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Belgium

Tumor hypoxia is recognized as a limiting factor for the efficacy of radiotherapy, because 
it enhances tumor radioresistance. It is strongly suggested that assessing tumor oxygen-
ation could help to predict the outcome of cancer patients undergoing radiation therapy. 
Strategies have also been developed to alleviate tumor hypoxia in order to radiosensitize 
tumors. In addition, oxygen mapping is critically needed for intensity modulated radiation 
therapy (IMRT), in which the most hypoxic regions require higher radiation doses and the 
most oxygenated regions require lower radiation doses. However, the assessment of 
tumor oxygenation is not yet included in day-to-day clinical practice. This is due to the 
lack of a method for the quantitative and non-invasive mapping of tumor oxygenation. To 
fully integrate tumor hypoxia parameters into effective improvements of the individually 
tailored radiation therapy protocols in cancer patients, methods allowing non-invasively 
repeated, safe, and robust mapping of changes in tissue oxygenation are required. 
In this review, non-invasive methods dedicated to assessing tumor oxygenation with 
the ultimate goal of predicting outcome in radiation oncology are presented, including 
positron emission tomography used with nitroimidazole tracers, magnetic resonance 
methods using endogenous contrasts (R1 and R*

2-based methods), and electron para-
magnetic resonance oximetry; the goal is to highlight results of studies establishing 
correlations between tumor hypoxic status and patients’ outcome in the preclinical and 
clinical settings.

Keywords: tumor oxygenation, oximetry, tumor hypoxia, hypoxia imaging, radiotherapy outcome

iNTRODUCTiON

The effects of chemotherapy and radiotherapy have long been known to be affected by hypoxia (1, 
2). Irradiation of normoxic tissues induces water ionization and the formation of radicals such as 
reactive oxygen species which are able to react with DNA and form DNA radicals. In the absence of 
oxygen, these radicals can easily be stabilized by cell “scavengers” in order to protect DNA. However, 
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when oxygen is present, the DNA radicals react with oxygen and 
the damage is fixed. This reinforcement of the X-rays’ efficiency in 
the presence of oxygen is known as the “oxygen enhancing effect” 
(3). The “oxygen enhancement ratio” is the ratio of doses required 
to obtain the same cell survival under hypoxic and aerobic condi-
tions. This value for mammalian cells varies from 2.5 to 3.0 (1, 
4), indicating that hypoxic tumor cells will require a dose 2.5–3 
times higher to be killed than normoxic cells. Radioresistance 
is considered maximal at 0.2 mmHg (corresponding to anoxia) 
and decreases progressively to 20  mmHg, which is the oxygen 
concentration at which hypoxia-induced resistance is almost 
nil (4). There are therefore two possible strategies for improving 
the curative effect of radiotherapy on hypoxic cells: alleviating 
hypoxia by increasing oxygen availability and increasing the dose 
of irradiation on hypoxic tumors. From a meta-analysis gathering 
10,108 patients with solid tumors and observation of clinical prac-
tice, Overgaard concluded that “Ample data exist to support a high 
level of evidence for the benefit of hypoxic modification. However, 
hypoxic modification still has no impact on general clinical practice” 
(5). The unavailability of biomarkers as well as the lack of an ideal 
method for assessing tumor hypoxia, and for monitoring tumor 
response to radiosensitizers alleviating hypoxia, are issues that 
prevent the selection of patients who could benefit from increas-
ing the pO2 level. The ideal method for patient stratification 
should be non-invasive, available in both preclinical and clinical 
settings, repeatable over a short period of time in order to moni-
tor both chronic and acute hypoxia before and during the course 
of radiotherapy, quantitative from 0 to at least 40 mmHg, widely 
available in imaging centers, and predictive of the radiotherapy 
outcome. Finally, this method should provide a parametric 
value which is easily convertible into a dose of irradiation. Up 
to now, despite the efforts of scientists, no technique has met all 
these criteria. Indirect exogenous and endogenous markers for 
immunohistochemical detection of tumor hypoxia as biomarkers 
for personalized radiation oncology have recently been reviewed 
(6), following a previous large-scale review of hypoxia imaging 
methods in 2012 (7). Reviews with a special focus on preclinical 
assessment or the imaging of hypoxia have also provided a full 
description and technical details regarding each methodology 
(8, 9). Finally, a recent review addresses functional MRI (fMRI) 
methods in the field of radiation therapy of head and neck tumors 
(10). This article reviews the results of preclinical and clinical 
studies acquired using non-invasive imaging methods to assess 
tumor oxygenation in an attempt to establish correlations with 
patients’ outcome (according to the oxygen level in their tumors), 
with special emphasis on preclinical quantitative methods, 
such as electron paramagnetic resonance (EPR) oximetry and 
clinically translatable endogenous contrast magnetic resonance 
(MR)-based methods, which have so far been less validated than 
positron emission tomography (PET)-based methods (Table 1). 
Cross-validation studies between methods and with quantita-
tive methods are also presented in order to better establish the 
relevance of each oximetric method. A first section is dedicated 
to polarographic electrodes that have pioneered in vivo oxygen 
measurements and provided the first human demonstration of 
the occurrence of hypoxia in human tumors. This article sum-
marizes and assesses the value of MR and non-MR methods used 

to assess tumor oxygenation in order to predict the outcome of 
radiation therapy (Figure 1).

