
INTERNATIONAL JOURNAL OF CLIMATOLOGY
Int. J. Climatol. 29: 417–435 (2009)
Published online 21 July 2008 in Wiley InterScience
(www.interscience.wiley.com) DOI: 10.1002/joc.1730

Assessing trends in observed and modelled climate extremes
over Australia in relation to future projections

Lisa V. Alexandera,b* and Julie M. Arblasterc,d,e

a School of Geography and Environmental Science, Monash University, Clayton, VIC, Australia
b Met Office, Hadley Centre, Exeter, UK

c School of Earth Sciences, University of Melbourne, Melbourne, VIC, Australia
d National Center for Atmospheric Research, Boulder, CO, USA

e Bureau of Meteorology Research Centre, Melbourne, VIC, Australia

ABSTRACT: Multiple simulations from nine globally coupled climate models were assessed for their ability to reproduce

observed trends in a set of indices representing temperature and precipitation extremes over Australia. Observed trends over

the period 1957–1999 were compared with individual and multi-modelled trends calculated over the same period. When

averaged across Australia, the magnitude of trends and interannual variability of temperature extremes were well simulated

by most models, particularly for the index for warm nights. The majority of models also reproduced the correct sign of trend

for precipitation extremes although there was much more variation between the individual model runs. A bootstrapping

technique was used to calculate uncertainty estimates and also to verify that most model runs produce plausible trends

when averaged over Australia. Although very few showed significant skill at reproducing the observed spatial pattern of

trends, a pattern correlation measure showed that spatial noise could not be ruled out as dominating these patterns. Two of

the models with output from different forcings showed that the observed trends over Australia for one of the temperature

indices was consistent with an anthropogenic response, but was inconsistent with natural-only forcings. Future projected

changes in extremes using three emissions scenarios were also analysed. Australia shows a shift towards warming of

temperature extremes, particularly a significant increase in the number of warm nights and heat waves with much longer

dry spells interspersed with periods of increased extreme precipitation, irrespective of the scenario used. Copyright  2008

Royal Meteorological Society

KEY WORDS Australian climate; extremes; observations; climate models; projections

Received 7 September 2007; Revised 10 February 2008; Accepted 7 May 2008

1. Introduction

Extremes research is particularly important for Australia,

given the vulnerability of its unique flora, fauna and

ecosystems to even slight variations in climate (Fitzhar-

ris et al., 2007). A previous body of work concluded

that significant changes in temperature and precipitation

extremes have already occurred across the country dur-

ing the 20th century (e.g. Hennessy et al., 1999; Plummer

et al., 1999; Collins et al., 2000; Haylock and Nicholls,

2000; Trewin, 2001; Alexander et al., 2007; Gallant

et al., 2007). Regional studies across the Asia–Pacific

area (e.g. Manton et al., 2001; Griffiths et al., 2005) have

shown statistically significant increases in occurrences of

hot days and warm nights and decreases in occurrences of

cool days and cold nights over the past few decades. Over

the past century, there has been a significant decrease

in the frequency and intensity of extreme precipitation

events in the southwest region of Western Australia and

* Correspondence to: Lisa V. Alexander, School of Geography and
Environmental Science, Monash University, Clayton, Vic 3800, Aus-
tralia. E-mail: Lisa.Alexander@arts.monash.edu.au

a significant increase in the proportion of total precipita-

tion from extreme events in eastern Australia (Haylock

and Nicholls, 2000; Li et al., 2005). While these studies

have been thorough, they have focussed on the analysis

of extremes at station locations. This makes it difficult to

compare observations objectively with simulations from

climate models that output data on spatial grids. Some

work has suggested increases in hot days and hot spells

and decreases in cold days and cold spells in the future

(CSIRO, 2001) and an increase in extreme precipitation

(Groisman et al., 2005), but relatively little has been pub-

lished about how extremes might change in the future

over Australia or, indeed, if climate models are able to

adequately reproduce the observed trends in extremes

(thus increasing our confidence in future projections).

Global studies comparing observed and modelled

trends in climate extremes have shown reasonably good

agreement with temperature trends but poor agreement

(or multi-model disagreement) with observed precipita-

tion patterns or trends (e.g. Kharin et al., 2007; Kiktev

et al., 2007). Kiktev et al. (2007) also comment that a

‘super ensemble’ from multiple climate models appears

to perform better than any individual ensemble member
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or model, particularly when there is some skill in the con-

tributing ensemble members. Kiktev et al. (2003) found

that only the inclusion of human-induced forcings in a cli-

mate model could account for observed changes in global

temperature extremes. Robust anthropogenic changes

have been detected globally in indices of extremely

warm nights, although with some indications that the

model overestimates the observed warming (Christidis

et al., 2005). However, other recent studies show that the

regional responses of observed trends in temperature and

precipitation extremes can also largely be driven by large-

scale processes, which might not be adequately simulated

in global climate models (GCMs)(Meehl et al., 2004,

2005; Scaife et al., 2008). On regional scales, (e.g. Sill-

mann and Roekner, 2008 for Europe; Meehl and Tebaldi,

2004 and Meehl et al., 2007a for USA) while the mod-

elled trends have been shown to capture observed trends

reasonably accurately, the results are somewhat depen-

dent on the extreme under consideration. To date, no such

analysis has been carried out for Australia.

Recent initiatives by the World Climate Research Pro-

gramme (WCRP) in preparation for the Intergovernmen-

tal Panel on Climate Change (IPCC) Fourth Assessment

Report (AR4) in 2007 have now made it possible to

compare multiple model simulations with high-quality

observations of extremes. On the request of the Joint

Scientific Committee (JSC)/CLIVAR Working Group on

Coupled Models, coupled modelling groups worldwide

submitted a standard set of ‘extremes indices’ to the

WCRP’s Coupled Model Intercomparison Project phase

3 (CMIP3) multi-model dataset at the Program for Cli-

mate Model Diagnosis and Intercomparison (PCMDI)

in California (hereafter named the CMIP3 archive). Ten

extremes indices, calculated from daily data and based

on the definitions of Frich et al. (2002), were submitted

with five temperature-based indices (e.g. heat wave dura-

tion, occurrence of frosts) and five precipitation-based

indices (e.g. heavy precipitation events, consecutive dry

days). The study by Tebaldi et al. (2006) was the first

one to analyse these indices for both historical and future

simulations on global and hemispheric scales. Global

averages of the temperature-based indices were found

to be dominated by trends in the Northern Hemisphere,

with Southern Hemisphere trends much weaker. This

is intuitively explained by the presence of a relatively

stable ocean in close proximity to all Southern Hemi-

sphere landmasses, sheltering them from extreme cold

and warm air masses. However, in that study, observa-

tional datasets with which to compare the multi-model

output were not yet adequate or available, so an assess-

ment of the ability of the models to reproduce observed

trends in extremes was not possible. The Commission for

Climatology (CCl)/CLIVAR/JCOMM Expert Team on

Climate Change Detection and Indices (ETCCDI) [pre-

viously known as the Expert Team on Climate Change

Detection, Monitoring and Indices (ETCCDMI), see

http://www.clivar.org/organization/etccdi/etccdi.php for

details], initiated a project aimed at addressing gaps in

observed data availability and analysis in previous global

studies (e.g. Frich et al., 2002). Following on from this,

Alexander et al. (2006) updated and extended the analysis

of Frich et al. (2002) using the best global observations

available, gridding a total of 27 indices onto a regular

latitude–longitude grid from 1951 to 2003.

