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Assessing transmissibility of SARS-CoV-2 
lineage B.1.1.7 in England

Erik Volz1,104 ✉, Swapnil Mishra1,104, Meera Chand2,104, Jeffrey C. Barrett3,104, Robert Johnson1,104, 
Lily Geidelberg1, Wes R. Hinsley1, Daniel J. Laydon1, Gavin Dabrera2, Áine O’Toole4, 
Robert Amato3, Manon Ragonnet-Cronin1, Ian Harrison2, Ben Jackson4, Cristina V. Ariani3, 
Olivia Boyd1, Nicholas J. Loman2,5, John T. McCrone4, Sónia Gonçalves3, David Jorgensen1, 
Richard Myers2, Verity Hill4, David K. Jackson3, Katy Gaythorpe1, Natalie Groves2, 
John Sillitoe3, Dominic P. Kwiatkowski3, The COVID-19 Genomics UK (COG-UK) consortium*, 
Seth Flaxman6, Oliver Ratmann6, Samir Bhatt1,7, Susan Hopkins2, Axel Gandy6,104, 
Andrew Rambaut4,104 & Neil M. Ferguson1,104 ✉

The SARS-CoV-2 lineage B.1.1.7, designated variant of concern (VOC) 202012/01 by 

Public Health England1, was �rst identi�ed in the UK in late summer to early autumn 

20202. Whole-genome SARS-CoV-2 sequence data collected from community-based 

diagnostic testing for COVID-19 show an extremely rapid expansion of the B.1.1.7 

lineage during autumn 2020, suggesting that it has a selective advantage. Here we 

show that changes in VOC frequency inferred from genetic data correspond closely to 

changes inferred by S gene target failures (SGTF) in community-based diagnostic PCR 

testing. Analysis of trends in SGTF and non-SGTF case numbers in local areas across 

England shows that B.1.1.7 has higher transmissibility than non-VOC lineages, even if it 

has a di�erent latent period or generation time. The SGTF data indicate a transient 

shift in the age composition of reported cases, with cases of B.1.1.7 including a larger 

share of under 20-year-olds than non-VOC cases. We estimated time-varying 

reproduction numbers for B.1.1.7 and co-circulating lineages using SGTF and genomic 

data. The best-supported models did not indicate a substantial di�erence in VOC 

transmissibility among di�erent age groups, but all analyses agreed that B.1.1.7 has a 

substantial transmission advantage over other lineages, with a 50% to 100% higher 

reproduction number.

The SARS-CoV-2 lineage B.1.1.7 spread rapidly across England 

between November 2020 and January 2021. This variant possesses 

a large number of non-synonymous substitutions of immunologi-

cal importance2. The N501Y replacement on the spike protein has 

been shown to increase ACE2 binding3,4 and cell infectivity in animal 

models5, and the P618H replacement on the spike protein adjoins the 

furin-cleavage site6. B.1.1.7 also possesses a deletion at positions 69 

and 70 of the spike protein (∆69–70) that has been associated with 

failure of diagnostic tests using the ThermoFisher TaqPath probe, 

which targets the spike protein7. Although other variants with ∆69–70 

are also circulating in the UK, the absence of detection of the S gene 

target in an otherwise positive PCR test appears to be a highly spe-

cific biomarker for the B.1.1.7 lineage. Data from national community 

testing in November 2020 showed a rapid increase in SGTF during 

PCR testing for SARS-CoV-2, coinciding with a rapid increase in the 

frequency of B.1.1.7 observed in genomic surveillance. The B.1.1.7 

lineage was designated VOC 202012/01 by Public Health England 

(PHE) in December 2020.

Phylogenetic studies carried out by the UK COVID-19 Genomics  

Consortium (COG-UK) (https://www.cogconsortium.uk)8 provided the 

first indication that B.1.1.7 has an unusual accumulation of substitu-

tions and was growing at a higer rate than other circulating lineages.  

We investigated time trends in the frequency of sampling VOC genomes 

and the proportion of PCR tests exhibiting SGTF across the UK, which  

we calibrated as a biomarker of VOC infection. Using multiple 

approaches and both genetic and SGTF data, we conclude that B.1.1.7 

is associated with a higher reproduction number (R) than previous 

non-VOC lineages.

