media is increasingly used as a tool for

dissemination and communication during times of crisis

and natural disasters, such as during the 2011 Queensland

flood and Thai flood (Starbird et al., 2010; Vieweg et al.,

2010; Kongthon et al., 2012; Murthy and Longwell, 2013);

the accuracy and validity of information provided by the

public through social media such as Twitter, however, may be

questionable. A further complication is that only a small

portion (approximately 1.5% but increasing) of Tweets are

precisely geotagged (Crampton et al., 2013), which is crucial

information for locating and evaluating the extent of flood-

ing. Comparison of locations geocoded from the text within

Tweets against the actual location of the user from geotags

suggests that even when Tweets are geotagged, these data can

rarely be considered reliable for inferring flooded locations

(Leetaru et al., 2013). Clearly, an alternative approach is

required.

This paper makes a contribution to both understanding

the geographic components of Twitter data and integration

thereof with real-time flood modelling. We contribute to

ongoing discussions regarding the possibilities and chal-

lenges of actively engaging with the public through social

media for hazard and risk management. The framework

demonstrates that social media provides an excellent source

of data, and that its utility may be further enhanced when

coupled with efficient graphics processing unit (GPU) accel-

erated real-time high-resolution hydrodynamic modelling.

Some limitations are also identified, insofar as capturing the

spatial and temporal variations in rainfall intensity and cor-

rectly interpreting the meaning of social media messages.

Recent flooding in Tyne and Wear

One of the most publicised floods in the UK during 2012

occurred in Tyne and Wear on 28 June 2012, during a

month where many parts of the country were battered by

short-duration heavy rainfall and thunderstorms over

already saturated ground (JBA Risk Management and Met

Office, 2012). A supercell storm hit the city of Newcastle

upon Tyne in North East England and the surrounding area

at approximately 15:00, only shortly before most people

were expecting to leave work. The effects of up to 50 mm of

rainfall over 2 h were dramatic: Newcastle Central Station

was flooded and the surrounding railway lines flooded or

damaged by landslides; underground stations on the area’s

light rail network were flooded; grade-separated junctions

connecting the city to all of the major arterial roads were

flooded; and bus services were suspended in some areas.

Many people were stranded with no way to get home. More

than 300 properties were flooded internally, and damage to

highways alone in the Newcastle area was estimated at up to

£8 million (Newcastle City Council, 2013). Rainfall inten-

sity varied greatly, both spatially and temporally across the

city, but in some instances, an intensity exceeding

200 mm/h was recorded for a short duration (Environment

Agency, 2012).

Large numbers of people took to social media to voice

their concern, share photos, and find the best way home.

Retrospective analysis of Twitter on the day shows more than

1800 Tweets, which could be linked to flooding in the area,

helpfully identified by the hashtags #toonflood and

#newcastleendofdays. Local authorities and emergency

responders both started and actively engaged with these

hashtags as a way of disseminating information to the

public. A further slightly smaller rainfall event occurred on 5

August 2012, in which 40 mm of rainfall fell within 90 min

(Newcastle City Council, 2013). The Twitter activity for

these two events is represented in Figure 1, whereby the

Figure 1 Total number of Tweets (including some Retweets) identified about flooding within Tyne and Wear through hashtags such as

#toonflood and #newcastleendofdays.

2 Smith et al.

© 2015 The Authors

Journal of Flood Risk Management published by The Chartered Institution of Water and Environmental Management and John Wiley & Sons Ltd

J Flood Risk Management •• (2015) ••–••



timing of the August event on a Sunday is believed to be the

main reason for the relatively low number of Tweets.

As a further source of data, Newcastle University asked

members of the public to help reconstruct the event through

crowd-sourcing, following the success of a similar system

following fluvial inundation in nearby Morpeth on 6 Sep-

tember 2008. A simple website allowed photos and text to be

uploaded and positioned on a map. The system was publi-

cised through local radio and television, with members of

the public encouraged to contribute. About 194 submissions

were received, almost all including a photo and the approxi-

mate time and location.