The CMIP3 multi-model dataset and recently available

high-quality gridded datasets provide us with an unprece-

dented opportunity to directly compare observed trends

in extremes over Australia with multiple model-simulated

trends and to compare projections in these extremes, both

across models and across scenarios. In this study, we

first briefly discuss how the extremes indices are calcu-

lated from the observed and modelled datasets followed

by a comparison of the models with observations and

the future projections for the selected temperature and

precipitation extremes across Australia.

2. Extremes indices data

The indices used in this study, based on the definitions

of Frich et al. (2002), are given in Table I. Nine annual

indices are analysed (four derived from daily maximum

and/or minimum temperature and five from daily precip-

itation) providing one value per grid box per year per

index. The indices chosen contain more robust statistical

properties than could be expected from the analysis of

more infrequent events and allow GCMs the possibility

to adequately simulate these events. Therefore, some of

the indices may be viewed as not particularly ‘extreme’,

but given their statistical properties and their availability

in the CMIP3 archive, we chose to use these definitions as

the basis for our analysis. Note that the indices given by

Frich et al. (2002) also contained a definition for grow-

ing season length, which is not analysed here since it has

little meaning for the Australian climate (Collins et al.,

2000). Frost days are included in the analysis but note

that this index is only meaningful for parts of south-

ern Australia. There are some differences between the

observed and model definitions for three of the indices

(Table I) and the potential effects these could have on

the results are discussed in Section 3.3. Model indices

for which climatologies were required were calculated

relative to each model’s own climatology, thus partially

removing inherent model bias.

2.1. Observations

High-quality daily maximum and minimum tempera-

ture (Trewin, 2001) and daily precipitation (Haylock and

Nicholls, 2000) data composed the Australian contribu-

tion to the Alexander et al. (2006) study, which created

2.5° of latitude by 3.75° of longitude gridded datasets

(HadEX) of observed extremes indices for the globe

(data available from www.hadobs.org). Extremes indices

were first calculated for each station and then were trans-

formed to the grid. For this study, we extract from this

dataset those grid boxes that cover the Australian con-

tinent for each extremes index from Table I. Alexander

et al. (2006) used a distance weighting method, which
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Table I. Extremes indices used in this study.

Index name Index definitions Units

Model (Frich et al., 2002) Obs (Alexander et al., 2006)

Warm nights (TN90) Percent of time Tmin > 1961–1990 90th

percentile of daily minimum temperature

Percentile calculation differs from model

definition in that the bootstrapping

technique of Zhang et al., 2005 is used

%

Frost days (FD) Total number of days with absolute

minimum temperature <0 °C

As model days

Extreme temperature range

(ETR)

Difference between the highest and

lowest temperature observation in a

calendar year

As model °C

Heat wave duration

(HWDI)

Maximum period >5 consecutive days

with Tmax >5 °C above the 1961–1990

daily Tmax normal

Known as warm spell duration index

(WSDI) – maximum period >5

consecutive days with Tmax >

1961–1990 90th percentile of daily

maximum temperature. Percentiles are

calculated using the bootstrapping

technique of Zhang et al., 2005 and

spells can continue across calendar years

days

Heavy precipitation days

(R10)

Number of days with precipitation

≥10 mm

As model days

Maximum 5-day

precipitation (R5D)

Maximum precipitation total over a

5-day period

As model mm

Simple daily intensity

(SDII)

Ratio of annual total precipitation to

number of days ≥1 mm

As model mm d−1

Consecutive dry days

(CDD)

Maximum number of consecutive days

<1 mm

Basic definition is the same as model

except a spell can continue across

calendar years

days

Very heavy precipitation

contribution (R95T)

Fraction of annual total precipitation due

to events exceeding the 1961–1990 95th

percentile

As model %

required that at least three stations be within a pre-defined

search radius from the centre of a grid box, in order for

an extreme to be calculated for that grid box. Since Aus-

tralia is large but sparsely populated, high-quality obser-

vations tend to be lacking in more remote areas. This

means that for some of the indices (especially the pre-

cipitation indices, which have small decorrelation length

scales) there is little or no coverage in inland or north-

ern areas. Other indices such as warm nights, however,

provide almost complete observational coverage over the

country.

2.2. Model data

Extremes indices from nine models were available for

inclusion in the IPCC AR4, as analysed by Tebaldi et al.

(2006) and presented in the AR4 by Meehl et al. (2007).

As noted above, each modelling group calculated the

indices based on the definitions of Frich et al. (2002)

and submitted them to the CMIP3 archive at PCMDI

(http://www-pcmdi.llnl.gov). There were four models

from the USA (CCSM3, PCM, GFDL-CM2.0, and

GFDL-CM2.1), three from Japan (MIROC3.2 (medres),

MIROC3.2 (hires), and MRI-CGCM2.3.2), one from

France (CNRM-CM3) and one from Russia (INM-

CM3.0). Simulations of the climate of the 20th century

(20C3M) and three special report on emissions scenar-

ios (SRES) experiments, B1 (low-range emissions), A1B

(mid-range emissions) and A2 (high-range emissions)

were available for most models. Each model varies in

resolution, but the indices from each of the nine models

were interpolated here onto the observational grid, i.e.

2.5° of latitude by 3.75° of longitude so that a direct com-

parison between the observations and the model simula-

tions could be made. Multiple ensemble members were

submitted for five out of the nine models (PCM, GFDL-

CM2.0, GFDL-CM2.1, MIROC3.2 (medres), and MRI-

CGCM2.3.2), with single runs available for the remaining

four. In total, there were 22 20C3M simulations from the

nine models. The multi-model mean values shown here

are the average across all ensemble members and then

across all models.

3. Comparison between observed and modelled

extremes over Australia

3.1. Spatial and temporal comparison

To compare the modelled and observed indices, trends

were calculated between 1957 and 1999 for each grid

box with available data. The start date was chosen as

the date from when high-quality temperature station data

are available for Australia (Trewin, 2001) and the end
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date chosen based on when some of the model groups

end their climate of the 20th century simulations. Trends

in precipitation indices were also calculated over this

period for consistency even though high-quality station

data exist prior to this (Haylock and Nicholls, 2000).