We examined whole-genome SARS-CoV-2 sequences from randomly 

sampled residual materials obtained from community-based COVID-19 

testing in England, collected between 1 October 2020 and 16 January 

2021. These data included 31,390 B.1.1.7 sequences for which the time 

and location of sample collection were known. Over the same period, 

52,795 non-VOC genomes were collected. VOC sequences were initially 

concentrated in London (n = 9,134), the South East (n = 5,609), and the 

East of England (n = 4,413), but is now widely distributed across England. 

https://doi.org/10.1038/s41586-021-03470-x

Received: 31 December 2020

Accepted: 18 March 2021

Published online: 25 March 2021

 Check for updates

1MRC Centre for Global Infectious Disease Analysis, Jameel Institute for Disease and Emergency Analytics, Imperial College London, London, UK. 2Public Health England, London, UK. 
3Wellcome Sanger Institute, Cambridge, UK. 4Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, UK. 5Institute of Microbiology and Infection, University of Birmingham, 

Birmingham, UK. 6Department of Mathematics, Imperial College London, London, UK. 7Section of Epidemiology, Department of Public Health, University of Copenhagen, Copenhagen, 

Denmark. 104These authors contributed equally: Erik Volz, Swapnil Mishra, Meera Chand, Jeffrey C. Barrett, Robert Johnson, Axel Gandy, Andrew Rambaut, Neil M. Ferguson. *A list of authors 

and their affiliations appears online. ✉e-mail: e.volz@imperial.ac.uk; neil.ferguson@imperial.ac.uk

https://www.cogconsortium.uk
https://doi.org/10.1038/s41586-021-03470-x
http://crossmark.crossref.org/dialog/?doi=10.1038/s41586-021-03470-x&domain=pdf
mailto:e.volz@imperial.ac.uk
mailto:neil.ferguson@imperial.ac.uk


Nature | Vol 593 | 13 May 2021 | 267

Overall, we estimate the median posterior additive difference in growth 

rates between B.1.1.7 and co-circulating variants to be 0.69 per week 

(95% credible interval (CrI) 0.61–0.76) (Fig. 1a, Extended Data Fig. 1, 

Supplementary Methods section 2), and this difference was largest 

in November. However, in tandem with geographic expansion of the 

VOC and imposition of lockdown measures in 2021, this difference 

declined gradually to 0.43 per week (95% CrI 0.33–0.52) for the week 

ending 16 January.

The rate of genetic diversification of the VOC lineage over time 

allows epidemic growth rates to be estimated using phylodynamic 

modelling9,10. To contrast VOC and non-VOC growth patterns, we ran-

domly sampled 3,000 VOC sequences paired with up to 3,000 non-VOC 

sequences and matched by week of sample collection and location 

(Supplementary Methods section 1). Phylodynamic modelling (Sup-

plementary Methods section 3) of the effective population sizes of 

B.1.1.7 and the previously dominant non-VOC B.1.177 lineage11 gave an 

estimated growth rate difference of 0.33 per week (95% confidence 

interval (CI) 0.09–0.62), and further indicated that the VOC overtook 

the B.1.177 lineage on 10 December (Fig. 1b), close to the date at which 

VOC sampling frequency exceeded 50% in England (3 December). Thus, 

we estimate that B.1.1.7 reached 50% frequency within 2.5 to 3 months 

after its emergence in England.

We estimated the ratio of VOC to non-VOC reproduction numbers 

using a renewal equation based approach (Fig. 1c, Extended Data Fig. 2, 

Supplementary Methods section 4). This estimator depends on the 

absolute growth rate of the non-VOC, estimated using the phylody-

namic model. We estimate the ratio of reproduction numbers between 

25 October 2020 and 16 January 2021 to be 1.89 (95% CrI 1.43–2.65), 

assuming a gamma-distributed generation time with mean 6.4 days and 

coefficient of variation of 0.6612. This ratio is sensitive to the assump-

tion that the generation time distribution is identical between vari-

ants. However, even if the VOC generation time is half that of previous  

variants, the estimated ratio of reproduction numbers was still  

1.53 (95% CrI 1.27–1.79). The ratio trended downwards over time,  

coinciding with the increasing frequency of the VOC. By mid-January, 

the ratio had fallen from 1.89 to 1.54 (95% CrI 1.34–1.82) (Extended Data 

Fig. 2).

Trends in SGTF attributed to the VOC

Infection with the VOC lineage results in a diagnostic failure on the S 

gene target in an otherwise positive PCR test using the ThermoFisher 

TaqPath assay, which is widely used for SARS-CoV-2 community PCR 

testing in the UK. Consequently, we gained a more detailed picture of 

the spatial and demographic spread of B.1.1.7 by using the much more 

abundant diagnostic data with SGTF than by using whole-genome 

sequencing only. Several SARS-CoV-2 variants can result in SGTF, but 

since mid-November 2020, more than 97% of PCR tests with SGTF were 

due to the B.1.1.7 lineage1. Approximately 35% of positive test results in 

UK community PCR testing use the TaqPath assay, and so provide S gene 

target results. Before mid-November 2020, SGTF frequency among PCR 

positives was a poor proxy for VOC frequency. We therefore developed a 

spatiotemporal model to predict the proportion of SGTF cases attribut-

able to the VOC by area and week (Supplementary Methods section 5), 

here termed the true positive proportion (TPP). False positives were 

attributed to the S-gene-positive case (S+) category. We found that 

the effective population size for B.1.1.7 effective population size was 

highly correlated with TPP-adjusted S counts (Extended Data Fig. 3).