The modelling framework

The intention of this project is to assess the utility of social

networking data and feasibility of real-time high-resolution

hydrodynamic modelling, neither of which has previously

been explored. Application of two-dimensional hydraulic

models to real-time surface water flooding is not currently

applied within any operational system in the UK (Ghimire

et al., 2013). No meteorological data are used herein, and the

authors are keen to stress that they do not suggest this is the

most reliable method for real-time flood inundation mod-

elling. Accordingly, the data stream from Twitter is used to

identify when a storm event occurs, invoke hydrodynamic

model runs in the correct locations, and subsequently vali-

date the quality of results.

The integrated modelling framework takes data from

social media, presently only Twitter, and stores messages

that may potentially contain valuable data about flooding.

These messages are then processed in order to identify cri-

teria against which model runs can be assessed, thereby

finding a suitable hydrodynamic model of the flood event

and creating a simulation that closely represents the

reported inundation within the city. The results of these

simulations can then be fed back to the public and inter-

ested parties (e.g. local authorities, emergency responders).

Crowd-sourced information, including photos and textual

descriptions, provide a basis through which future

improvements may be made, and the existing system can

be validated. The framework is visually represented in

Figure 2.

The framework consists of a Python-based middleware

layer consisting of scripts designed to run as services in the

background of a server, mostly remaining idle until a poten-

tial flood-causing storm event is identified. Data are stored

in a PostgreSQL database with PostGIS extensions.

Figure 2 Conceptual diagram of the integrated real-time modelling framework.
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Social media harvesting and analysis

The framework uses a single stream through the Twitter

Streaming API, which receives messages filtered both on key-

words and on spatial extent. The API adopts a broad

approach to filtering messages, returning anything that

matches any of the criteria; a second round of filtering is

therefore carried out before messages are committed to the

database. Keywords are matched against phrases or multiple

criteria at this point, for example: a Tweet containing the

word ‘flood’ with a geotag or bounding box that overlaps

with Newcastle; or a Tweet that must match a keyword and a

phrase such as ‘flood’ and ‘Newcastle upon Tyne’.

Criteria are regarded as a condition against which a model

can be assessed, which herein refers to either depth or veloc-

ity of flood water; in practice, this means a minimum,

maximum, or range of values that can be satisfied by the

model. For example, ‘knee-deep’ in Figure 3 could be satis-

fied by a depth ranging from 0.3 to 0.8 m, acknowledging

that people have different heights and the term is only an

estimate of the depth.

In order to comply with the Twitter API terms of service,

Tweets including their geoinformation are committed in

their entirety to the database and only held temporarily until

they can be analysed, the results of which are anonymous.

The temporary storage allows a queue of messages to build

pending analysis, which, in some instances, may take a few

seconds for each message.

Analysis of messages focuses on two main areas: identifi-

cation of terms with potential semantic value for a flood

event and identification of distinct geographic areas. Terms

of semantic value are those that potentially indicate the

intensity of rainfall, the occurrence of a major storm, the

presence of flooding, depth of flooding, or the velocity of

flow. Fifty-five terms were initially identified from inspection

of messages during previous flood events; notable examples

include ‘black skies’, ‘thunder’, ‘waist deep’, and ‘closed’. About

10 217 spatial entities were extracted from a mixture of data

sources, including Ordnance Survey vector mapping prod-

ucts, OpenStreetMap, and the Royal Mail postcode address

file. All of the data used, except postcode polygons, are freely

available in the UK, and no corrections or additions have

been made. Accordingly, a similar database could easily be

created for any other British urban area. The spatial entities

include street names and a large number of building names,

allowing messages that refer to flooding in and around

markets, parks and shopping centres to be recognised. A

hypothetical Tweet has typical terms of interest highlighted

in Figure 3.

Once a critical mass of Tweets referring to storm events or

rainfall intensity is identified within the database, a storm

event is considered to be in progress and the start time

assumed to be the same as the first message. Five messages

from different users within a 15-min period is considered to

constitute a ‘critical mass’ herein; however, flood modelling

cannot commence until at least one message with a spatial

extent and relevant semantic term is identified. A storm

event once identified is monitored for a period of 4 h, after

which it is likely there will be intervention such as pumping

in places of strategic importance, although this period can be

reconfigured to be longer. It is assumed that the intense

rainfall will last for no longer than an hour for the purposes

of simulations with a standardised event. We believe these

numbers are appropriate for the short-duration heavy rain-

fall induced flooding, which typically occurs in summer in

the UK; the framework is not suitable for use with ground-

water or fluvial inundation events.