In all cases, for computational efficiency, trends are

calculated using ordinary least squares (OLS) regression

and trend significance is calculated at the 5% level

using a non-parametric Mann–Kendall test (Mann, 1945;

Kendall, 1975). However, because OLS is sensitive

to outliers in the series, which may be present in

the extremes indices analysed here, an additional non-

parametric iterative technique to estimate trends and

significance (Wang and Swail, 2001) was used in some

cases to test the robustness of the OLS results. This

method makes no assumptions about the distribution of

the time series residuals and is robust to the effect of

outliers in the series. Our general conclusions, however,

remain unchanged irrespective of the trend calculation

method used. Trends were only calculated in grid boxes

if at least 40 out of the 43 years of observed indices

data were available. In order that comparable analyses

could be performed, the model output was masked by

the regions where observed trend data exist. In addition

to trend calculation, time series were produced for each

of the nine indices using areally averaged data from

the masked grid boxes to compare the magnitude and

interannual variability of the observed and simulated

extremes and these are plotted in Figure 1. Average

trends for Australia and associated significance for the

observations and multi-model ensemble are given in

Table II, while ensemble mean trends for each individual

model are given in Table III. To assess the uncertainty

in the multi-modelled trends, we provide confidence

intervals using a bootstrapping technique described in

Section 3.2 with all 22 model runs. The associated

uncertainties in the trend calculation method for the

observations are given as two standard errors using

restricted maximum likelihood (Trenberth et al., 2007).

Spatial trend patterns of the observations and multi-model

simulations for each of the nine extremes indices were

compared for temperature (Figure 2) and precipitation

(Figure 3).

3.1.1. Temperature extremes

Trends for the observed and multi-model simulation are

given in Table II while the mean trends associated with

each of the nine models used in this study are given in

Table III. Table II shows that all of the observed trends

for the four temperature indices are statistically signifi-

cant and commensurate with warming. The majority of

models (Table III) and individual model runs (not shown)
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Figure 1. Observed (black line) and modelled (grey lines) time series of areally averaged extremes indices (Frich et al., 2002) from 1957 to

1999 using grid boxes in Australia with observed data. This figure is available in colour online at www.interscience.wiley.com/ijoc
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Table II. Observed and simulated decadal OLS trends cal-

culated over 1957–1999 for each index (Table I) averaged

across Australia using grid boxes containing observations from

Figures 2 and 3. Boldface signifies trends that are significant

at 5% level. Observations are shown with two standard errors

in the trend calculation estimated using restricted maximum

likelihood (Trenberth et al., 2007) while 10–90% confidence

intervals are shown in brackets for the model data by randomly

resampling the bootstrapped trends (see text) across all model

runs to give an estimate of the uncertainty from using multiple

model simulations. Units as Table I (per decade).

Index Obs Multi-model

Warm nights 1.11 ± 0.06 1.15 (0.48/1.87)

Frost days −0.89 ± 0.07 −0.19 (−1.46/0.22)

Extreme temperature

range

−0.19 ± 0.02 0.04 (−0.29/0.31)

Heat wave duration 7.05 ± 0.33 0.26 (−0.31/0.91)

Heavy precipitation

days

0.28 ± 0.06 −0.06 (−0.79/0.89)

Maximum 5-day

precipitation

0.42 ± 0.33 0.32 (−1.37/2.32)

Simple daily intensity 0.04 ± 0.02 0.02 (−0.06/0.13)

Consecutive dry days −0.14 ± 0.15 1.04 (−1.68/3.36)

Very heavy

precipitation

contribution

0.60 ± 0.12 0.26 (−0.58/1.23)

obtain the correct sign of trend for each temperature index

when averaged across Australia. In fact, 21 of the 22

model runs exhibit a statistically significant increasing

trend in warm nights; the multi-model trend of 1.15%

per decade is comparable to the observed trend of 1.11%

per decade. Eight of the nine models and the multi-model

ensemble produce trends in frost days of the same sign

as the observed trends. Five of the nine models agree

with the observations that extreme temperature range is

decreasing on average and seven of the nine models show

increases in heat wave duration in agreement with the

observed trends. However, the confidence intervals for

these two indices compared to warm nights and frost

days shows that there is much greater uncertainty both

within and between models, as to the sign of the trend

over the latter part of the 20th century. Moreover, while

the sign of the temperature trends was correct, the mag-

nitude was generally very different from the observed

values. Warm nights is the only index where the confi-

dence intervals in all models and multi-model ensemble

do not overlap with zero, indicating that there is very

good consensus between the models that the recent trend

in warm nights over Australia is positive. The lowest

resolution model, INM-CM3.0, is the only model that

shows an increase in frost days while the highest res-

olution model, MIROC3 (hires), is the only model that

Table III. As Table II, but showing OLS trends and 10 and 90% confidence intervals for each model used in this study. For

models where the ensemble mean is calculated from multiple simulations, the confidence intervals are calculated using all

ensemble members.

Temperature extremes

Warm nights Frost days Extreme

temperature range

Heat wave

duration

CCSM3 1.41 (1.11/1.71) −0.47 (−0.73/−0.18) −0.02 (−0.16/0.12) 0.02 (−0.24/0.30)

PCM 1.22 (0.60/1.91) −0.92 (−1.58/−0.01) −0.19 (−0.40/0.03) −0.09 (−0.50/0.30)

INM-CM3.0 0.81 (0.34/1.24) 2.44 (0.46/4.44) 0.31 (0.06/0.54) 0.10 (−0.09/0.27)

MRI-CGCM2.3.2 1.71 (1.13/2.60) −0.91 (−1.33/−0.45) 0.02 (−0.18/0.23) 0.30 (−0.17/0.77)

MIROC3.2(med) 0.78 (0.30/1.26) −0.19 (−0.38/−0.04) −0.22 (−0.55/0.08) −0.18 (−0.52/0.17)

MIROC3.2 (hi) 1.37 (0.96/1.78) −0.04 (−0.12/0.03) 0.48 (0.30/0.67) 0.62 (0.41/0.81)

GFDL-CM2.1 0.85 (0.33/1.31) −0.07 (−0.52/0.42) 0.14 (−0.06/0.35) 0.75 (0.11/1.51)

GFDL-CM2.0 0.78 (0.50/1.08) −0.78 (−1.48/−0.10) −0.02 (−0.17/0.13) 0.39 (−0.06/0.83)

CNRM-CM3 1.59 (1.16/2.01) −2.91 (−4.27/−1.62) −0.17 (−0.32/−0.01) 0.37 (−0.07/0.83)

Precipitation extremes

Heavy

precipitation days

Maximum 5-day

precipitation

Simple daily

intensity

Consecutive

dry days

Very heavy

precipitation

contribution

CCSM3 0.01 (0.33/0.36) 0.25 (−0.89/1.23) 0.06 (0.02/0.09) 1.20 (0.05/2.18) 0.15 (−0.41/0.63)

PCM 0.51 (−0.03/1.43) 1.31 (0.19/2.41) 0.05 (−0.01/0.12) −0.27 (−1.82/1.59) 0.83 (0.30/1.45)

INM-CM3.0 −0.41 (−0.78/−0.03) −1.54 (−2.48/−0.63) −0.04 (−0.11/0.02) 1.65 (0.67/2.63) −0.25 (−0.92/0.39)

MRI-CGCM2.3.2 0.08 (−0.32/0.48) 0.58 (−0.79/2.00) 0.05 (−0.07/0.17) 0.64 (−2.79/5.02) 0.26 (−0.56/1.13)