Figure 2a–c (and Supplementary Data 1, Extended Data Fig. 4) shows 

the spatiotemporal trends of SGTF cases (S−), S+ and total PCR-positive 

cases by National Health Service (NHS) England Sustainability and 

Transformation Plan (STP) areas (a geographical subdivision of NHS 

regions). Visually, it is clear that during the second England lockdown, 

when schools were open, S+ case numbers decreased but S− case num-

bers increased. However, during the third lockdown, when schools were 

closed, the incidence of both S− and S+ cases declined.

Using TPP-corrected SGTF frequencies applied to overall PHE case 

numbers, we jointly estimated weekly effective reproduction numbers 

(Rt) values for the VOC and non-VOC in each of the 42 STP areas using a 

semi-mechanistic epidemiological model13 (Supplementary Methods 

section 6). The model parametrizes VOC Rt as a multiple of non-VOC Rt. 

The model was fitted to case numbers obtained by multiplying overall 

PHE case numbers by TPP-corrected SGTF frequencies. We estimated 

Rt for epidemiological weeks 45–55 (1 November 2020 to 16 January 

2021) (Fig. 2d), as before November there were insufficient VOC cases 

to reliably estimate VOC reproduction numbers across England. VOC 

Rt was greater than non-VOC Rt for all STP–week pairs (points above 

the diagonal in Fig. 2e). The estimated mean ratio of Rt for the VOC 

and non-VOC strains was 1.79 (95% CI 1.22−2.49) over weeks 45–55. As 

in the phylodynamic analysis, the multiplicative advantage in Rt for 

the VOC declined over the time window examined, to approximately 

1.5 in week 55 (Fig. 2d).

The greater Rt estimates of the VOC, even where Rt of non-VOC vari-

ants was below 1, indicates that B.1.1.7 has a transmission advantage, 

and that the observed frequency trends cannot be explained solely by 

a reduction in the mean generation time. We repeated the joint estima-

tion of VOC and non-VOC Rt with the assumption of a 25% reduction 

in the mean generation time of the VOC (Extended Data Fig. 5), and 

this estimated the mean ratio of Rt to be 1.60 (95% CI 1.09–2.23) over 

weeks 45–55. Incorporating a shorter generation time for the VOC 

into the model reduced, but did not eliminate, the decreasing trend 

in transmission advantage over time.
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Fig. 1 | Expansion of lineage B.1.1.7 relative to co-circulating lineages in 

England. a, Estimated frequency of sampling the VOC (lines) over time in NHS 

regions (n = 84,185). Shaded regions, 95% credible region based on Bayesian 

regression; points, empirical proportions of the VOC in each week; error bars, 

95% CI based on binomial sampling error. b, Effective population size over time 

for lineage B.1.1.7 and estimates based on a matched sample of the most 

abundant co-circulating lineage, B.1.177 (n = 3,000). Shaded regions, 95% 

bootstrap CI. c, The effective reproduction number inferred from growth of 
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To test whether VOC transmissibility differed by age, we first exam-

ined the age distributions of S+ and S− cases. Case numbers were 

age-standardized at STP area level, and then case age distributions were 

calculated for each STP–week (Supplementary Methods section 7). Fig-

ure 3 shows that individuals aged 19–49 years were the only age group 

that was consistently over-represented among observed cases relative 

to their share in the population (40%), with little difference between 

VOC and non-VOC cases. Secondary school-aged children (11–18 years) 

were also over-represented among observed cases relative to their share 

in the population (9%), and the difference between VOC and non-VOC 

cases was statistically significant for three weeks in November (Fig. 3, 

Extended Data Fig. 6). This period coincides with the second England 

lockdown (5 November to 2 December 2020) when schools remained 

open, and the differing age distributions between variants could arise 

from altered contact patterns when children were at greater risk of 

infection from all variants compared to adults.

Next, we formulated models that incorporated a difference in 

VOC transmission between age groups (Supplementary Methods  

section 7). The models were fitted variously to genome-derived and/

or SGTF-derived VOC frequencies, as well as total age-specific cases 

in each week and region, and compared using Bayesian leave-one-out 

cross-validation.