Real-time flood modelling

Airborne altimetric LiDAR data are used to represent the

topography of the city for hydrodynamic modelling. A

digital elevation model was created by the extraction and

superposition of walls and buildings from the raw LiDAR

data to a post-processed terrain model resulting from the

same dataset. Both the raw and the post-processed data are

readily and commercially available at low cost, and allow for

a model of the city topography free of artefacts, without

bridges and trees, but including barriers to flow (e.g. walls).

A grid resolution of 2 m was selected to ensure the timely

completion of simulations, whilst still clearly representing

the majority of smaller flow pathways (i.e. gaps between

buildings, alleyways, etc.).

Simulations are constrained to the area shown in Figure 4,

which excludes the more rural areas to the north of the

city. Analysis of the topography identified watersheds and

allowed the city to be split to form nine different models,

all with transmissive boundary conditions but no flow

exchanged between them. Only the area under the remit of

Newcastle City Council is modelled. The areas covered by

each model are also shown in Figure 4.

The drainage network and associated sewers are not

explicitly considered within the model, owing partly to a lack

of suitable data regarding the grates and gullies, and more

crucially because its effects and quality of operation during

an extreme rainfall are likely to be minimal. Nevertheless, in

the event of small amounts of rainfall, this would be

adequately removed by the drainage network; accordingly, a

very simple approximation is implemented, for losses at a
Figure 3 An example Tweet (hypothetical) with some of the

typical terms that might be identified.

4 Smith et al.
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rate of 12.5 mm/h in all cells. This is approximately equal to

the rainfall for a 2-h duration 1 in 10-year event established

using Flood Estimation Handbook (FEH) methodology

(Faulkner et al., 1999); however, actual performance will

vary across the city according to design criteria, season, and

related levels of maintenance. This 1 in 10-year flood fre-

quency is consistent with the recommendations for drainage

design made in table 2 of BS EN 752:2008, for which sewers

should not be expected to surcharge in areas of high risk (i.e.

underground railways and underpasses), and close to the

12 mm/h rate determined by the Environment Agency as a

typical drainage removal rate, used in their own surface

water flood risk mapping projects (Environment Agency,

2013).

A uniform Manning coefficient across the domain is

assumed to be 0.045 s/m1/3 to partially compensate for street

furniture, which is neglected, and the mixture of surfaces,

which include long grass and woodland, paving stones, and

asphalt. Simulations are for a 2-h period, whilst rainfall is

applied uniformly across the domain for 1 h. This allows the

rainfall to settle. The shape of the hyetograph for an actual

event may, of course, be significant, perhaps concentrating

the heaviest rainfall within a 5-min window, but it is not

feasible (or in our opinion possible without a large volume

of data) to establish this from social media.

Evidence obtained from crowd-sourced images of the

June flooding demonstrably confirmed expectations that

super-critical flow would be present in parts of the city, such

as where flow cascaded down steps, and hydraulic jumps

forming on steep roads (e.g. Figure 5). Reproduction of

these effects requires a shock-capturing model. Efficient and

expedient simulation of a 48-km2 area with almost 12

million cells for real-time flood simulation is beyond the

capabilities of most shock-capturing hydraulic models,

which are extremely computationally intensive. These

numerical models solve the shallow water equations using

a finite-volume approach and explicit solutions to the

Riemann problem at each cell boundary to create a

Figure 4 Map showing the nine different models for Newcastle upon Tyne. Contains Ordnance Survey data © Crown copyright and

database right 2013.

Figure 5 An example of the complex and dangerous hydrody-

namics which can occur in urban flooding, showing water cascad-

ing at high speeds down steep steps in Newcastle upon Tyne.
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Godunov-type scheme. Consequently, the explicit models

are constrained by the Courant–Friedrichs–Lewy condition

(Courant et al., 1967), which is a function of the largest

velocity within the domain and the cell dimensions; accord-

ingly, if the cell resolution of these models is halved, the

simulation run-time can be expected to increase by approxi-

mately eight times. The 2-m resolution selected herein none-

theless has limitations, such as the stairs shown in Figure 5,

which do not align with the Cartesian grid and are not

captured at this resolution; furthermore, this would in effect

be considered as a single steep slope within the model rather

than individual steps, for which the hydrodynamic behav-

iour is different.