MIROC3.2(med) 0.33 (−0.36/0.97) 0.31 (−1.41/2.70) 0.03 (−0.04/0.09) −0.07 (−0.79/0.62) 0.15 (−0.53/0.86)

MIROC3.2 (hi) −1.07 (−1.52/−0.64) −0.04 (−1.25/1.19) −0.03 (−0.09/0.04) 1.95 (1.12/2.80) 0.08 (−0.47/0.60)

GFDL-CM2.1 −0.70 (−1.64/0.14) −0.42 (−3.11/2.03) −0.02 (−0.13/0.09) 2.58 (−0.15/5.16) 0.04 (−0.98/1.07)

GFDL-CM2.0 0.25 (−0.16/0.68) 1.01 (−0.29/2.42) 0.05 (−0.03/0.13) 0.80 (−1.09/2.76) 0.51 (−0.25/1.34)

CNRM-CM3 0.89 (0.21/1.56) 2.95 (0.99/5.03) 0.07 (−0.01/0.16) −1.18 (−3.53/1.11) 0.15 (−0.10/0.38)
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Figure 2. Observed (left column) and modelled (right column) decadal trends calculated between 1957 and 1999 for extreme temperature indices

(Table I) for Australia. Model data are masked with grid boxes which have observed data. Stippling indicates trend significance at the 5% level.

Units as in Table I (per decade).

shows a significant increase in extreme temperature range

contrary to the observed trends. Figure 1 shows that the

models also do reasonably well at simulating the amount

and variability of the temperature extremes. This is par-

ticularly true of warm nights. However, no one model

is consistently ‘best’ across all indices. Figure 1(a) and

Table III show that all models are particularly good at

simulating the amount, interannual variability and trend

of this index. It is obvious, however, that some mod-

els are overestimating the actual value of some of the

temperature extremes indices. In addition to showing

increased trends in frost days, INM-CM3.0 (Table III)

also vastly overestimates the amount of frosts that actu-

ally occur in Australia (Figure 1(b)) and this is likely
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Figure 3. As in Figure 2, but for extreme precipitation indices (Table I).

to contribute to its overestimate of extreme temperature

range (Figure 1(c)). Similarly, the CNRM-CM3 model

also overestimates the amount of frost days and extreme

temperature range although it gets the right sign of trend

for both indices. It is likely that the vastly different

amounts and magnitude of trends in heat wave dura-

tion (Figure 1(d); Tables II and III) are related to the

different definitions of this index between the model and

observations (Table I) and this is discussed in Section 3.3.

In addition, this index definition is statistically ‘volatile’

(e.g. it contains a lot of zeros and no values between one

and five) and is particularly sensitive to missing data.

Given that we allow a maximum of 3 years of missing

data before a trend can be calculated and most of the

missing data occurs early on in the record, this creates

an apparent inhomogeneity in the observations near the
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beginning of the time series (Figure 1(d)). It is likely,

therefore, that the observed trend in heat wave duration

is smaller than indicated in Table II. However, we chose

not to remove this index from the study since the mod-

els may be doing a reasonable job using this definition

and future changes in this index may have pronounced

societal impacts.

The spatial trend patterns of temperature extremes

across Australia for the observations and multi-model

are shown in Figure 2. As noted, the majority of mod-

els are able to simulate the observed sign of change in

the temperature indices when averaged across Australia;

however, it is clear from Figure 2 that the regional trend

pattern is less well captured by the models. While there

is an observed increase in warm nights across northwest

Australia over the period studied, it is small and mostly

non-significant (Figure 2(a)). Indeed, if the analysis is

extended beyond 1999, we see a non-significant decrease

in warm nights over the northwest region (Alexander

et al., 2006) and this is consistent with a cooling in

mean minimum temperatures annually, but particularly

associated with a decrease in minimum temperatures

between December and August (Alexander et al., 2007).

Figure 2(a) and Figure 2(b) show the multi-model ensem-

ble is overestimating the observed trends in warm nights

in the northwest and underestimating the observed trends

in this index in southern and eastern Australia. In fact,

there is very good consensus between the individual mod-

els (not shown) that the number of warm nights have

increased significantly in the northwest region. However,

while there is some discrepancy in the magnitude and

significance between the observed and multi-modelled

trends, it is noteworthy that the sign of the simulated

trend in warm nights is consistent with the sign of the

observed trend in every grid box across Australia. While

there are few regions of Australia where frost days can

be measured, (Figure 2(c)) almost all grid boxes show

a consistent and mostly significant decline. Figure 2(d)

indicates that the multi-model gets the opposite sign of

trend to the observations in the southwest region of West-

ern Australia and southwestern Victoria and there can

be large differences between the observed and modelled

response. Overall, the multi-model ensemble underesti-

mates the observed trend in frost days, but the ensemble

average from several individual models such as PCM and

MRI-CGCM2.3.2 get very good approximations to the

observed trend (−0.92 and −0.91 days/decade, respec-

tively). The observed pattern of trends for extreme tem-

perature range (Figure 2(e)) is generally not well sim-

ulated (Figure 2(f)). The trend pattern for heat wave

duration is well simulated by the multi-model although

trend magnitudes are underestimated in each grid box

(Figure 2(g) and (h)), which, as noted previously, is likely

to be related to definitional differences between the obser-

vations and models.

3.1.2. Precipitation extremes

There are no significant observed trends in the precipi-

tation indices (Table II), which is perhaps not surprising,

given that precipitation extremes are less well spatially

correlated and have larger interannual variability over

Australia than temperature extremes (Alexander et al.,

2007). Also, it is clear from Tables II and III that there

are generally wider confidence intervals on the simu-

lated trends of precipitation extremes than temperature

extremes. Precipitation is also not expected to respond as

consistently or strongly to greenhouse gas forcing as tem-

perature (e.g. Lambert et al., 2005). Given this, we might

expect that it would be more difficult for climate mod-

els to capture observed trends in precipitation extremes.

So, it is encouraging to find that the majority of mod-

els match the sign of the observed trend for four out

of the five precipitation extremes. The exception is con-

secutive dry days, where six out of the nine models and

the multi-model average have trends of opposite sign to

the observations. Figure 1 shows that the models also

do reasonably well at simulating the amount and vari-

ability of the precipitation extremes (Figure 1(e)–(i)). In

addition, all models underestimate the actual amount of

observed simple daily intensity (Figure 1(g)) while most

models also underestimate maximum 5-day precipitation

amount (Figure 1(f)), although the trend averaged over

Australia from the multiple model simulations is close

to the observed trend (Table II). The observations of

heavy precipitation days (Figure 1(e)), consecutive dry

days (Figure 1(h)) and very heavy precipitation contribu-

tion (Figure 1(i)) lie within the range of values for those

indices simulated by the full suite of models. However,

the model ranges are very large.