Model comparison consistently favoured models that allowed the 

transmission advantage to vary over time and between regions, using 

either genomic or SGTF data. However, models that incorporated an 

age effect were not significantly favoured (Extended Data Table 1). 

Indeed, the observed fluctuations in the age distribution are equally 

well captured by models that do not incorporate age-specific trans-

mission advantages (Extended Data Fig. 6). We also used these model 

comparisons to test the hypothesis that differences in the VOC growth 

rates are a consequence of a reduced generation time in B.1.1.7. In prin-

ciple it is possible to statistically identify such a difference, because 

the data cover a period during which the overall Rt has been above and 

below one. Models that incorporate a change in the mean generation 

time were sometimes favoured (Extended Data Table 1), but the esti-

mated ratio of mean generation times was not well identified—it varied 

between 0.75 and 0.96, depending on the model and data being fitted to. 

The mean ratio of Rt between the VOC and non-VOC ranged between 1.6 

and 2.01, depending on model variant. The best fit model to both SGTF 

and genomic data gave an estimate of 1.74 (95% CrI 1.03–2.75), which is 

highly consistent with the estimates obtained from the phylodynamic 

analysis and the direct estimation of Rt for VOC and non-VOC described 

above. This model also reproduces the decline in transmission advan-

tage over time seen in our other analyses (Extended Data Fig. 7).

Discussion

While substitutions in the B.1.1.7 lineage are associated with substantial 

changes in viral phenotype3–5,14, the extent to which these substitutions 

lead to meaningful differences in transmission between humans is 

unclear, and cannot be evaluated experimentally. When randomized 

experimental studies are not possible, observational studies provide 

strong evidence if consistent patterns are seen in multiple locations 

and at multiple times. Increasing frequency of a new lineage is consist-

ent with a selective advantage, but changes in frequency result from 

founder effects, especially for genetic variants that are repeatedly 

introduced from overseas11,15. However, in contrast to previous vari-

ants that have achieved high prevalence, we see expansion of the VOC 

from within the UK.
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We find some evidence that the multiplicative transmission advan-

tage of B.1.1.7 (that is, ratio of reproduction numbers) declined in late 

December 2020 to January 2021, coincident with stricter social dis-

tancing, school closures, and the subsequent third England lockdown 

(Fig. 2d, Extended Data Figs. 2, 6). A number of mechanisms could 

generate this effect. First, a shorter generation time of the VOC would 

reduce the ratio of VOC to non-VOC growth rates for small values of 

the non-VOC growth rate. Thus as interventions reduce both repro-

duction numbers, their ratio would decline, even in the absence of 

any underlying change in transmission advantage. Some weak sup-

port for this hypothesis is provided by our age-specific model fits to 

SGTF data, where model comparison generally favours models that 

include a change in mean generation time (Extended Data Table 1). 

Second, social distancing changes human contact networks, reduc-

ing the number of people contacted per day, but increasing the dura-

tion and proximity of remaining (mostly household) contacts. In such 

circumstances, saturation of transmission probabilities can lead to a 

reduction in the transmission advantage of the VOC (Extended Data 

Fig. 8, Supplementary Methods section 7). The observation that sec-

ondary attack rates in contacts identified through routine national 

contact tracing were 30–40% higher for the VOC than for non-VOC 

cases16 provides some support for this hypothesis, given that the large 

majority of contacts identified through the UK Test and Trace system 

are household contacts.

The data included in this study were collected as part of routine 

surveillance of community testing and are not representative of 

SARS-CoV-2 infections in England. However, previous comparisons 

of community case data to random household prevalence surveys have 

shown very strong agreement in epidemic trends17,18. Furthermore, 

estimates of the growth advantage of B.1.1.7 obtained during earlier 

iterations of this study1 have largely been predictive of its subsequent 

spread in January, both in the UK and internationally. Independent 

observations of secondary attack rates inferred from UK contact trac-

ing data have confirmed these findings19.

The substantial transmission advantage that we and others20,21 have 

estimated has increased the challenges in controlling COVID-19. The 

B.1.1.7 lineage was identified quickly owing to extensive genomic sur-

veillance in the UK, but other lineages with similar concerning fea-

tures22,23 have emerged almost concurrently, and lineages with similar 

features may be circulating undetected. Improving global genomic 

surveillance will be important for the control of COVID-19 in the pres-

ence of multiple emerging lineages with enhanced transmission or 

potential for immune escape.
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Reporting summary

Further information on research design is available in the Nature 

Research Reporting Summary linked to this paper.

