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The SARS-CoV-2 lineage B.1.1.7, designated variant of concern (VOC) 202012/01 by
Public Health England’, was first identified in the UK in late summer to early autumn
2020°. Whole-genome SARS-CoV-2 sequence data collected from community-based
diagnostic testing for COVID-19 show an extremely rapid expansion of the B.1.1.7
lineage during autumn 2020, suggesting that it has a selective advantage. Here we
show that changes in VOC frequency inferred from genetic data correspond closely to
changesinferred by S gene target failures (SGTF) in community-based diagnostic PCR
testing. Analysis of trends in SGTF and non-SGTF case numbers inlocal areas across
England shows that B.1.1.7 has higher transmissibility than non-VOC lineages, even if it
has adifferent latent period or generation time. The SGTF dataindicate a transient
shiftin the age composition of reported cases, with cases of B.1.1.7 including a larger
share of under 20-year-olds than non-VOC cases. We estimated time-varying
reproduction numbers for B.1.1.7 and co-circulating lineages using SGTF and genomic
data. The best-supported models did not indicate a substantial difference in VOC
transmissibility among different age groups, but all analyses agreed that B.1.1.7 has a
substantial transmission advantage over other lineages, with a 50% to 100% higher
reproduction number.

The SARS-CoV-2 lineage B.1.1.7 spread rapidly across England
between November 2020 and January 2021. This variant possesses
alarge number of non-synonymous substitutions of immunologi-
calimportance?® The N501Y replacement on the spike protein has
been shown toincrease ACE2 binding>* and cell infectivity in animal
models®, and the P618H replacement on the spike protein adjoins the
furin-cleavage site®. B.1.1.7 also possesses a deletion at positions 69
and 70 of the spike protein (A69-70) that has been associated with
failure of diagnostic tests using the ThermoFisher TaqPath probe,
which targets the spike protein’. Although other variants with A69-70
arealso circulating in the UK, the absence of detection of the S gene
target in an otherwise positive PCR test appears to be a highly spe-
cificbiomarker for the B.1.1.7 lineage. Data from national community
testing in November 2020 showed a rapid increase in SGTF during
PCR testing for SARS-CoV-2, coinciding with a rapid increase in the
frequency of B.1.1.7 observed in genomic surveillance. The B.1.1.7
lineage was designated VOC 202012/01 by Public Health England
(PHE) in December 2020.

Phylogenetic studies carried out by the UK COVID-19 Genomics
Consortium (COG-UK) (https://www.cogconsortium.uk)® provided the
first indication that B.1.1.7 has an unusual accumulation of substitu-
tions and was growing at a higer rate than other circulating lineages.
Weinvestigated time trendsin the frequency of sampling VOC genomes
and the proportion of PCR tests exhibiting SGTF across the UK, which
we calibrated as a biomarker of VOC infection. Using multiple
approaches and both genetic and SGTF data, we conclude that B.1.1.7
is associated with a higher reproduction number (R) than previous
non-VOC lineages.

We examined whole-genome SARS-CoV-2 sequences from randomly
sampled residual materials obtained from community-based COVID-19
testing in England, collected between 1 October 2020 and 16 January
2021. These dataincluded 31,390 B.1.1.7 sequences for which the time
and location of sample collection were known. Over the same period,
52,795 non-VOC genomes were collected. VOC sequences were initially
concentrated in London (n=9,134), the South East (n=5,609), and the
East of England (n=4,413), butis now widely distributed across England.
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Fig.1|Expansion oflineage B.1.1.7 relative to co-circulatinglineagesin
England. a, Estimated frequency of sampling the VOC (lines) over timein NHS
regions (n=84,185). Shaded regions, 95% credible region based on Bayesian
regression; points, empirical proportions of the VOCin each week; error bars,
95% Clbased on binomial samplingerror. b, Effective population size over time
forlineage B.1.1.7 and estimates based on amatched sample of the most
abundant co-circulating lineage, B.1.177 (n=3,000). Shaded regions, 95%
bootstrap Cl. ¢, The effective reproduction number inferred from growth of
effective populationsize for bothlineagesinb.

Overall, we estimate the median posterior additive differenceingrowth
rates between B.1.1.7 and co-circulating variants to be 0.69 per week
(95% credible interval (Crl) 0.61-0.76) (Fig. 1a, Extended Data Fig. 1,
Supplementary Methods section 2), and this difference was largest
in November. However, in tandem with geographic expansion of the
VOC and imposition of lockdown measures in 2021, this difference
declined gradually to 0.43 per week (95% Crl 0.33-0.52) for the week
ending 16 January.