POLAROGRAPHiC OXYGeN 
eLeCTRODeS

Polarographic electrodes are probes that can be introduced 
directly into the tissue of interest. The reduction of oxygen at the 
cathode extremity will generate a detectable current proportional 
to the pO2. The electrodes’ measurements provide histograms of 
pO2, describing the frequency of pO2 measurements registered 
during a defined period of time and corresponding to the mean 
oxygen level for 50–100 cells that are located around the polaro-
graphic electrode (12). Since this technique requires the insertion 
of the probe inside the tumor, the tissue itself is damaged and a 
delay is necessary before measurement to allow for stabilization. 
This also prevents repeated-measurements experiments on the 
same site and limits the application of the electrodes to accessible 
tumors. Moreover, as the operation of the polarographic elec-
trodes requires oxygen, the signal-to-noise ratio will obviously 
decrease with the oxygen concentration, making measurements 
difficult under severe hypoxia. Since they are invasive and since 
their function is oxygen consuming, they cannot be chosen as the 
ideal method for tumor oxygenation measures. The Eppendorf 
electrode system (which was commercially available) has been 
developed to limit this consumption effect: the electrode is 
moved through the tissue of interest and an oxygen measure-
ment is registered every 0.4  mm (after a 0.7-mm step forward 
and a 0.3-mm step backward). Reducing the delay after the back-
step to a minimum helps to ensure negligible consumption of 
oxygen by the electrode and to decrease the tissue compression 
artifact (13). The polarographic electrodes have the advantage of 
providing real-time measurements that can be static or moving 
(in the case of Eppendorf electrodes). Despite their limitations, 
the polarographic electrodes have been widely used as a “gold 
standard” in preclinical and clinical experiments. With regard to 
clinical use, data from more than 125 clinical studies are available 
(14). It was shown in 2005 in a head and neck study involving 397 
patients that tumor hypoxia assessed using Eppendorf electrodes 
was associated with a poor prognosis (15). Eppendorf electrodes 
have also highlighted that the outcome of patients with prostate 
cancer is linked to the level of tumor hypoxia. The 8-year survival 
was found to be 78% for patients with moderate hypoxia but just 
46% for patients with severe hypoxic tumors; these results were 
independent of well-established risk factors such as tumor stage, 
Gleason score (defining the prostate tumor grades), prostate-spe-
cific antigen, perineural invasion, serum hemoglobin level, and 
hormonal therapy use (16). The prognostic value of tumor pO2 
Eppendorf measurements was less clear in a multicenter human 
cervix carcinoma study involving 127 patients (17). Finally, as a 
“gold standard” method, the polarographic electrodes have often 
been used to validate new techniques aimed at assessing tumor 
hypoxia (18). However, this technique remains invasive and 
cannot be used to map tumor heterogeneity or to repeat measure-
ments on the same site for a long time. Alternative methods are 
therefore required.
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TAbLe 1 | Oxymetric studies linking hypoxia and radiation therapy outcome.

Oxymetric 
technique

Animal studies Reference Clinical studies Reference Cross-validation with quantitative oxymetric 
methods?

Reference

Eppendorf 
electrodes

C3H mammary tumors: significant difference in local 
tumor control between the fraction of hypoxic values 
(<2.5 mmHg) and less hypoxic tumors

(36) Prostate cancer study (n = 57): 8-year 
survival is 78% for moderately hypoxic 
tumors and 46% for severe hypoxic 
tumors

(16) n.a.

Head and neck cancer study (n = 35): 
2-year locoregional control is two times 
lower for hypoxic tumors (i.e., with 15% 
of readings <2.5 mmHg)

(15)

PET 18F-MISO FaDu hSCC xenografts: prognostic value of pretreatment 
18F-MISO hypoxic volume; SUVmax was not associated 
with local control

(25) 5 head and neck studies (n = 45; 73; 12; 
17; 15)

(21, 24, 26, 
27, 29)

Mixed results (23)

•	 4 studies reported correlation between 
18F-MISO hypoxia and outcome

•	 1 study reported a lack of correlation

Lack of correlation with Eppendorf measurements in 
head and neck tumors

PET 18F-FAZA Rhabdomyosarcoma: lower uptake linked to better local 
tumor control at 90 days post-irradiation

(36) Head and neck cancer study: DAHANCA 
trial (n = 40), high tumor uptake is 
correlated to lower disease-free survival

(38) Positive results (38)

Validated with EPR oximetry in the preclinical setting 
(rat rhabdomyosarcomas)

9L glioma and rhabdomyosarcoma: significant correlation 
between 18F-FAZA T/B and tumor growth delay

(37)

PET 
18F-FETNIM

1 head and neck cancer study (n = 21) (21) NO (but compared with other nitroimidazoles) (44, 45)
2 lung cancer studies (n = 26; 32) •	 Comparison with F-MISO: positive response under 

hyperoxic breathing challenge in C3H murine 
tumors

•	 Comparison with FAZA: positive correlation in 
murine mammary tumors

1 cervical cancer study (n = 16)
1 esophageal cancer study (n = 28)
High fractional hypoxic volumes, uptake, 
or baseline SUVmax correlated with PFS, 
OS, or clinical response

PET 
60CU-ATSM

Canine sinonasal tumors: lack of correlation between 
Cu-ATSM uptake and outcome

(51) 3 cervical cancer studies (n = 14; 15; 38) (21, 48–50) Mixed results (40, 57–63)
2 head and neck cancer studies (n = 15; 
11)

•	 Comparison with F-MISO, EF5, or pimonidazole: 
no link with hypoxia in different tumor models or in 
response to hyperoxic challenges

•	 Comparison with Eppendorf electrodes: correlation 
with hypoxia in FaDu tumors but not in HT29 
tumors

3 lung cancer studies (n = 19; 22; 7) Potential link with tumor redox status
1 rectal cancer study (n = 19)
•	 Tumor uptake is inversely related to 

PFS or disease specific free survival
•	 Hypoxic tumor volume and hypoxic 

burden (=HTV × SUVmean) related 
to PFS

(Continued )
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Oxymetric 
technique

Animal studies Reference Clinical studies Reference Cross-validation with quantitative oxymetric 
methods?

Reference

Dynamic 
contrast-
enhanced 
magnetic 
resonance 
imaging

Melanoma xenografts: low ktrans is correlated with 
increased radioresistance

(78) Cervical cancer study: ktrans and ABrix 
parameters correlated with poor outcome

(80) Mixed results (82)
•	 Comparison with Eppendorf electrodes: correlation 

between max DCE signal enhancement and 
median pO2 in cervical cancer patients

Cervical cancer xenografts: basal ktrans correlated to 
the outcome of RT; skewness (heterogeneity) in ktrans 
distribution correlated with poorer outcome

(79) •	 Comparison with pimonidazole (83, 84)
•	 Correlation between “poor perfusion” parameters 

and hypoxia (pimonidazole staining) in head and 
neck cancer patients

•	 Lack of correlation in glioma mice xenografts and 
glioma patients

Mouse fibrosarcoma: none of the tested DCE parameters 
(ktrans, vp, Kep, % of perfused voxels) were related to RT 
outcome

(69)

R T2 2
* *− G3H prolactinomas (rats) (100) Cervical cancer study: basal R2

*  was 
predictive for RT response

90 Mixed results (96–98)
RIF-1 fibrosarcomas (mice) •	 Lack of quantitative relationship between 

fluorescence quenching fiber optic probes pO2 
values and ∆ T2

*  values
•	 Correlation between pimonidazole and high R2

*  in 
prostate cancer

•	 Inverse correlation between pimonidazole and R2
*  

in mammary tumors

∆ R2
*  was predictive for a transient reduction in tumor size; 

low baseline R2
*  was linked to a small reduction in tumor 

size

R1–T1 of water 
protons

Dunning R3327-AT1 rat prostate (92) Mixed results

A large increase in R1 response to hyperoxic challenge 
was linked to a longer tumor growth delay after radiation 
therapy

No study addressing potential correlations between 
R1–T1 and quantitative pO2 measurements