The spatial trend maps for the precipitation indices

(Figure 3) show that it is mostly southern Australia that is

covered by observational data. Even so, this corresponds

to the region with the highest population density so that

it provides useful information for future studies, which

relate climate extremes to impacts. Unfortunately, no

observed precipitation extremes data exist for the north-

west region although current work at the Bureau of Mete-

orology is aimed at addressing this (Dörte Jakob, personal

communication). This is unfortunate, since there is a

well-established increase in the mean precipitation in this

region since the 1950s, the reason for which is still being

debated in the current literature (e.g. Wardle and Smith,

2004; Rotstayn et al., 2007; Shi et al., 2008). How-

ever, most models (not shown) simulate a decrease in

heavy precipitation days over the northwest region but a

mixed response regarding the trends in simple daily inten-

sity. As noted, the multi-modelled trend for maximum

5-day precipitation is close to the observed trend but,

Figure 3(c) and (d) shows that there are some differences

in regional response. The multi-modelled trend in simple

daily intensity also fails to capture some of the strong

spatial gradients shown in the observations, e.g. Victo-

ria in southeast Australia exhibits increasing trends in

the western part of the state and decreasing trends in the

east (Figure 3(e)), whereas the multi-model shows uni-

form increases in the intensity of precipitation across the

region (Figure 3(f)). Observed trends in consecutive dry
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days (Figure 3(g)) have not been as uniformly increas-

ing as simulated trends might suggest (Figure 3(h)); the

overall trend across those parts of Australia with observed

data shows that the simulated multi-model trend is sig-

nificantly increasing (1.04% per decade) contrasting with

the observed decreasing trend of −0.14% per decade

(Table II). Also, as with heavy precipitation days, it is

the models INM-CM3.0, MIROC3.2 (hires) and GFDL-

CM2.1, with statistically significant increases in consecu-

tive dry days, which largely influence this temporal trend

(Table III). The southwestern region of Western Australia

has seen a significant and well-documented decline in

precipitation since the mid-1970s (IOCI, 2002) and this

agrees with an increase in consecutive dry days in the

region (Figure 3(g)). However, the observed increase is

not as large or statistically significant as the models sug-

gest (Figure 3(h)). In general, the simulated and observed

spatial distribution of trends of very heavy precipitation

contribution (Figure 3(i) and (j)) are not in good agree-

ment. However, given that precipitation is a much less

spatially coherent variable than temperature and that pre-

cipitation extremes could depend on specific convection

or storm events, models would be expected to have a

more difficult time simulating patterns of precipitation

extremes than temperature extremes. Given this fact, it

is quite impressive that the models capture some of the

observed trends and trend patterns.

In the next section, measures of trend uncertainty are

estimated for observed and modelled temperature and

precipitation extremes to provide objective comparison

of the temporal and spatial similarity between observed

and modelled trends.

3.2. Measuring trend uncertainty

For each index, objective measures were calculated to

assess the ability of the models to reproduce (1) observed

area-averaged trends (temporal similarity) and (2) spatial

patterns of observed trends (spatial similarity) over Aus-

tralia. In each case, a bootstrapping technique was

employed to assess the uncertainty associated with the

modelled trend estimates over Australia during the latter

part of the 20th century. To assess the uncertainty asso-

ciated with temporal similarity, the modelled time series

from Figure 1 are used to calculate the lines of best fit

and associated residuals for each index. Next, a mov-

ing block bootstrap resampling (following the method of

Wilks, 1997) is used to randomly resample the residuals

in blocks of 2 years to maintain some of the temporal cor-

relation in the time series. This procedure is performed

1000 times, adding the line of best fit back each time

to the resampled residuals and recalculating the trend.

Essentially, this produces a distribution of probable or

‘plausible’ climate trends for Australia. The same boot-

strapping method is followed independently for each of

the model simulation index time series from Figure 1.

Probability distribution functions (PDFs) are then cre-

ated using the 1000 bootstrapped trends for each index

so that the observations and models can be compared.

PDFs are centred on the original model trend and mod-

els with multiple simulations are combined into one PDF

and centred on the ensemble mean trend. Figure 4 shows

the temporal similarity PDFs for each index.

In most cases, the spread of plausible model trends

overlaps with the observations. Heat wave duration

(Figure 4(d)) is the only index where none of the PDFs

of modelled trends overlap with the observed trends and

this is probably associated with the different definitions

used (Section 3.3). For warm nights, all models support

a warming trend and indeed there is very little overlap

of any of the model PDFs with zero (Figure 4(a)). This

is also supported by the positive confidence intervals on

the multi-model trend estimates in Table II. Trends in the

other temperature indices, frost days (Figure 4(b)) and

extreme temperature range (Figure 4(c)) are generally

less well simulated than warm nights although, for

instance, the median value of the PCM model PDF

for both frost days and extreme temperature range is

centred around the observed trend. Some other models

do a relatively poor job of simulating these indices.

For instance, the highest resolution model, MIROC3.2

(hires), and the lowest resolution model, INM-CM3.0,

exhibit little or no overlap with the observations for both

frost days and extreme temperature range. Note also that

two of the models, CNRM-CM3 and INM-CM3.0, have

a much larger spread than the rest of the models for

trends in frost days (Figure 4(b)). Both these models have

only one ensemble member, but the greater variance of

the PDFs is most likely due to the larger interannual

variability of simulated frost days by these models as

shown in Figure 1(b).

To assess the uncertainty associated with spatial trend

patterns, i.e. to determine the spatial similarity of trends

between the observations and models, the bootstrapping

technique is again employed, but time series are randomly

resampled this time at each grid point to calculate trends.

The bootstrapping is done synchronously at all locations

to maintain the spatial coherence of the trends. This

produces 1000 gridded fields of plausible spatial trend

patterns for the observations and models to reflect the

uncertainty associated with natural climate variability.

From these 1000 fields, a spatial correlation statistic is

calculated as follows. We randomly select an observed

trend pattern and independently a model trend pattern.

The area-weighted uncentred spatial correlation between

these two patterns is calculated (this measure is similar

to the congruence statistic described by Kiktev et al.,

2007). The procedure is repeated 2500 times, and the

resulting distribution of spatial correlation values is used

to create PDFs for each model run and index. To

ensure that the bootstrapped PDFs are measuring the

uncertainty around the ‘best estimate’ of the models,

the medians were centred on the original values of

pattern similarity between the observed and modelled

trend fields. The resulting PDFs are shown in Figure 5.

In general, the higher the median value of the PDF

the better a model is at simulating the observed pattern

of trends for that index. The null hypothesis that the
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Figure 4. PDFs of plausible areally averaged OLS trends (1957–1999) over Australia using each of the nine climate models in the CMIP3

archive. PDFs are calculated using the ‘temporal similarity’ bootstrapping technique described in the text. Where there are multiple ensemble

members, PDFs are centred on the ensemble mean trend. The dashed lines represent where the observed trends lie over the same period. Units

on the x axis as in Table I (per decade). This figure is available in colour online at www.interscience.wiley.com/ijoc

models have no significant skill at reproducing observed

spatial trend patterns is tested and rejected if a zero

correlation falls within the lower 5% tail of the PDF.