The rate of genetic diversification of the VOC lineage over time
allows epidemic growth rates to be estimated using phylodynamic
modelling®°. To contrast VOC and non-VOC growth patterns, we ran-
domly sampled 3,000 VOC sequences paired withup to 3,000 non-VOC
sequences and matched by week of sample collection and location
(Supplementary Methods section 1). Phylodynamic modelling (Sup-
plementary Methods section 3) of the effective population sizes of
B.1.1.7 and the previously dominant non-VOC B.1.177 lineage" gave an
estimated growth rate difference of 0.33 per week (95% confidence
interval (CI) 0.09-0.62), and further indicated that the VOC overtook
theB.1.177 lineage on 10 December (Fig. 1b), close to the date at which
VOC sampling frequency exceeded 50% in England (3 December). Thus,
we estimate that B.1.1.7 reached 50% frequency within 2.5to 3 months
after its emergence in England.

We estimated the ratio of VOC to non-VOC reproduction numbers
using arenewal equation based approach (Fig. 1c, Extended DataFig. 2,
Supplementary Methods section 4). This estimator depends on the
absolute growth rate of the non-VOC, estimated using the phylody-
namic model. We estimate the ratio of reproduction numbers between

25 October 2020 and 16 January 2021 to be 1.89 (95% Crl 1.43-2.65),
assuming agamma-distributed generation time with mean 6.4 days and
coefficient of variation of 0.66'%. This ratio is sensitive to the assump-
tion that the generation time distribution is identical between vari-
ants. However, evenif the VOC generation time is half that of previous
variants, the estimated ratio of reproduction numbers was still
1.53 (95% Crl1 1.27-1.79). The ratio trended downwards over time,
coinciding with the increasing frequency of the VOC. By mid-January,
theratio had fallen from1.89t01.54 (95% Crl1.34-1.82) (Extended Data
Fig.2).

Trends in SGTF attributed to the VOC

Infection with the VOC lineage results in a diagnostic failure on the S
gene targetin an otherwise positive PCR test using the ThermoFisher
TaqPath assay, which is widely used for SARS-CoV-2 community PCR
testing in the UK. Consequently, we gained a more detailed picture of
the spatial and demographic spread of B.1.1.7 by using the much more
abundant diagnostic data with SGTF than by using whole-genome
sequencing only. Several SARS-CoV-2 variants can result in SGTF, but
since mid-November 2020, more than 97% of PCR tests with SGTF were
duetotheB.1.1.7 lineage'. Approximately 35% of positive test resultsin
UK community PCR testing use the TagPath assay, and so provide Sgene
target results. Before mid-November 2020, SGTF frequency among PCR
positives was a poor proxy for VOC frequency. We therefore developed a
spatiotemporal model to predict the proportion of SGTF cases attribut-
abletothe VOCby area and week (Supplementary Methods section 5),
here termed the true positive proportion (TPP). False positives were
attributed to the S-gene-positive case (§+) category. We found that
the effective population size for B.1.1.7 effective population size was
highly correlated with TPP-adjusted S counts (Extended Data Fig. 3).

Figure 2a-c (and Supplementary Data 1, Extended Data Fig.4) shows
the spatiotemporal trends of SGTF cases (5-), S+and total PCR-positive
cases by National Health Service (NHS) England Sustainability and
Transformation Plan (STP) areas (a geographical subdivision of NHS
regions). Visually, it is clear that during the second England lockdown,
whenschools were open, S+ case numbers decreased but S—case num-
bersincreased. However, during the third lockdown, when schools were
closed, the incidence of both S—and S+ cases declined.

Using TPP-corrected SGTF frequencies applied to overall PHE case
numbers, we jointly estimated weekly effective reproduction numbers
(R, valuesfor the VOCand non-VOCin eachofthe 42 STP areasusinga
semi-mechanistic epidemiological model® (Supplementary Methods
section 6). Themodel parametrizes VOC R, as amultiple of non-VOCR,.
The model was fitted to case numbers obtained by multiplying overall
PHE case numbers by TPP-corrected SGTF frequencies. We estimated
R, for epidemiological weeks 45-55 (1 November 2020 to 16 January
2021) (Fig.2d), asbefore November there were insufficient VOC cases
toreliably estimate VOC reproduction numbers across England. VOC
R,was greater than non-VOC R, for all STP-week pairs (points above
the diagonal in Fig. 2e). The estimated mean ratio of R,for the VOC
and non-VOC strains was 1.79 (95% C11.22-2.49) over weeks 45-55. As
in the phylodynamic analysis, the multiplicative advantage in R, for
the VOC declined over the time window examined, to approximately
1.5in week 55 (Fig. 2d).