R1–T1 of lipid 
protons

9L glioma (101) Mixed results (101, 123)
Water and lipids T1 are less predictive of RT outcome than 
R2

*  in this model
•	 Comparison with EPR oximetry
•	 Positive correlation in mammary tumors
•	 Lack of correlation in rat rhabdomyosarcoma and 

9L glioma

Combined R1 
and R2

*  MRI
Dunning rat prostate tumors (121)
Useful factors to predict tumor response to hypofractionation

EPR oximetry C6 and 9L glioma (151)
pO2 assessed after a first course of RT was a prognostic 
indicator of differential response to RT between the two 
glioma models

TLT and FSaII syngeneic tumors (69, 76, 
130, 132, 
136–146, 

148)

pO2 assessed during/after administration of treatments 
able to alleviate tumor oxygenation was predictive of the 
outcome of RT when administered during this window of 
reoxygenation

TAbLe 1 | Continued
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FiGURe 1 | Schematic representation of magnetic resonance (MR) 
and non-MR methods used to assess tumor oxygenation. PET, 
positron emission tomography; EPR, electron paramagnetic resonance; MRI, 
magnetic resonance imaging; DCE-MRI, dynamic contrast-enhanced 
magnetic resonance imaging; BOLD-MRI, blood oxygen level-dependent 
imaging; MOBILE, mapping of oxygen by imaging lipids relaxation 
enhancement. Adapted from Price et al. (11).
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POSiTRON eMiSSiON TOMOGRAPHY

Hypoxia PET imaging is a non-invasive technique widely used 
in preclinical and clinical studies. This method requires the 
intravenous injection of a radiotracer (e.g., nitroimidazole) that 
will diffuse into cells and will be reduced intracellularly. This is 
reversible under normoxic conditions; but under hypoxia, the 
radiolabeled molecules will be trapped and will react with cellular 
macromolecules such as nucleic acids and proteins. The reduction 
requires the activity of reductases that are only present in viable 
hypoxic cells. As a consequence, the accumulation and detection 
of radiotracers will be enhanced in hypoxic regions, whereas the 
necrotic cells will not be visible to PET imaging. The quantifica-
tion of the tracer uptake is generally expressed as the tumor-to-
background (TBR) ratio at a given time after the tracer injection. 
2-Nitroimidazoles have been developed as radiosensitizers (19). 
Because they have a nitro (NO2) group linked to the imidazole 
structure, they can undergo up to six electron reductions, eventu-
ally resulting in an amino group (NH2) (20). For PET imaging, 
these tracers are labeled with radioisotopes: fluorine-18 (18F) or 
carbon-11 (11C). The most important compounds designed to 
image hypoxia are described below.

18F-Fluoromisonidazole
18F-FMISO is a commonly used hypoxia tracer in preclinical 
and clinical studies. Due to its lipophilicity, this molecule easily 
crosses the cell membranes and is then trapped if intracellular 
hypoxia remains below a threshold of 10  mmHg. The cellular 
clearance of 18F-FMISO is quite low in normoxic tissues, thereby 
hampering the contrast between normoxic tissues and moderate 
hypoxic tumor tissues. As a result, a TBR ratio of 1.2 is usually 

used to delineate regions of hypoxia after a minimum delay of 2 h 
(20, 21). The best signal-to-noise ratio has been observed 4 h after 
tracer injection (22). In a study of Mortensen et al. (23), it was not 
possible to correlate 18F-FMISO with Eppendorf electrodes in the 
clinical setting in head and neck tumors (23).

In preclinical and clinical studies, the level of hypoxia high-
lighted by 18F-FMISO has been correlated with the response to 
therapy and outcome (24). Non-hypoxic volume estimated using 
18F-FMISO uptake showed significantly better local control after 
single-dose irradiation than hypoxic tumors in FaDu hSCC 
xenografts (25). In a recent review on PET imaging, Fleming and 
colleagues listed all the applications of 18F-FMISO in clinical trials 
(21). This tracer has been successfully used to image hypoxia in 
gliomas, head and neck, and breast and renal tumors. However, 
the use of 18F-FMISO in sarcomas, pancreatic cancers, or rectal 
cancers was compromised because of the non-specific accumula-
tion of 18F-FMISO in normoxic surrounding tissues or because 
of insufficient tracer uptake. Four head and neck tumor studies 
were able to correlate one 18F-FMISO-related tumor parameter 
(T:Bmax, SUVmax, or T:Mmax) with disease-free survival or 
locoregional failure (21), whereas one study was not able to estab-
lish any correlation (26). To date, different TBRmax thresholds for 
stratification have been reported; therefore, standardized meth-
ods still need to be determined in multicenter studies (27). Tumor 
mapping of hypoxia with 18F-FMISO could be useful for planning 
intensity modulated radiation therapy (IMRT) on patients with 
head and neck cancers, since when the hypoxic regions are well 
delineated, it is possible to boost the dose delivered to those areas. 
18F-FMISO maps were used for this purpose on two patients in 
a study from Lee and colleagues in 2008. With the knowledge 
of hypoxic areas that they gained, these authors were able to 
escalate the dose to 84 Gy for 10 patients. Moreover, they raised 
the delivered irradiation doses up to 100 and 105  Gy for two 
patients in hypoxic areas (28). A single-center trial combining 
multimodal hypoxia imaging, including 18F-FMISO, and IMRT in 
patients with inoperable stage III non-small cell lung carcinoma 
(NSCLC) tumors was started in 2012 (29). Recent data also sug-
gest that selective dose painting to hypoxic tumor subvolumes 
requires adaptation during treatment (30). 18F-FMISO has also 
been used to monitor reoxygenation of the tumors during the 
course of radiotherapy: in 10 patients, a decrease in the uptake 
of 18F-FMISO was observed in eight tumors after the delivery of 
20 Gy (31). The reoxygenation process has also been observed in 
patients with glioblastoma treated by fractionated radiotherapy 
and concomitant temozolomide administration (32). The results 
showed a significant decrease in tumor hypoxia attributed to the 
radiotherapy effect. Finally, it has been suggested that the hypoxic 
areas of the tumors are correlated with neovascularization and 
with the tumor metabolism rate in glioblastoma multiform (33). 
This conclusion comes from a preliminary study involving 10 
patients who underwent magnetic resonance imaging (MRI) to 
evaluate tumor perfusion after the injection of a gadolinium-
based contrast agent and several PET imaging protocols: the first 
of these was 18F-FMISO as a reporter of hypoxia and the second 
was l-methyl-11C-methionine (11C-MET), an amino acid whose 
uptake reflects tumor activity and which is currently used for 
glioma detection and grading (34).
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18F-Fluoroazomycin-Arabinofuranoside 
and 18F-Flortanidazole
18F-fluoroazomycin-arabinofuranoside (18F-FAZA) is a more 
hydrophilic nitroimidazole that displays faster clearance from 
blood and normal tissues than 18F-FMISO. As a result, imaging 
tumor hypoxia with this radiotracer improves the signal-to-noise 
ratio. In a preclinical study on rhabdomyosarcoma, a correlation 
between 18F-FAZA uptake and actual values of pO2 measured 
by EPR has been established, reflecting quantitative aspects of 
the method (35). Moreover, 18F-FAZA seems to be predictive of 
the response to radiotherapy: less hypoxic rhabdomyosarcoma 
tumors (defined by a lower uptake of 18F-FAZA) demonstrated 
better local tumor control 90 days after radiotherapy than more 
hypoxic tumors (36). Similarly, a significant correlation between 
18F-FAZA T/B ratio and tumor growth delay was found in 9L 
glioma (37). With regard to clinical applications, 18F-FAZA 
imaging has been successfully performed in gliomas, lymphomas, 
lung, head and neck, and cervical and rectal tumors (21). The 
results of the DAHANCA 24 trial on head and neck cancers 
have proven that 18F-FAZA uptake is a good prognostic factor 
of tumor response to radiotherapeutic treatment (38). Finally, 
18F-FAZA-PET images have been successfully exploited to delin-
eate radiotherapy planning for head and neck squamous cell 
carcinoma, with 86 Gy being the dose to deliver in hypoxic areas. 
The treatment protocol included three phases and was based 
on 18F-FAZA-PET images acquired before irradiation and after 
the 7th and 17th fractions (39). 18F-flortanidazole (18F-HX4) is a 
hydrophilic nitroimidazole which quickly clears from normoxic 
tissues, allowing imaging 90 min after tracer administration; its 
low accumulation in the brain, heart, and gastrointestinal tract 
enables these body parts to be imaged (20). In a comparative 
study looking at several markers of hypoxia in an in vivo model 
(head and neck carcinoma cells SQ20b), 18F-FAZA, 18F-HX4, 
and 18F-FMISO uptakes were correlated with hypoxia, despite a 
relatively low accumulation of 18F-FAZA in muscles and tumors 
(40). In a second comparative study, 18F-HX4 and 18F-FAZA were 
found to be sensitive to an increase of hypoxia, induced by the 
breathing of a gas mixture containing 7% O2, when the tumor-to-
blood ratio was used. However, when only the tumor-to-muscle 
was used, only 18F-FAZA revealed a significant decrease in tumor 
oxygenation (41).