Very few of the individual model runs (Figure 5) and

none of the ensemble means (not shown) from the

nine models showed significant skill at reproducing

the observed pattern of trends over Australia for any

of the indices. Indeed, only the pattern of maximum

5-day precipitation (Figure 5(f)) is significantly well

simulated by one run from each of the PCM and MRI-

CGCM2 models. However, interestingly, the multi-model

ensemble did show significant skill at simulating the trend

pattern for heavy precipitation days even though there

was no significant skill in any of the contributing models

(not shown).

3.2.1. Natural versus anthropogenic forcings

Two out of the nine models (CCSM3 and PCM)

are also available for analysis using natural-only and

anthropogenic-only as well as all-forcings runs. The

natural-only runs include only forcing from volcanic

aerosols and solar variability, while anthropogenic-only

runs include only forcing from greenhouse gases, sul-

phate aerosols, black carbon aerosols (CCSM3 only) and

stratospheric ozone depletion. The natural and anthro-

pogenic forcings for PCM and CCSM3 are described

in more detail in Meehl et al. (2004) and Meehl et al.

(2006), respectively. Again, the variability in the trends

for each of the model runs is calculated using the boot-

strapping procedure described above to measure both the

temporal and spatial similarity between the observed and

modelled trends. The resulting PDFs of temporal simi-

larity are again analysed to assess how well the different

forcings runs simulate the observed trends during the

latter part of the 20th century for each index. In most

cases, the PDFs for the different forcings runs over-

lapped with the observed trends indicating that, in these

cases at least there was no discernible difference in the

performance of the models between the natural and all-

forcings runs. Figure 6 shows the PDFs using the differ-

ent forcings from both the PCM and CCSM3 models for

warm nights and very heavy precipitation contribution.

For warm nights, the PDFs for the natural-only forcings

do not overlap (or overlap less than 5% in the case of

the PCM model) with the observed trends. Figure 6(a)

and (b) show that it is only when anthropogenic forcings

are included that the models are able to adequately sim-

ulate the observed trend. The precipitation extremes do

not show any significant differences between the natural,

anthropogenic and all-forcings runs although Figure 6(c)

and (d) shows that there does appear to be some sep-

aration between the natural-only and all-forcings runs
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Figure 5. PDFs of the spatial trend correlations (calculated over 1957–1999) between observations and 22 runs from the nine CMIP3 models

available for this study over Australia. PDFs are calculated using the ‘spatial similarity’ bootstrapping technique described in the text. PDFs are

not shown for CNRM-CM3 frost days and heat wave duration due to the masking applied to this model at source, which reduces the number

of grid boxes available for the spatial correlation calculation. This figure is available in colour online at www.interscience.wiley.com/ijoc
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Figure 6. PDFs of annual OLS trends (1957–1999) in warm nights for (a) PCM and (b) CCSM3 and very heavy precipitation contribution

for (c) PCM and (d) CCSM3 over Australia for natural only (dotted), anthropogenic only (dashed) and all forcings (dotted dashed). PDFs are

centred on the ensemble mean trend. The solid lines represent where the observed trends lie over the same period. PDFs are calculated using

the ‘temporal similarity’ bootstrapping technique described in the text and trends are calculated as in Figure 4.
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for very heavy precipitation contribution. However, when

the PDFs of spatial similarity are compared with the

observations, there is no significant skill in either the

PCM or CCSM3 model in reproducing the spatial trend

pattern of any index irrespective of which forcings are

used (not shown). Figure 6, however, does highlight that

the observed trends in at least one of the temperature

extremes during the latter half of the 20th century when

averaged over Australia is unlikely to have been produced

from natural forcings alone.

3.3. Differences in index definitions

Potential errors or differences among the model results

could be due to potentially different computational tech-

niques used by each group. Another complication in

comparing the modelled and observed indices is that

when the Frich et al. (2002) analysis was updated by

Alexander et al. (2006), some of the definitions using

the observed data had to be redefined since statistical

inconsistencies were discovered when the original defi-

nition was used. Three of the indices in this study have

been affected by this update (Table I). In particular, it

was shown that the original simple threshold calcula-

tion for the 90th percentile of minimum temperatures

(warm nights) contained an inhomogeneity at the start

and end of the 1961–1990 base period (Zhang et al.,

2005). Unfortunately, these inconsistencies were discov-

ered after the extremes indices had been submitted to the

CMIP3 archive, so they could not be recalculated without

access to the original daily model data. To try and assess

how these definitional differences would affect our com-

parison, we plotted trends in the original station data for

Australia that were used in Frich et al. (2002) with trends

in the same stations using the Alexander et al. (2006) def-

initions. Figure 7 shows the comparisons for heat wave

duration, warm nights and consecutive dry days, which

are the indices where differences in definition occur. Heat

wave duration has the lowest correlation between the

two methods (0.17) and the biggest difference in the

trends (the slope of 0.28 of the line of best fit using

total least squares regression indicates that, in general,

the trends in heat wave duration from Frich et al., 2002

are much larger than the warm spell duration defined by

Alexander et al., 2006). Warm nights are reasonably well

spatially correlated between the two methods (0.45), but

the slope of the line of best fit (0.5) indicates that using

the definition by Frich et al. (2002) produces trends about

twice as large as those using the definition by Alexander

et al. (2006) when averaged across Australia. Consecu-

tive dry days are highly spatially correlated between the

two methods (0.77) and the slope of the line of best fit

is close to 1.0 indicating that the trends are reasonably

comparable between the definitions by Frich et al. (2002)

and Alexander et al. (2006).

We judge that to adjust for these changes would not be

feasible, particularly since bias corrections would prob-

ably have to be calculated regionally and our station

sample size is simply not large enough to do this rigor-

ously. The best option would obviously be to recalculate

these indices using the daily output from the nine cli-

mate models. However, at present the model data are not
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Figure 7. The relationship between two different definitions of the heat wave duration, warm nights and consecutive dry days indices (Table I)

across Australia. Each triangle represents the annual trend calculated between 1957 and 1996 for each index at Australian stations. The solid

line represents the line of best fit using total least squares regression, s is the slope of the line and r is the spatial correlation between all points.

This figure is available in colour online at www.interscience.wiley.com/ijoc
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available for us to do this, so the differences discussed

above should be considered when assessing the projected

future changes in extremes presented in the next section.

4. Future projections of extremes over Australia

To put the future changes in extremes in context,

changes in the mean temperature and precipitation for

2080–2099 are shown in Figure 8, along with observed

and modelled trends for 1957–1999. Similar to previous

studies (e.g. Smith, 2004; Karoly and Braganza, 2005;

Gallant et al., 2007), temperatures have increased almost

Australia-wide, while precipitation trends are of mixed

sign. Observed precipitation (Figure 8(b)) has decreased

in most of eastern Australia and the southwest (IOCI,

2002) and increased in the northwest (Smith, 2004).