The greater R, estimates of the VOC, even where R, of non-VOC vari-
ants was below 1, indicates that B.1.1.7 has a transmission advantage,
and that the observed frequency trends cannot be explained solely by
areductioninthe meangeneration time. We repeated the joint estima-
tion of VOC and non-VOC R, with the assumption of a 25% reduction
in the mean generation time of the VOC (Extended Data Fig. 5), and
this estimated the mean ratio of R,to be 1.60 (95% C11.09-2.23) over
weeks 45-55. Incorporating a shorter generation time for the VOC
into the model reduced, but did not eliminate, the decreasing trend
intransmission advantage over time.
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Fig.2|Trends of diagnosed cases and SGTF over time and betweenregions,
andreproductionnumbersofthe VOCinferred from SGTF.a-c, Thenumber
of diagnosed cases over time for three English STPregions that represent awide
spectrumof outcomesintermsoftime of VOCintroductioninto theregion.Each
linesegmentisshaded withthe frequency of SGTFineach week (scale at top).
Vertical shaded regions represent the times of the second and third UK
lockdowns. d, The estimated (Bayesian posterior) multiplicative transmission
advantage of the VOC over time inferred from STP-level SGTF count data. Shaded
regions, 95% Crl. e, Thereproduction number of S-gene-negative cases versus
thereproduction number of S-gene-positive cases over timeand among STP
regions for epidemiological weeks 45-55 (1November 2020 to16 January 2021).

To test whether VOC transmissibility differed by age, we first exam-
ined the age distributions of S+ and S— cases. Case numbers were
age-standardized at STP arealevel, and then case age distributions were
calculated for each STP-week (Supplementary Methods section 7). Fig-
ure3shows thatindividuals aged 19-49 years were the only age group
that was consistently over-represented among observed cases relative
to their share in the population (40%), with little difference between
VOCand non-VOC cases. Secondary school-aged children (11-18 years)
werealso over-represented among observed casesrelative to their share
inthe population (9%), and the difference between VOC and non-VOC
cases was statistically significant for three weeks in November (Fig. 3,
Extended Data Fig. 6). This period coincides with the second England
lockdown (5 November to 2 December 2020) when schools remained
open, and the differing age distributions between variants could arise
from altered contact patterns when children were at greater risk of
infection from all variants compared to adults.

Next, we formulated models that incorporated a difference in
VOC transmission between age groups (Supplementary Methods
section 7). The models were fitted variously to genome-derived and/
or SGTF-derived VOC frequencies, as well as total age-specific cases
ineachweek andregion, and compared using Bayesian leave-one-out
cross-validation.

Model comparison consistently favoured models that allowed the
transmission advantage to vary over time and between regions, using
either genomic or SGTF data. However, models that incorporated an
age effect were not significantly favoured (Extended Data Table 1).
Indeed, the observed fluctuations in the age distribution are equally
well captured by models that do not incorporate age-specific trans-
mission advantages (Extended Data Fig. 6). We also used these model
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Fig.3|Agedistribution of S-gene-positive and -negative cases over timein
England. Observed cases were age-standardized at the level of the STP area,
and age distributions were calculated for eachweek in STP areas and then
aggregated.Shadedregions, Cls computed by bootstrapping over STP areas
within NHS regions for each week.

comparisons to test the hypothesis that differences inthe VOC growth
ratesareaconsequence of areduced generationtimeinB.1.1.7.In prin-
cipleitis possible to statistically identify such a difference, because
the data coveraperiod during which the overall R,hasbeen above and
below one. Models thatincorporate a change in the mean generation
time were sometimes favoured (Extended Data Table 1), but the esti-
mated ratio of mean generation times was not well identified—it varied
between 0.75and 0.96, depending on the model and data beingfitted to.
The meanratio of R,between the VOCand non-VOC ranged between 1.6
and2.01, depending on model variant. The best fit model to both SGTF
and genomic datagave an estimate of 1.74 (95% Cr11.03-2.75), whichis
highly consistent with the estimates obtained from the phylodynamic
analysis and the direct estimation of R,for VOC and non-VOC described
above. Thismodel also reproduces the decline in transmission advan-
tage over time seen in our other analyses (Extended Data Fig. 7).