18F-Fluoroerythronitroimidazole
18F-labeled fluoroerythronitroimidazole (FETNIM) was sug-
gested as another marker of tumor hypoxia for use with PET 
in 1995 (42). Initial data suggested that 18F-FETNIM shows 
low peripheral metabolism, little defluorination, and possible 
metabolic trapping in hypoxic tumor tissue (43). 18F-FETNIM 
distribution has been positively correlated with 18F-FAZA in 
murine mammary tumors under normoxic and hyperoxic condi-
tions (44). It has been tested in head and neck, lung, cervical, and 
esophageal clinical cancer studies, with significant correlations 
between patient outcome and either high fractional hypoxic 
volumes, F-FETNIM uptake, or baseline SUVmax (21). Cross-
validation studies with other quantitative oxymetric markers are 
lacking. However, F-FETNIM has been compared to F-FAZA in 

the preclinical and clinical settings, with positive correlations (21, 
44, 45).

Copper (ii) Diacetyl-bis  
(N4-Methylthiosemicarbazone)
Copper (II) diacetyl-bis (N4-methylthiosemicarbazone) 
(Cu-ATSM) can be used as a radiotracer with 60–64Cu with variable 
half-times (46). This agent displays high lipophilicity and rapid 
clearance from normoxic tissues, thereby enabling imaging 
30 min after its administration (47). In the absence of oxygen, 
the Cu(II) is irreversibly reduced to Cu(I) in viable mitochondria 
and therefore becomes trapped in hypoxic cells. In the study by 
Carlin and colleagues, the 64Cu-ATSM molecule displayed a bet-
ter uptake in tumor than 18F-FMISO, 18F-FAZA, and 18F-HX4. 
However, its distribution within the tumor was not similar to the 
other tracers: the accumulation of 64Cu-ATSM was greater at the 
tumor periphery and the uptake was lower in the tumor center 
where perfusion was also reduced (40). The low accumulation of 
60Cu-ATSM in the urinary tract makes it an ideal candidate for 
imaging pelvic organs. For example, the uptake of this radiotracer 
has been inversely correlated with the patient outcome (in terms 
of progression-free survival) for 38 patients with cervical cancer 
(48). Similar observations have been performed in head and 
neck, and rectal and lung tumors, as reviewed in (16) and in more 
recent studies in NSCLC and head and neck tumors (49, 50). Few 
preclinical studies have attempted to link Cu-ATSM uptake and 
outcome; one study of canine tumors was not able to establish any 
correlation (51). Planning of dose painting can also be achieved 
using Cu-ATSM, which detects the hypoxic regions in preclinical 
and clinical models (52–54). However, Cu-ATSM uptake does 
not only reflect hypoxia: in a study of six tumor cell lines, the 
maximum uptake was cell line dependent and was linked to 
the redox status of tumor cells. The retention of Cu was higher 
in cells with an abnormally reduced status (55). Moreover, the 
in vitro results demonstrated that hypoxia selectivity was optimal 
30–60  min after the administration of Cu-ATSM, but this is a 
limiting factor for in vivo applications, since the distribution of 
the tracer during the first hour after its administration is limited 
by a reduced tumor blood flow. The latter imaging is suggested 
to be rather linked to the active transport of Cu alone that has 
been dissociated from the Cu-ATSM complex, although these 
observations are again cell line dependent (55). The fact that cop-
per metabolism may also play a role in the uptake mechanism of 
64Cu-ATSM was confirmed in a more recent publication showing 
similar contributions between 64Cu-ATSM and 64Cu-acetate (56). 
Further studies have demonstrated that Cu-ATSM uptake is not 
correlated with an increase in hypoxia (57, 58) or that Cu-ATSM 
uptake is not co-localized with hypoxia marked with immuno-
histochemistry (40, 59, 60). Only one recent study has concluded 
in favor of a positive correlation between tracer accumulation 
and hypoxia but not in both tumor models under study (61). It 
seems that Cu-ATSM is not a specific marker of tumor hypoxia, 
but it has been successfully correlated with the NADH and 
NADPH levels: Cu-ATSM uptake is rather observed in tumors 
with abnormally reduced status, which may or may not be linked 
to hypoxia (62, 63). Finally, another study by Vavere and Lewis 
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investigated the link between Cu-ATSM uptake and the fatty 
acid synthesis pathway, which consumes NADPH, and corre-
lated the level of fatty acid synthase with the Cu-ATSM uptake 
(64). Consequently, Cu-ATSM images cannot be interpreted in 
terms of oxygenation only and, although Cu-ATSM is predictive 
of radiotherapy outcome, it is unclear whether this is linked to 
tumor hypoxia.