The multi-model trends in temperature (Figure 8(c))

and precipitation (Figure 8(d)) capture most of these

Figure 8. Changes in mean temperature (left column) and precipitation (right column) for observations (a, b), 20th century simulations (c, d)

and 21st century SRES A1B simulations (e, f). Twentieth century changes are represented as trends from 1957 to 1999, while future changes

are differences of 2080–2099 minus 1980–1999. Stippling in (e and f) indicates regions where the multi-model mean change divided by the

intermodel standard deviation of the change is greater than one, a measure of the consistency of the multi-model response. The same nine models

for which extremes indices were analysed are used to form the multi-model means here.
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overall changes, with the exception of the northwest. As

mentioned earlier, the attribution of observed changes in

northwest Australia to anthropogenic sources is still a

matter of debate; hence, it is not necessarily clear that

we should expect the models to reproduce the observed

changes there. Future changes in the annual mean temper-

ature (Figure 8(e)) and precipitation (Figure 8(f)) are rep-

resented by the multi-model mean of 2080–2099 minus

1980–1999 for the A1B (mid range) scenario. Warming

occurs across the whole continent with largest changes

in the interior, while precipitation increases in the north

and decreases in the southern regions. Here stippling indi-

cates regions where the multi-model mean divided by the

intermodel standard deviation is greater than 1, a measure

of the consistency of the response between models. Note

that while the temperature change is consistent between

the models (as depicted by the stippling of nearly all grid

points), precipitation projections are only consistent in

the lowest southern latitudes. Thus, there is much inter-

model variability in the projected precipitation changes

over Australia.

Turning to future projections of the extremes indices,

we first show time series of area averages over all

Australian grid points (Figure 9), using only grid points

for which valid observations are available, as in Figure 1.

Multi-model means (solid lines) for the 20C3M and

three SRES scenarios, B1 (blue), A1B (green) and A2

(red) are shown for 1870–2099. For the ensemble mean

of each of the nine models, anomalies from the entire

time series (1870–2099; green line) are first formed for

each scenario, followed by the average across models.

The multi-model mean is centred around 1980–1999

with a ten-year running mean applied to smooth out the

interannual variability, which can be large, particularly

for the precipitation extremes. Table IV lists the ratio

of changes averaged over Australia for 2080–2099 to

changes found globally in Tebaldi et al. (2006).

For all temperature-based indices (excepting extreme

temperature range), the significant trends observed in the

latter half of the 20th century (Table II) are projected to

continue into the 21st century. A noticeable increase in

warm nights is found Australia-wide (Figure 9(a)), with

percentage increases between 15 and 40% by the end

of the 21st century. This is consistent with a projected

rise in warm nights globally (Tebaldi et al., 2006), with

the Australian-average increase at the end of the century

slightly smaller than the global average (Table IV, ratio

of 0.86). A consistent increase (decrease) in heat wave

duration (frost days) is found over the 21st century

for every scenario, with the changes for these indices

markedly smaller than that of the global average. The

heat wave duration increase over Australia is consistent

Figure 9. Time series of areally averaged extremes indices (Frich et al., 2002) between 1870 and 2099 using grid boxes in Australia with the

observed data from Figure 2 (temperature) and Figure 3 (precipitation). The multi-model ensemble mean (solid lines) of nine models from the

CMIP3 dataset is shown for the SRES B1, A1B and A2 scenarios, with shading representing two times intermodel standard deviation. All model

time series are smoothed with a ten-year running mean. This figure is available in colour online at www.interscience.wiley.com/ijoc
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Table IV. Ratios of the 2080–2099 changes in extremes

indices in Australia for the SRES A1B scenario relative

to (1) changes found globally, (2) the SRES B1 (low-range

emissions) and (3) the A2 (high-range emissions). Note that

the Australia/Global ratios use only grid points with valid

observations over Australia, consistent with the time series

in Figure 9, while the B1/A1B and A2/A1B ratios are the

weighted averages over all Australian grid points of the patterns

of change shown in Figure 10.

Index Australia/

Global

(A1B)

B1/A1B A2/A1B

Warm nights 0.86 0.65 1.11

Frost days 0.45 0.86 1.15

Extreme temperature range −0.53 0.58 2.14

Heat wave duration 0.3 0.50 1.40

Heavy precipitation days 0.17 0.79 −0.54

Maximum 5-day

precipitation

0.3 0.61 1.49

Simple daily intensity 1.01 0.76 1.09

Consecutive dry days 4.11 0.58 1.19

Very heavy precipitation

contribution

0.80 0.52 1.42

with the findings of Tryhorn and Risbey (2006). A

notable difference is seen between the observations

(Figure 2(e)) and projections in the extreme temperature

range (Figure 9(c)), with a significant decrease being

observed (Table II) compared to an increasing trend in

the multi-model projections throughout the 20th and 21st

centuries.

Projected changes in the precipitation-based indices are

much noisier, with little separation between the scenar-

ios even at the end of the 21st century. Nonetheless,

strong increases in simple daily intensity (Figure 9(g)),

consecutive dry days (Figure 9(h)) and very heavy precip-

itation contribution (Figure 9(i)) are projected for Aus-

tralia over the 21st century, suggesting that our future

precipitation regime will have longer dry spells inter-

rupted with heavier precipitation events. Note, however,

that other measures of precipitation extremes, heavy pre-

cipitation days (Figure 9(e)) and maximum 5-day pre-

cipitation (Figure 9(f)) show no significant trend over

Australia. Similar time series over northern and southern

Australia (not shown) show no appreciable differences to

the Australia-wide averages, except in extreme tempera-

ture range where a steady increase over the 21st century

is found in southern Australia but little change occurs in

the north.

Multi-model mean changes in the extremes indices

across Australia at the end of the 21st century are

seen in Figure 10. This figure is adapted from Tebaldi

et al. (2006) who used normalized averages for each

model to compute the multi-model mean changes. Here,

we use non-normalized averages across all model runs,

with the expectation that non-normalized units are more

meaningful for the user community. The patterns of

change are shown for the A1B scenario, the mid range

of emissions scenarios, but similar patterns are found for

the B1 and A2 scenarios (not shown). Stippling here

indicates that at least five out of nine models agree

that the change is significant (Tebaldi et al., 2006). In

general, warmer and wetter conditions are seen, with

significant changes at most grid points for warm nights

(Figure 10(a)) suggesting a very robust result. Similarly,

a large increase in heat wave duration (Figure 10(d)) is

found across all of Australia, particularly the dry arid

regions. Increases in consecutive dry days are also seen

Australia-wide, although consensus among the models

is only found in the interior. Precipitation extremes

increase for most indices and locations, with only heavy

precipitation days having large regions of both positive

and negative (albeit small) changes.