Smith and Liang (2013) demonstrated that a significant

speed-up can be achieved for shock-capturing hydrody-

namic simulations using modern GPUs designed for use in

scientific computing. This work has been extended to allow

for first-order simulations (Smith et al., 2015) and domain

decomposition across multiple GPU devices. The latter is

not used herein as the domain could readily be decomposed

to independent models along ridges that do not require data

exchanges. The full details of the finite-volume Godunov-

type numerical scheme employed can be found in the afore-

mentioned references. Four NVIDIA Tesla M2075 GPUs are

used to execute simulations, with a simple database-driven

system generating model configurations, monitoring perfor-

mance, queuing, and dispatching further runs required.

Typical simulation run-times are given in Table 1, although

minor variations can be expected for different rainfall inten-

sities and Manning coefficients. Further experiments con-

ducted confirm that using domain decomposition rather

than individual models, it is possible to reduce the run-time

for all of the areas given in Table 1 within a single model to

an hour, although this required considerable computing

resources (eight scientific-grade GPUs); with access to

further resources, these runtimes could be further reduced.

This technique is not applied herein as some parts of the city

had very little social media activity during the events, thus

only a subset of models was required. Whilst it is possible to

simulate the flooding at more than twice real-time speed,

even these reduced runtimes would still be a limiting factor

in applications for forecasting. This paper therefore focuses

on the utility of social media for nowcasting and incident

management.

Results from simulations are stored to raster files at 450-s

intervals in the simulation. These include the current depth,

maximum depth recorded in a cell, and the velocity in the x

and y Cartesian directions. These result files are subsequently

analysed to determine if a simulation is matching the criteria

identified from social media. Each simulation runs only to the

next 450-s interval while the event is in progress, and only

models where suitable criteria were identified from social

media are scheduled for execution; this means that even

though multiple model runs are required to find an appro-

priate match, these can often be achieved in near real-time.

Flood model result analysis

Resultant raster files are analysed for each criterion identified

using social media. These criteria stipulate that the depth or

velocity in a geographic area should either exceed a value or

fall within a defined range. A large number of messages

identified referred to a spatial location by describing a

nearby landmark or intersection, such as a road being closed

at the junction with another, or flooding occurring near to a

named shopping centre. Spatial entities are therefore buff-

ered to create an area to extract from the output raster files;

the example in Figure 5 shows a leisure complex with a 75-m

buffer area around it, and the flooding referred to in numer-

ous Tweets can clearly be seen approximately 50–100 m

away. The size of the buffer is configurable. The section of

road missing from the buffered area in the figure also shows

one of the minor issues with the approach adopted, whereby

some spatial features lie close to or on the boundary between

the nine different models; in such cases, multiple result files

must be consulted.

Each cell within the buffered area is used to generate a

histogram for the variable under consideration, an example

of which is given in Figure 6, where a typical shape is exhib-

ited with the majority of cells effectively dry, as shown in the

associated histogram Figure 7. The larger depths are there-

fore of more interest in determining whether an area is

flooded; however, taking the maximum value would poten-

tially identify exceptional cells that are a consequence of

deficiencies or artefacts in the terrain model. For the results

presented herein, a range of 0.01–5.01 m is used for depth

histograms, and 0.01–1.01 m/s for velocity, in both cases

with 500 bins. The approach adopted uses the histogram to

obtain approximations (which are fairly accurate given the

bin size) for the 70th and 95th percentile values, and consid-

ers a criterion to be satisfied if there is an overlap between

the criterion and the range between these percentiles. The

Table 1 Run-times (hh : mm : ss) and descriptions for the different

models used to simulate flooding in Newcastle upon Tyne

Model

ID

Model

description

Area

(km2)

Cell

count

Run-time

(hh : mm : ss)

1 Fenham 7.39 1 847 500 00:32:08

2 Elswick West 2.98 745 000 00:13:08

3 Elswick East 3.74 935 000 00:17:24

4 City Centre 7.01 1 752 500 00:30:10

5 Ouseburn 9.29 2 322 500 00:43:56

6 Heaton 5.28 1 320 000 00:20:25

7 Walker 5.67 1 417 500 00:17:44

8 Gosforth 4.06 1 015 000 00:13:37

9 Westerhope 2.31 577 500 00:07:04

6 Smith et al.
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percentile range used is also configurable. In the event

that multiple criteria arise from a single Tweet, for example,

if the words ‘flooded’ and ‘knee-deep’ were found, then

only the most stringent criterion will be considered (i.e.

knee-deep).