MRi MeTHODS

19F-MRi
19F-MRI is a non-invasive method able to map tumor hypoxia 
quantitatively, after the injection of a perfluorocarbon emulsion. 
Calibration curves relating the longitudinal relaxation rate to pO2 
can be acquired for a given temperature and a given perfluoro-
carbon (65) and used to map tumor oxygenation quantitatively. 
A major advantage of this calibration is the independent property 
of the absolute 19F signal intensity, linked to perfluorocarbon 
uptake. The fluorocarbon (PFC) relaxometry using echo planar 
imaging for dynamic oxygen mapping method developed by 
Mason and colleagues has been successfully used to monitor 
positive and negative changes in tumor oxygenation (65–68) 
as well as to map the heterogeneity of response to hyperoxic 
challenges within each tumor: it appears that well-oxygenated 
areas at baseline will display an increase in oxygenation earlier 
than hypoxic areas (65). Similarly, 19F-MRI mapping was able to 
monitor the effect of a radiosensitizer, S-nitrosocaptopril, which 
induces a significant increase in tumor pO2 from 20 to 60 min 
after its administration (69). Due to an acquisition time reduced 
to 1.5 min, Jordan and colleagues were able to monitor sponta-
neous oxygenation fluctuations in the range of 5–30 mmHg in 
transplantable mouse liver tumors and to identify hypoxia cycles 
in this model (70, 71). PFC can remain in the tumor and enables 
repeated measurements. The injection of perfluoro-15-Crown-
Ether in Shionogi tumors, a murine mammary carcinoma 
which has acquired a dependence on androgens, has shown 
that 19F-MRI is able to distinguish three hormone-dependent 
oxygenation statuses (72). Tumor tissue heterogeneity can be 
assessed by the diffusion-based multispectral technique in order 
to distinguish tumor necrosis from viable tumor tissue and to 
detect subcutaneous adipose tissue. In a recent study, Shi and col-
leagues monitored the tumor response to hyperoxic and hypoxic 
challenges by considering the tumor as a whole or by considering 
each tissue type separately. The pO2 increased significantly when 
the authors considered the tumor as a whole, and this response 
was enhanced further when they focused on the viable tumor 
tissue (73). However, in a study comparing 18F-PET imaging 
and 19F-MRI, it was shown that fluorine mapping with MRI was 
less sensitive to small pO2 changes (from 3 to 5 mmHg) in some 
tumors (35). Moreover, before performing 19F-MRI, the toxicity 
of the chosen PFC needs to be taken into account since it has been 
observed, for example, that the early toxicities (thrombosis and 
tissue necrosis) observed with HFB could be avoided by using 
15C5 (74). Despite this, approval is being awaited from the FDA 
for the investigation in a clinical trial of PFCs as a biomarker of 
tumor response to radiotherapy.

Dynamic Contrast-enhanced Magnetic 
Resonance imaging (DCe-MRi)
Dynamic contrast-enhanced MRI is a method widely used in 
preclinical and clinical research to assess information on tumor 
hemodynamics. A bolus of gadolinium-based contrast agent 
is injected, and its distribution within the tissue of interest is 
analyzed through signal enhancement, thereby providing infor-
mation on perfusion and permeability. This technique is regu-
larly combined with oximetric methods such as PET imaging, 
blood oxygen level-dependent (BOLD)-MRI, or EPR oximetry 
to assess tumor hemodynamic parameters and their impact 
on therapy (75–77). Two parameters are regularly assessed by 
DCE-MRI, using the Tofts model: ktrans, representing the volume 
transfer constant between blood plasma and extravascular 
extracellular space, and vp, defining the blood plasma volume 
per unit volume of tissue. Low-perfused tumor areas suffer from 
an insufficient supply of oxygen, thereby leading to hypoxia. It 
has therefore been suggested that DCE-MRI could be used as an 
indirect method to detect hypoxic areas in tumors. In a recent 
preclinical study by Øvrebø and colleagues, ktrans was found to be 
predictive of tumor response to radiotherapy: low ktrans was asso-
ciated with an increased radioresistance in hypoxic melanoma 
xenografts, suggesting that DCE-MRI is a biomarker of tumor 
radioresistance in hypoxic tumors (78). Further studies on two 
cervical cancer xenografts have confirmed those results, indicat-
ing that the radiotherapy outcome can be correlated with ktrans 
values measured before the treatment taking each tumor model 
separately (79). Furthermore, skewness in the distribution of the 
ktrans parameter was also correlated with poorer patient outcome, 
highlighting the heterogeneity of perfusion within these tumors 
(80). Conversely, a study on fibrosarcoma was not able to show 
any correlation between DCE-related parameters (ktrans, vp, Kep, 
% of perfused voxels) and the outcome of radiation therapy (81). 
With respect to validation of the technique with other oximetric 
methods, attempts have been made in preliminary clinical 
studies to assess correlations between the level of hypoxia and 
permeability, with mixed results, in head and neck cancer and 
gliomas using pimonidazole staining (an immunohistological 
staining aimed at detecting tumor hypoxia) and in cervical 
cancer using polarographic electrodes (82–84). Søvik and col-
leagues have also demonstrated that DCE-MRI could be used to 
monitor the changes in tumor oxygenation during the course of 
radiotherapy in order to adapt IMRT to changes in hypoxia dis-
tribution within the tumor after several doses of irradiation (85). 
The Brix model can also be used for the analysis of DCE-MRI 
images. Perfusion or permeability is then assessed by the param-
eter ABrix, also known to measure the extravascular extracellular 
space (86). In order to compare the Brix and Tofts models and 
their ability to predict the outcome of patients, Andersen and 
colleagues tested both models on patients with cervical cancers. 
They concluded that low values of ktrans and ABrix can be associ-
ated with poor outcome (87). A recent study also demonstrated 
that low ABrix could be correlated with an upregulation of genes 
involved in the response to hypoxia (88).