Data availability

All data used in this study, including SGTF and genome counts aggre-

gated by region and week and multiple sequence alignments, have 

been deposited in Zenodo at https://doi.org/10.5281/zenodo.4593885.

Code availability

The Zenodo repository https://doi.org/10.5281/zenodo.4593885 

includes code to reproduce all figures and results presented here.
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Extended Data Fig. 1 | Weekly growth rate of the VOC relative to other 

variants and relationship of VOC growth rate with VOC frequency. a, The 

additive difference in growth rate between VOC and other lineages inferred 

from observed frequency of VOC genomes over time (Supplementary Methods 

section 2). b, The additive difference in growth rates plotted against estimated 

frequency of the VOC for different NHS regions. The difference in growth rate 

correlates more strongly with VOC frequency than with time (data not shown). 

Estimates are presented for weeks 44–56 for each region.



Article

Extended Data Fig. 2 | The ratio of the reproduction number for the VOC to 

that for co-circulating lineages inferred from combining estimating 

frequencies and phylodynamic estimates of VOC and non-VOC growth 

rates. Shaded region, 95% CrI. Sensitivity of estimates to differences in the 

mean generation time is shown in red and green (25% and 50% reduced 

generation time in VOC, respectively).



Extended Data Fig. 3 | Weekly numbers of S-gene-positive samples with  

TPP correction plotted against the effective population size of the VOC. 

Point labels indicate week of data collection. Effective sample size is taken on 

the final day of the corresponding epidemiological week. Error bars, 95% 

bootstrap CIs.
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Extended Data Fig. 4 | Empirical data analysis of the advantage in weekly 

growth factors (cases in week t + 1 divided by cases in week t) for the VOC 

and non-VOC lineages (Supplementary Methods section 5). Each point 

represents either the ratio (left) or difference (right) of weekly growth factors 

for the VOC versus the non-VOC for an NHS England STP area and week, using 

the raw SGTF data shown in Fig. 2 (not adjusting for TPP). Colours and shapes 

differentiate epidemiological weeks. Numbers above 1 on the left plot and 

above 0 on the right plot show a transmission advantage. The blue line 

represents the mean advantage for a particular proportion of VOC among all 

cases, and the grey shading the 95% asymptotic CrI (±2σ). Scatter at low 

frequencies largely reflects statistical noise resulting from low counts.



Extended Data Fig. 5 | Sensitivity of reproduction number estimates at 

regional level to differences in the mean generation time in the VOC  

(0–25% reduction in the mean, while holding coefficient of variation 

constant). Top, scatter plots of estimated ratio of S− to S+ reproduction 

numbers plotted against the reproduction number of S-gene-positive cases 

over time and among STP regions. Grey lines, linear regression—if changes in 

the generation time were able to completely explain temporal variation in the 

ratio, we would expect the slope to be zero. Bottom, ratio of reproduction 

number over time for each assumption about the mean generation time of the 

VOC. Shaded region, 95% CrI.



Article

Extended Data Fig. 6 | Proportion of all cases in individuals over 10 years of 

age that were in 11–18-year-olds, stratified by SGTF status, NHS regions and 

week of testing. Top, data; middle, predicted trends from a semi-mechanistic 

model (Supplementary Methods section 7) fitting a time- and region-varying 

transmission advantage, but no age variation in transmission advantage; 

bottom, predicted trends from the model fitting a transmission that which 

varies by week, region and age group. Shaded region, 95% CrI.



Extended Data Fig. 7 | The overall multiplicative transmission advantage of 

the VOC over time estimated using a semi-mechanistic model with a VOC 

transmission advantage that varies by week and region, but not with age 

(Supplementary Methods section 7). The model fitted one transmission 

advantage parameter per week and per NHS region to SGTF (STP-level) counts 

by NHS STP area (left; finer scale than region) and SGTF counts by STP area and 

VOC genome counts by NHS region (right). Solid lines, medians; shading, 95% 

CrI pooled over all regions.
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Extended Data Fig. 8 | Multiplicative increase in reproduction number seen 

for different intrinsic infectiousness advantages and probability of 

transmission per contact for the non-VOC. a, Fixed contact duration.  

b, Exponentially distributed contact durations. See Supplementary Methods 

section 7.



Extended Data Table 1 | Tabulation of parameter estimates and model assessment using Pareto-smoothed importance 
sampling leave-one-out cross validation (PSIS-LOO CV) and widely applicable information criterion (WAIC)

Bold indicates no significant difference in the estimated predictive accuracy among the best-performing models within each subset of data (SGTF counts, SGTF and genome counts, genome 

counts).
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