The modelling framework is designed to use known or

suspected data about flooding in one part of the city to infer

areas elsewhere which might be flooded, as a consequence of

the same rainfall event. It is therefore not crucial that the

framework correctly identifies the amount of rainfall, espe-

cially given how spatially varied this could be, but instead

identifies a single simulation that best matches social media

data. Identification of the best result set is therefore taken to

be the lowest amount of rainfall, which satisfies the majority

of criteria, where the improvement achieved by adding a

further 5 mm of rainfall is less than 5% of the criteria. The

gradient of criteria satisfied against total rainfall volume is

the key determinant. Whilst ideally the number of criteria

satisfied might be expected to eventually begin to decrease

with excessive amounts of rainfall, this is often not the case,

as the majority of criteria only stipulate a minimum depth

(i.e. knowing somewhere has been closed or flooded, results

in a criteria based only on minimum depth).

Results and discussion

The integrated modelling framework was tested using retro-

spective data collected from Twitter following the two major

flood events in Newcastle upon Tyne during 2012, the

smaller of the two occurring on August 5 and the larger on

June 28. For the two events, respectively, a total of 186 and

1834 Tweets were collected; however, only 168 and 1243 of

these were within 4 h of the framework identifying a poten-

tial event in progress.

The event on June 28 is believed to have spread 50 mm of

rainfall over some parts of the city, with peak rainfall rates

approaching 200 mm/h. Analysis of UK Met Office

NIMROD rainfall radar for the event suggests that the

average across the city was approximately 46 mm. The

August 5 event by contrast is thought to have totalled

30–40 mm. The framework makes no accommodation for

spatial variations in rainfall rate, the varying intensity, and

Figure 6 An example 75-m buffered area used to check whether a model has satisfied a depth criterion surrounding a leisure complex.

Figure 7 An example histogram produced from the depth in cells surrounding the feature in Figure 5.
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uses only a simple assumption for drainage losses. For simu-

lations hereafter, the 10-mm and 80-mm events were com-

pleted in advance, providing a starting point for the

framework to begin new model runs.

Geolocating Tweets and identifying criteria to

assess models against

From the aforementioned Tweets with timestamps in the

first 4 h of each event, semantically relevant terms and

spatial location names were matched. Those with both

present, where the semantic term infers implications for

either a depth or velocity, are considered to be useful. Only

43 such Tweets could be identified for June 28 and 13 for

August 5, shown in Figure 8. On June 28, the first Tweet

about the weather was made at 15:57, whilst the first Tweet

with enough detail to create a model criterion was at 16:12.

On August 5, the first tweet was at 13:44, but a whole hour

later before a Tweet containing enough data for a model

criterion, which is a prohibitively long time in terms of inci-

dent management.

Manual inspection of Tweets will clearly identify further

useful information; however, the framework is intended to

be completely automated; consequently, some instances

where typing errors were made or colloquial terms used to

refer to areas resulted in no match. Implementation of the

Levenshtein algorithm, Soundex, or vernacular geographies

for geocoding could assist and may be explored in the future.

Geotagged Tweets identified during both events were not

found to be of practical use; in some instances, the geotag

identified a location different to where flooding was occur-

ring, often in the case of Retweets.

The majority of the locations matched were major roads

in the city, as a consequence of these roads both being stra-

tegic routes affecting many people, and also the grade-

separated junctions collecting water and quickly flooding, as

shown in Figure 9. Sometimes buildings were identified as

flooding, which while useful information, the hydrodynamic

model cannot reproduce flooding within the building as

they are assumed to be solid. The models are likely to cor-

rectly reproduce internal flooding entering from the neigh-

bouring streets through the depths in the buffered cells

around a feature but could not identify flooding as a result of

leaking roofs.