Nevertheless, numerous precautions have to be taken when 
interpreting DCE-MRI images in terms of oxygenation because 
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perfusion is not the only feature influencing pO2. Moreover, 
despite the establishment of relations between ktrans and oxygen 
tensions or immunohistochemical measurements in some stud-
ies, estimates of perfusion remain indirect estimates of hypoxia 
and, in some circumstances, do not relate to hypoxic status (89). 
It is also important to mention that the contrast agent distribution 
can also be altered by perfusion and extracellular volume, leading 
to misestimation of oxygenation in necrotic areas (85).

blood Oxygen Level-Dependent Magnetic 
Resonance imaging
Blood oxygen level-dependent MRI, or fMRI, uses endogenous 
contrast and is sensitive to the effective transversal relaxation 
rate of protons ( / )* *R T2 2=1 . This measurement is sensitive to the 
ratio of oxyhemoglobin and deoxyhemoglobin, the latter being a 
paramagnetic agent that shortens T2

*.
In preclinical studies, BOLD-MRI has proven its ability to 

monitor changes in oxygenation levels during hyperoxic chal-
lenges (90–92). Our group has compared the changes in BOLD 
signal following the administration of carbogen or isosorbide 
dinitrate and has observed that the magnitude of the changes is 
stronger during the carbogen challenge (affecting the hemoglobin 
saturation) than after the administration of the NO donor (93). 
The oxygenation concentration is not the only parameter that 
affects R2

* : changes in tumor blood flow, blood volume, blood 
pH, or metabolic status can also influence the R2

*  measurements 
(94, 95). Changes in R2

*  should therefore be carefully considered 
when they are treated as an indicator of changes in tumor oxy-
genation. Moreover, no correlation has been established between 
R2

* measurements and absolute values of pO2 (96). In comparisons 
with pimonidazole staining, both correlation and inverse cor-
relation have been observed in prostate and mammary tumors, 
respectively (97, 98). BOLD-MRI is therefore used to monitor 
tumor oxygenation changes rather than to map tumor hypoxia 
quantitatively. Spontaneous fluctuations have been successfully 
monitored by BOLD-MRI, which has led to the identification of 
several cycles of hypoxia, with periods ranging from 3 min to 1 h 
(99). Moreover, the tumor regions in which tumor oxygenation 
fluctuates have been related to areas with functional vasculature. 
The prognostic value of R2

* was investigated in a preclinical 
study. The authors subjected rats with GH3-prolactinomas and 
mice with RIF-1 fibrosarcomas to carbogen breathing before 
radiation therapy. The GH3 prolactinomas displayed large R2

* 
and a large response to the hyperoxic challenge (∆ R2

*), and this 
was predictive of a transient reduction in the tumor size after 
irradiation. However, the inhibition of tumor growth exhibited 
with the RIF-1 fibrosarcoma was smaller, and this was related 
to a low R2

*  at baseline and to a poor response to the hyperoxic 
challenge (100). Recently, our group observed that R2

*  was pre-
dictive of radiation therapy outcome in rat 9L-glioma tumors 
but not in rhabdomyosarcoma tumors (101). In a study by Kim 
and colleagues, the results from a small sample of cancer cervi-
cal patients suggested that the R2

*  values are predictive of the 
radiotherapeutic response (102).

It is important to remember that the BOLD signal is related 
to the amount of deoxyhemoglobin and therefore linked to 

the blood pO2 and blood saturation of oxygen (SO2). There is 
therefore a real interest in quantifying the BOLD signal (103). 
A technique known as multiparametric quantitative BOLD has 
been recently developed to achieve a quantitative mapping of 
tissue oxygenation. The method is based on the acquisition of 
several images, with standard sequences, aimed at measuring the 
blood volume fraction, field inhomogeneities (by mapping B0), 
and the tissue T2 before and after the administration of a contrast 
agent. These three values are then integrated in a model describ-
ing the T2

*  signal in order to calculate average oxygen saturation 
in each voxel (95). This method has been successfully applied 
to map tumor hypoxia in the brain in stroke or gliomas (104). 
This approach allows a quantitative measurement of the blood 
oxygen saturation and represents a major improvement in the use 
of BOLD imaging to map tumor hypoxia and to monitor tumor 
oxygenation changes.

1H Relaxation imaging
Oxygen is a paramagnetic agent that shortens the longitudinal 
relaxation time (T1) of surrounding protons. Consequently, T1 
mapping appears as a possibility for mapping tumor hypoxia. 
This method does not require any contrast agent and is widely 
available in medical imaging centers. Moreover, a correlation 
can be established between pO2 values and relaxation rates, as 
was done, for example, between relaxation rates and arterial 
blood oxygen pressure in a pig (105), revealing the quantitative 
aspect of such measurements. However, since T1 relaxation is 
also influenced by temperature, tissue of interest, blood flow, and 
basal blood oxygen saturation, a calibration between T1 values 
and pO2 cannot be established so easily. Nevertheless, assessing T1 
measurements has been a useful method for monitoring changes 
in tissue oxygenation.

In a recent study by Muir and colleagues reporting the use 
of a hyperbaric chamber for rodents, T1 values measured in the 
brain were found to be significantly reduced (with an increase 
in related R1 values) when successive switches were made from 
normobaric air to hyperbaric air and then to hyperbaric oxygen 
(106). On the basis of a comparison between the changes in T1 
values in liver, kidney, and muscle of healthy rats obtained during 
transitions from air to pure oxygen, to carbogen (10% CO2 and 
90% O2), or to a mixture of ambient air with 10% CO2, it was 
concluded that these measurements were sensitive to oxygen dis-
solved in tissues when there was no concomitant change in blood 
flow (107). However, in the same study, the authors highlighted 
the lack of sensitivity of T1 measurements to a decrease in oxy-
genation during a switch from pure oxygen to carbogen or from 
air to a mixture of air and 10% CO2. The explanation may lie in 
the vasodilatation induced by CO2, which offsets the decrease in 
tissue oxygenation, resulting in unexpected positive R1 changes 
(107). However, this issue is controversial: in a preclinical study 
aimed at evaluating brain oxygenation during a hyperoxic chal-
lenge, the R1 (R1 = 1/T1) values were similarly increased in the 
cerebral cortex and in the pituitary gland during both carbogen 
and pure oxygen breathing, despite a decrease in brain perfusion 
induced by pure oxygen breathing (indeed, in the absence of CO2, 
vasoconstriction occurs) (108).
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T1 measurements have been assessed together with T2
*  for 

monitoring tumor oxygenation in murine prolactinoma models 
and prostate tumor xenografts undergoing a hyperoxic challenge. 
The changes in relaxation rates were found to be related to the 
basal oxygenation status: the most hypoxic tumors exhibited 
significantly reduced R1 values and significantly higher R2

*  values 
( / )* *R T2 2=1  (109).

T1 measurements have recently been used in conjunction 
with perfusion MRI to quantify the hypoxic fraction in multiple 
models with differing hypoxic and vascular phenotypes (110).