Discussion

While substitutions in the B.1.1.7 lineage are associated with substantial
changesinviral phenotype®>*, the extent to which these substitutions
lead to meaningful differences in transmission between humans is
unclear, and cannot be evaluated experimentally. When randomized
experimental studies are not possible, observational studies provide
strong evidence if consistent patterns are seen in multiple locations
and at multiple times. Increasing frequency of anew lineage is consist-
ent with a selective advantage, but changes in frequency result from
founder effects, especially for genetic variants that are repeatedly
introduced from overseas™". However, in contrast to previous vari-
ants that have achieved high prevalence, we see expansion of the VOC
from within the UK.



We find some evidence that the multiplicative transmission advan-
tage of B.1.1.7 (that s, ratio of reproduction numbers) declined in late
December 2020 to January 2021, coincident with stricter social dis-
tancing, school closures, and the subsequent third England lockdown
(Fig. 2d, Extended Data Figs. 2, 6). A number of mechanisms could
generate this effect. First, ashorter generation time of the VOC would
reduce the ratio of VOC to non-VOC growth rates for small values of
the non-VOC growth rate. Thus as interventions reduce both repro-
duction numbers, their ratio would decline, even in the absence of
any underlying change in transmission advantage. Some weak sup-
port for this hypothesis is provided by our age-specific model fits to
SGTF data, where model comparison generally favours models that
include a change in mean generation time (Extended Data Table 1).
Second, social distancing changes human contact networks, reduc-
ing the number of people contacted per day, butincreasing the dura-
tion and proximity of remaining (mostly household) contacts. Insuch
circumstances, saturation of transmission probabilities can lead to a
reduction in the transmission advantage of the VOC (Extended Data
Fig. 8, Supplementary Methods section 7). The observation that sec-
ondary attack rates in contacts identified through routine national
contact tracing were 30-40% higher for the VOC than for non-VOC
cases’® provides some support for this hypothesis, given that the large
majority of contacts identified through the UK Test and Trace system
are household contacts.

The data included in this study were collected as part of routine
surveillance of community testing and are not representative of
SARS-CoV-2infections in England. However, previous comparisons
of community case datatorandom household prevalence surveys have
shown very strong agreement in epidemic trends'*®. Furthermore,
estimates of the growth advantage of B.1.1.7 obtained during earlier
iterations of this study’ have largely been predictive of its subsequent
spread inJanuary, both in the UK and internationally. Independent
observations of secondary attack ratesinferred from UK contact trac-
ing data have confirmed these findings®.

The substantial transmission advantage that we and others?** have
estimated has increased the challenges in controlling COVID-19. The
B.1.1.7 lineage was identified quickly owing to extensive genomic sur-
veillance in the UK, but other lineages with similar concerning fea-
tures”*have emerged almost concurrently, and lineages with similar
features may be circulating undetected. Improving global genomic
surveillance will be important for the control of COVID-19 in the pres-
ence of multiple emerging lineages with enhanced transmission or
potential forimmune escape.
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Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this paper.
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The Zenodo repository https://doi.org/10.5281/zenod0.4593885
includes code to reproduce all figures and results presented here.
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Article

Scenario == -25% Tg === -50% Tg === Baseline

3.0 1

2.54

Multiplicative advantage
for VOC over non-VOC

1.5+ | ——

Nov Dec

Extended DataFig.2 | Theratio of the reproduction number for the VOC to
thatfor co-circulatinglineages inferred from combining estimating
frequencies and phylodynamicestimates of VOCand non-VOC growth

rates. Shadedregion, 95% Crl. Sensitivity of estimates to differencesinthe
meangenerationtimeisshowninredand green (25% and 50% reduced
generationtimein VOC, respectively).
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regionallevel to differencesinthe meangeneration timeinthe VOC

(0-25%reductioninthe mean, while holding coefficient of variation

constant). Top, scatter plots of estimated ratio of S- to S+ reproduction
numbers plotted against the reproduction number of S-gene-positive cases
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over time and among STP regions. Grey lines, linear regression—if changes in
thegenerationtime were able to completely explain temporal variationin the
ratio, we would expect the slope to be zero. Bottom, ratio of reproduction

number over time for each assumption about the mean generation time of the
VOC.Shadedregion, 95%Crl.
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Extended Data Table 1| Tabulation of parameter estimates and model assessment using Pareto-smoothed importance
sampling leave-one-out cross validation (PSIS-LOO CV) and widely applicable information criterion (WAIC)