Correlation of models against criteria from social

media and known data

Despite the low number of comparison criteria identified for

the smaller August 5 event, a good match is easily identified,

with the number of criteria satisfied reaching a plateau at

approximately 30 mm of rainfall, which is close to the actual

amount, as shown in Figure 10. No crowd-sourcing of

photographic and textual data about the August event was

undertaken, so there are little data to use for further

validation.

A greater volume of validation data is available for June

28. The change in criteria satisfied becomes less than 5% at

45 mm of rainfall; however, as can be seen in Figure 11, this

is marginal, with the next increase (from 50 to 55 mm) seen

to increase by slightly over 5%. This is not altogether sur-

prising: the framework makes no allowance for the tempo-

rally varying intensity of rainfall, and it is known that on

June 28, the heaviest rainfall was at the start of the event.

Figure 8 Number of useful Tweets identified and how many of these could be used as criteria to assess models against.
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Consequently, flood depths for areas that have small catch-

ment areas, and flood first, were underestimated at least to

begin with. The spatial variation in rainfall intensity is also

difficult to assess, with only a handful of reliable rain gauges

in the city and inaccuracies in rainfall radar (Wood et al.,

2000).

Simulation results for 45–60 mm of rainfall all agree well

with areas known to have flooded. A small area of the city is

shown in Figure 12, with areas known to have flooded high-

lighted. All of the circled areas except Debdon Gardens were

identified as having flooded from Tweets, which in many

cases included photos. The depths are a good approximate

match against these photos. In the case of Debdon Gardens,

crowd-sourced data from the public informed us that a small

area of the road had flooded, with the water travelling

through back gardens and collecting near the junction with

Danby Gardens. Despite no social media data indicating the

presence of flooding here, the simulation clearly shows a

small area of flooding, with final depth approximately

0.25 m. This clearly suggests that the framework is able to

use areas with known flooding to automatically identify

other areas likely to have flooded, in some cases at the level of

individual properties.

Conclusions

We have presented a framework for collecting and process-

ing data about flooding in real-time during a storm event,

which is used directly to instigate and evaluate computer

simulations and extrapolate from the known extent to other

areas likely to have flooded. The performance of the

simulations, when compared to data obtained through

Figure 9 Location of buffered spatial entities matched from Tweets.

Figure 10 Percentage of model criteria from social media satisfied by different total rainfall amounts for the August 5 event.
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crowd-sourcing and from elsewhere, demonstrates that

whilst the volume of rainfall cannot be determined exactly

owing to other unknowns (e.g. the efficacy of the drainage

network), the extent and depth of flooding is reproduced in

most cases, even with small numbers of model criteria iden-

tified in social media. It is important to note that only two

events are considered herein, and there is no guarantee of

reproducibility, especially for areas with fewer social media

users. With respect to the utility of social media in flood risk

management, the evidence from Newcastle upon Tyne sug-

gests that

1. whilst there are data within Tweets regarding the location

of flooding, indications of depth are often absent, and the

associated timestamp may not be representative of the

observation;

2. initial activity on social media tends to focus on the

intensity of the weather, whilst useful activity detailing

areas explicitly affected can sometimes come much

later;

3. a considerable number of useful data identified were dis-

tributed by local authorities, emergency responders, and

other public sector organisations, based upon reports

Figure 11 Percentage of model criteria from social media satisfied by different total rainfall amounts for the June 28 event.

Figure 12 Flood depth map for 45 mm of rainfall in the Heaton area of Newcastle upon Tyne, where circled areas correlate to areas

known to have flooded from news reports and crowd-sourced photographs. Contains Ordnance Survey data © Crown copyright and

database right 2013.
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from the public made by other means and CCTV

cameras; and

4. photographs have value for retrospective analysis of an

event, but social media sites generally strip embedded

data including the date and time of capture, hence other

means of collecting photographs which preserve this

information may be required.

Potential avenues for improving the framework have been

identified, primarily focusing on improved interpretation of

Tweets and matching ambiguous terms. The framework is

clearly better suited to incident management applications

than forecasting, but provides a basis through which the

public can be informed of the best routes for travelling, and

local authorities can identify the areas requiring the most

immediate attention.
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