In a preliminary human study on healthy volunteers, this 
technique was successfully used to monitor the increase in 
oxygenation in normal myocardium, spleen, and arterial blood. 
However, there was no significant change observed in liver, skel-
etal muscle, or subcutaneous fat (111). These discrepancies in the 
results were attributed to a lack of sensitivity, to the uncontrolled 
motion of organs, and to differences in blood flow, blood volume, 
and regional oxygen consumption. Two years later, a study by 
Noseworthy and colleagues also failed to monitor the oxy-
genation in skeletal muscles subjected to a hyperoxic challenge 
involving pure oxygen with T1 measurement despite a significant 
change in T2 (112). Nevertheless, further work demonstrated the 
effect of oxygen in shortening the longitudinal relaxation time in 
healthy volunteers’ muscles, spleen, renal cortex, subcutaneous 
fat, placenta, and liver (113–116). Furthermore, in another study 
by O’Connor and colleagues, the authors observed significant dif-
ferences of response induced by either pure oxygen or carbogen 
depending on the tissue of interest: carbogen induced a lower 
T1-shortening effect than pure oxygen in the spleen, whereas the 
opposite phenomenon was observed in the liver. Ten patients with 
abdominal tumors were then subjected to pure oxygen breathing. 
A significant increase in R1 values was observed in eight of these 
patients with ovarian, cervical, or gastrointestinal malignancies 
(117). The effect of hyperoxia has also been investigated in the 
brain using a dynamic T1-weighted sequence called tissue oxygen 
level dependent (TOLD) (118). This method allows reduced 
acquisition times and is more suited for a dynamic assessment 
of changes induced by a hyperoxic challenge. Haddock and col-
leagues (119) monitored the oxygenation of brain tissue during 
two protocols: the first was composed of a twice-repeated switch 
from ambient air to pure oxygen with two 2-min intervals, while 
the second began with a normoxic phase followed by a switch to 
pure oxygen breathing during 7 min followed by a final breath-
ing of air. Due to the T1 effect, they could observe changes in 
signal intensity whose magnitude was related to the changes in 
brain oxygenation monitored with BOLD-MRI. Furthermore, 
TOLD measurements have been demonstrated to be sensitive to 
dynamic hyperoxic challenges (120) and seem to be predictive 
of the radiotherapy outcome (92). Prostate tumors that are well 
reoxygenated during pure oxygen breathing before radiotherapy 
display a significantly larger regrowth delay than low respond-
ers to hyperoxia (92). Combined BOLD and TOLD contrasts 
were also recently assessed in Dunning rat prostate tumors 
and were shown to be useful prognostic factors for predicting 
tumor response to hypofractionation (121). However, these 
results remain preliminary and need to be further investigated. 

The study by Burrell and colleagues highlights the complemen-
tary character of concomitant T1 and T2

*  measurements: although 
the mean response was an increase in R1 values and a decrease 
in R2

*  values in both models, they observed that the magnitude 
of R1 and R2

*  changes was dependent on the basal oxygenation 
status. The explanation may be linked to hemoglobin satura-
tion: in well-oxygenated tumors, the increase in oxygen supply 
will raise the amount of dissolved oxygen rather than increase 
the already well-saturated hemoglobin. This results in higher 
amplitude changes of positive ΔR1 rather than of negative ∆ R2

* 
(109). It is also important to remember that the T2

*  measurement 
is influenced by the hemoglobin and deoxyhemoglobin ratio and 
is therefore sensitive to vascular oxygenation, whereas the T1 
measurement is rather sensitive to oxygen dissolved in tissues. 
As there is a real interest in combining the measurement of R1 and 
R2

*, Ding and colleagues have recently proposed a new sequence 
enabling simultaneous acquisition of T2

*  and T1 measurement. 
With this new method, they monitored the dynamic changes in 
oxygenation of abdominal organs (spleen, medulla, and renal 
cortex) (118).

From the foregoing, we can conclude that there is real value in 
measuring the 1H relaxation time to obtain information on tissue 
oxygenation non-invasively. By comparing the sensitivity of 1H-
MRI oximetry with 19F-MRI using perfluorocarbons, Tadamura 
and colleagues observed that: “T1 shortening effect with oxygena-
tion observed using 19F MR system with PFCs is much greater than 
that observed with 1H MRI because of large oxygen solubility of 
PFC compared with that of aqueous media. Therefore, the PFC 
method is more sensitive to tissue oxygenation state.” (111). In all 
the techniques described above, the signal was mainly influenced 
by protons of the water molecules. As oxygen solubility is higher 
in lipids than in water, focusing on the relaxation of protons 
belonging to lipid molecules would improve the sensitivity of 
the techniques described above. Consequently, a new technique 
called mapping of oxygen by imaging lipids relaxation enhance-
ment (MOBILE) aimed at selectively measuring the T1 of the lipid 
component has been proposed (122). This method has demon-
strated its ability to distinguish the oxygenation levels in tumor 
tissue homogenates submitted to different oxygen concentrations. 
Moreover, the MOBILE technique can be used to map local pO2 in 
several tissues such as liver, muscles, brain (infarcted or not), and 
mammary tumors. Both positive and negative changes in tumor 
oxygenation can be monitored with the MOBILE technique. Its 
quantitative aspect has also been demonstrated on mammary 
tumor models presenting high lipid content (123). However, the 
method was not applicable to tumors with low lipid content. An 
alternative method based on the deconvolution of global T1 in fat 
and water components was recently developed. However, a quan-
titative aspect could not be demonstrated in rhabdomyosarcomas 
and glioma models, and lipids T1 and global T1 turned out to be 
less predictive of the outcome of radiation therapy than R2

*  (101). 
Considering the clinical application of MOBILE, the method has 
demonstrated its ability to identify hypoxia in stroke areas (124). 
The method is currently being investigated in human gliomas, 
with a pilot study showing that global R1 and lipid R1 values are 
significantly lower in tumors than in the “normal appearing white 
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matter” of patients or the healthy brains of volunteers and that 
lipid R1 measurements enable discrimination between tumor 
areas and peritumoral edema (125).