Previous studies (e.g. Harvey, 2004) have shown that

mean climate change patterns tend to scale with the

emissions scenario, i.e. the larger the greenhouse gas

forcing, the stronger the response. Tebaldi et al. (2006)

found this to be true for all temperature indices and

a similar result is found here for Australia. A simple

quantitative measure of this scaling was computed by

dividing the A2 and B1 patterns of change by the A1B

pattern shown in Figure 10, thus forming a ratio based on

emissions at each grid point. The ratio patterns are then

smoothed with a nine-point filter and weighted averages

are computed over all Australian grid points. The area

average ratios are listed in Table IV. If the patterns

were to scale with emissions, we would expect positive

numbers at all grid points and smaller values for the

B1/A1B ratio than for the A2/A1B ratio. For each index

in Table IV, except heavy precipitation days, these ratios

are indeed positive with values less than one for B1 and

greater than one for A2. Note that extreme temperature

range undergoes more than a doubling from A1B to A2

when averaged across Australia. This is due to the zero

line between negative and positive changes (Figure 10(c))

steadily moving southward as the emissions increase. As

this pattern is not seen in the observations, it is difficult

to draw any conclusions about this result.

5. Discussion

It is encouraging to note that the majority of GCMs anal-

ysed in this study were able to generally simulate the

sign of the observed trend and, to some extent, the associ-

ated variability of temperature and precipitation extremes

when averaged over Australia. This gives us some confi-

dence in the projected changes presented here. However,

the results also showed that GCMs may not be ade-

quately simulating the spatial trend patterns of extremes

across the continent during the late 20th century. Pre-

vious studies (e.g. Kiktev et al., 2003; Christidis et al.,

2005; Kharin et al., 2007) show that climate models are

generally skilful at reproducing global trend patterns of

temperature extremes, but have little skill in reproduc-

ing trend patterns of precipitation extremes. Hegerl et al.

(2004) also find that patterns of change in precipitation
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Figure 10. Ensemble mean projected changes (2080–2099 minus 1980–1999) in the extremes indices used in this study (Table I) from the

CMIP3 multi-model dataset SRES A1B scenario. Stippling indicates that at least five out of nine models agree that the change is significant

(Tebaldi et al., 2006).

extremes are more heavily influenced by internal vari-

ability of the climate system when compared to temper-

ature extremes. Since the detection of trends in climate

variables is a signal-to-noise problem, the noise associ-

ated with temperatures at regional scales is greater than

at larger continental or global scales (Karoly and Wu,

2005). So, perhaps we cannot expect regional trend pat-

terns to be well simulated, particularly if changes in the

extremes in Australia are driven primarily by local influ-

ences. Furthermore, the strong influence of ENSO on the

Australian climate, which improves predictability on sea-

sonal timescales, also enhances the variability, making

attribution on climate scales more difficult.

Some of the driving mechanisms of regional observed

trends in Australia are still under debate. While a num-

ber of studies have attributed portions of the drying in

the southwest to anthropogenic forcing (Cai and Cowan,

2006; Hope, 2006; Timbal et al., 2006), the impact of nat-

ural variability (Cai et al., 2005) and land-cover change

(Pitman and Narisma, 2005; Timbal and Arblaster, 2006)

also appear to be reasonably large. The increase in pre-

cipitation and associated cooling in northwest Australia

is well known to researchers (e.g. Nicholls et al., 1997;

Power et al., 1998). Rotstayn et al. (2007) suggests that it

may be the poor simulation of aerosols in GCMs, which is

failing to capture these trends although Shi et al. (2008)
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suggest that this may be a model artefact. Wardle and

Smith (2004) suggest that the continental warming fur-

ther south is driving an enhancement of the Australian

monsoon. Other possibilities include the known biases

of climate models in simulating tropical mean climate

and variability including the response of certain cloud

feedback to CO2 that might be causing the sea surface

temperature (SST) to warm unevenly (Meehl et al., 2000;

Barsugli et al., 2006). Recent research at the Bureau of

Meteorology finds Australian precipitation trends to be

consistent with the decadal variability in tropical Pacific

SSTs (Harry Hendon, personal communication). Thus,

if GCMs could capture the zonal gradient of the SST

changes, with a minimum warming in the Central Pacific,

they would likely capture the increase in northwest Aus-

tralian mean precipitation and by extension extremes.

Although Santer et al. (2006) attribute changes in trop-

ical Atlantic and Pacific SSTs to anthropogenic forcing,

the extent to which the pattern of observed trends in trop-

ical SSTs is anthropogenic, is unknown. Further study is

required to untangle the contributions of unforced and

forced variability to recent changes in the Australian

climate.

In this study, model resolution appears not to be criti-

cal. While the lowest resolution model, INM-CM3.0, gets

the wrong sign of trend of all the precipitation indices and

two temperature indices, the highest resolution model,

MIROC3 (hires), also does not fare well for four of

the five precipitation indices and one of the tempera-

ture indices. Perkins et al. (2007) find that it is possible

to discriminate between models in their ability to simu-

late daily temperature and precipitation distributions over

Australia, but the findings here suggest that no one model

is particularly good or bad at reproducing the observed

trends or spatial patterns in the extremes of the two vari-

ables. In addition, Chen and Knutson (2008) suggest that

the way in which the observed precipitation indices are

gridded, prohibits a fair comparison between models and

observations.

Given that changes in climate extremes will have much

larger societal and ecological impacts than mean change

(Easterling et al., 2000), we need to be confident in our

ability to simulate future changes in extremes, if we are

to adequately assess their impacts. This study shows that

while we can have some confidence, in a general sense,

when assessing simulated extremes from coupled climate

models over Australia, uncertainties in the patterns of

future projections need to be considered when assessing

changes on regional scales.

6. Conclusions

In this study, objective measures have been used to

analyse the ability of an ensemble of multiple GCMs

to simulate observed trends in the climate extremes

over Australia and to assess projected changes in these

extremes at the end of the 21st century. In general,

the models capture the sign of observed trends in

both temperature and precipitation extremes, but no one

model is consistently good at reproducing all indices.

In spite of some differences in definition, the amount,

interannual variability and trend of the warm nights

index is particularly well represented by all the models

analysed. A pattern correlation technique, however, has

shown that none of the models are skilful at simulating

important trend patterns on regional scales, only the

multi-model ensemble showing any significant skill at

modelling trend patterns of heavy precipitation days.

This may imply that some regional and/or large-scale

process or processes over Australia are not well modelled

or resolved, or that unforced variability is contributing

largely to these changes.

Future projections show that the significant trends in

temperature extremes that have been observed during the

latter half of the 20th century are set to continue into

the 21st century. A substantial increase in warm nights

and heat wave duration and decrease in frost days are

projected by the end of this century under the SRES sce-

narios. The precipitation indices simple daily intensity,

consecutive dry days and very heavy precipitation contri-

bution are also set to more than double within the next

100 years. In general, the magnitude of changes in both

temperature and precipitation indices were found to scale

with the strength of emissions.

More work would be required to determine to what

degree recent changes in the climate extremes over

Australia are due to human causes and more international

cooperation is essential to ensure that the modelling and

observational groups derive consistent extremes indices.

However, it has been important to document the ability of

the models to reproduce 20th century changes in context

with projections. As the driest inhabited continent with

marginal agricultural climate and unique and vulnerable

societies and ecosystems, stakeholders and policymakers

in Australia urgently need information regarding climate

extremes. Here, we highlight both the agreement and

uncertainty around the model projections.
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