Covariates in Data Mean Mean LOO WAIC

reproduction generation  reproduction

number ratio time ratio number ratio

None SGTF | (fixed) 1.92 (1.80,2.06) 9021 -8850

None SGTF 0.78 (0.72,0.85) 1.61 (1.48,1.74) -9035 -8867

Age SGTF 1 (fixed) 1.94 (1.80,2.24) -9026 -8855

Age SGTF 0.77 (0.72,0.84) 1.60(1.47,1.74) -9028 -8862

Time, region SGTF 1 (fixed) 1.76 (1.10,2.24) -9013 -8850

Time, region SGTF 0.89 (0.82,0.98) 1.62(1.12,2.04) 9019 -8860

Age, time, region SGTF 1 (fixed) 1.81 (1.19,2.30) -9024 -8860

Age, time, region SGTF 0.77 (0.70,0.85) 1.55(1.22,1.88) -9018 -8856

None SGTF and 1 (fixed) 1.86 (1.74,2.00) -9701 -9523
genome

None SGTF and 0.80 (0.73,0.87) 1.60 (1.48,1.75) 9703 9525
genome

Age SGTF and 1 (fixed) 1.85 (1.73,2.00) -9699 9517
genome

Age SGTF and 0.79 (0.72,0.86) 1.59 (1.46,1.74) -9693 -9518
genome

Time, region SGTF and 1 (fixed) 1.66 (0.98,2.38) -9654 -9494
genome

Time, region SGTF and 1.00 (0.90,1.11) 1.66(0.98,2.39) -9650 -9489
genome

Age, time, region SGTF and 1 (fixed) 1.69 (1.00,2.34) -9676 -9514
genome

Age, time, region SGTF and 0.92 (0.82,1.02) 1.61(1.02,2.19) -9684 -9523
genome

None Genome 1 1.74 (1.61,1.89) -964 -940

None Genome 0.89 (0.76,1.06) 1.65 (1.50,1.84) -961 -940

Time, region Genome 1 1.71 (1.26,2.20) -929 -905

Time, region Genome 0.95 (0.82,1.11) 1.66 (1.25,2.16) -938 -915

Bold indicates no significant difference in the estimated predictive accuracy among the best-performing models within each subset of data (SGTF counts, SGTF and genome counts, genome
counts).
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Data collection  Genomic analysesWe examined whole genome SARS-CoV-2 sequences from randomly sampled residual materials obtained from community-
based COVID-19 testing in England. Sequence alignments and phylogenetic trees are available for download in the code repository. Sample
weights were used to select sequences for phylodynamic modelling and to adjust counts when estimating the frequency of the variant of
concern B.1.1.7 (VOC, hereafter). Weights were assigned to sequenced samples according to their local authority and their collection date.
Each weight was proportional to the ratio of diagnosed cases to the number of sequence samples (reciprocal sequencing coverage rate) in
each week and local authority. Case counts and sequence counts were summed over a fourteen day moving window in order to smooth over
small case counts and sequence counts. Confirmed cases used for weighting were obtained using the UK government COVID-19 dashboard
API (https://api.coronavirus.data.gov.uk). Code to compute sequence sample weights is available in the sequencing_coverage package (v1.0)
https://git.io/Jqcve. SGTF analysesData on SGTF among national community testing was obtained from the 3 largest PCR testing laboratories
and integrated into the PHE Second Generation Surveillance System (SGSS) database. We also obtained the linelist of “pillar 2” (community)
PCR-positive cases from Public Health England and linked this to the SGTF data. Application of SGTF as a diagnostic for the VOC provides a
large advantage over genomic sequencing in terms of cost, speed, and the sample size of available test results. We extracted 585,165 S target
positive (S+) and 548,649 S target negative (S-) test results collected for weeks 43 to 56 and examined the potential to use SGTF cases (S-) as a
biomarker for the VOC lineage. While the tests are not a representative sample of infections over this time period, they are a representative
sample of tests within a given region and week and thus provide information about the relative abundance of the VOC versus other variants
over time and between regions.

Data analysis A large variety of open source R packages were used and described in the supporting information including version numbers. The exact code
is provided in a Zenodo repository enabling reproducibility of all results and figures. Phylogenetic analysis made use of BEAST 1.10.4.
Citations are provided for all packages.
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All data used in this study including SGTF and genome counts aggregated by region and week and multiple sequence alignments have been deposited in Zenodo
https://doi.org/10.5281/zen0do0.4593885
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Study description Genomic epidemiological analysis of the spread of a SARS-CoV-2 vaiant

Research sample SARS CoV 2 Genomic data compiled by COG-UK consortium; community case data provided by Public Health England.
Sampling strategy All genetic sequences and case records were utilized

Data collection N/A

Timing and spatial scale  All of England October2020-January 2021

Data exclusions No data were excluded
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Randomization The study involved observational data analysis that did not involve randomization. There was no original data collection. There were
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