Using the exogenous source of contrast hexamethyldisiloxane 
(HMDSO), R. P. Mason’s group identified a source of oxygen-
sensitive contrast, called “proton imaging of siloxanes to map 
tissue oxygenation levels,” which was validated using hyperoxic 
breathing challenge in Dunning prostate R3327 MAT-Lu tumor-
implanted rats but was not assessed as a predictive marker of the 
outcome of radiation therapy (126).

eLeCTRON PARAMAGNeTiC 
ReSONANCe

Quantitative assessments of tumor partial pressure of oxygen 
can be obtained with EPR. This magnetic resonance technique 
is sensitive to paramagnetic species (molecules presenting 
unpaired electrons). Because of the insufficient amount of 
radical species in viable tissues, EPR oximetry requires the 
injection of a paramagnetic probe into the site of interest. 
Particulate probes can be injected in the tumor once and used 
for repeated measurements during several months, with a high 
sensitivity (changes lower than 0.2 mmHg can be detected with 
this method) (8). The interactions between the two unpaired 
electrons of oxygen and the paramagnetic probe will lead to a 
change in T2 that can be observed by a change in the linewidth 
of the EPR spectrum acquired. The measurements themselves 
are non-invasive and enable the real-time monitoring of oxy-
genation changes over several hours or more. However, these 
measurements are restricted to surface tissues: in  vivo EPR is 
performed with “L-band” spectrometers, operating at 1  GHz 
or less, allowing the penetration of microwaves up to a 10-mm 
maximum depth into the tissue (127). Although EPR spectrom-
etry provides no anatomical information on tumor hypoxia, it 
has been successfully used in several tumor models to monitor 
changes in oxygenation levels induced by an increase in oxygen 
delivery (128–136), or by an inhibition of tumor consumption 
(76, 81, 137–143), or both (69, 144–149). As a quantitative 
technique, EPR oximetry is also predictive of tumor response to 
radiotherapy and can also be applied to monitor tumor reoxy-
genation after the administration of a radiosensitizer in order to 
determine the best therapeutic window in which radiotherapy 
should be performed (81). In 2010, Khan et  al. showed that 
carbogen-induced reoxygenation of F98 glioma, assessed using 
EPR oximetry, significantly increased the tumor growth delay 
after radiation therapy (150). Also, in a study on C6 glioma, a 
first irradiation was applied and the changes in tumor oxygena-
tion were assessed by EPR oximetry. Some tumors grew up to 
150% of their basal oxygenation level. After a second irradiation, 
the well-reoxygenated tumors had a significant tumor growth 
delay compared to tumors whose response to the first irradia-
tion was less than 50% from the baseline. In the same study, a 
second tumor model (9L glioma) did not exhibit an increase 
in tumor oxygenation after the first irradiation and remained 
radioresistant (151). Finally, in a study assessing the effect of 
benzyl nicotinate, EPR oximetry provided dynamic information 

on the changes in tumor pO2, which could be used to identify 
responders and non-responders and schedule therapy during 
the experiments (152). For the moment, the clinical application 
of EPR spectroscopy is just starting and restricted to three cent-
ers owning prototypes of human EPR equipment (153).

Electron paramagnetic resonance imaging is more challeng-
ing. Because of the fast relaxation of paramagnetic species (a 
matter of nanoseconds), most of the EPR experiments use EPR 
in a “Continuous Wave” mode: unlike in MRI measurements, the 
sample is submitted to a constant electromagnetic radiation and 
the measurement is performed by sweeping the magnetic field 
in order to reach the resonance condition. This increases the 
acquisition time. However, EPRI has demonstrated its ability to 
image oxygenation levels quantitatively in vitro and to map tumor 
hypoxia in preclinical models using a triarylmethyl probe (154, 
155). A few researchers have developed home-made “Pulsed” 
EPR systems that work in the same way as MRI scanners available 
nowadays.

This makes shorter acquisition times possible and allows 
the repeated mapping of tumor hypoxia during spontaneous 
fluctuations or during hyperoxic challenges (156). In order to 
correlate the pO2 maps with anatomical information and perfu-
sion measurements, researchers have developed a coil enabling 
EPR and MR imaging (157). By imaging tumor hypoxia with 
pulsed EPRI, Matsumoto and colleagues were able to follow 
tumor reoxygenation after the administration of sunitinib (a 
multi-tyrosine kinase inhibitor) after 4 days of treatment. They 
combined this chemotherapy with irradiation and concluded 
that the tumors subjected to a combination of these two thera-
pies had a longer growth delay than tumors in mice receiving 
one of the therapies separately (158). The EPR measurements are 
mainly based on the transversal relaxation rate of the spin probe, 
but they can also be influenced by the probe concentration. A 
new method was successfully developed to address this issue: 
Epel and colleagues recently published a paper in which they 
measured the spin probe longitudinal relaxation rate with pulsed 
EPRI and a triarylmethyl probe which improves pO2 images by 
virtually eliminating the sensitivity to triarylmethyl concentra-
tion (159).

Finally, progress has been made in improving the sensitivity 
of MRI by exploiting the paramagnetic resonance: the use of 
Overhauser-enhanced MRI (OMRI) can increase the sensitivity 
of 1H measurement. OMRI is based on a double resonance princi-
ple: a paramagnetic agent (an EPR sensor) is first hyperpolarized 
and then a transfer of electron polarization occurs toward the 
surrounding water’s protons. As a result, the image intensity is 
enhanced. For oximetric measurements, Oxo63 (a soluble para-
magnetic sensor also used in EPRI) can be used and the signal 
enhancement can be interpreted in terms of oxygenation. The 
Overhauser enhancement corresponds to the amplitude of the 
enhanced signal; it depends on the linewidth of the paramagnetic 
agent, which in turn depends on the oxygen concentration (160). 
Consequently, OMRI is a quantitative method that is able to 
monitor tumor oxygenation: it enables the detection of tumor 
reoxygenation during a carbogen challenge, and the pO2 values 
assessed at baseline as well as during the carbogen breathing are 
in agreement with pO2 obtained with Eppendorf electrodes in the 
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same tumors (161). More recently, Oxo63 has been proposed as 
a marker of both hypoxia and permeability: since the molecular 
mass of Oxo63 is three times higher than that of gadolinium 
complexes (usually used as perfusion markers), its blood-to-
tissue transfer will reflect permeability rather than perfusion. 
By analyzing the dynamic enhancement of 1H-MRI after Oxo63 
administration to squamous cell carcinoma tumor-bearing 
mice, the authors concomitantly assessed tumor perfusion (the 
image’s increased contrast being proportional to the contrast 
agent concentration) and oxygenation (the image’s enhancement 
being inversely correlated with the oxygen concentration) (162). 
Further developments need to be achieved before this technique 
can be implemented in a clinical setting. In addition, the current 
research involving OMRI is restricted to a small number of labo-
ratories, since the equipment is not common. For the moment, 
the major limitation is the undesired heating of the sample due 
to the saturation pulse.

CONCLUSiON

Several techniques are available to estimate tumor hypoxia. The 
pO2 measurements assessed with polarographic electrodes have 
been correlated with treatment outcome in both preclinical 
and clinical studies. However, this invasive technique is unable 
to provide maps of tumor hypoxia to plan radiotherapy. PET 
imaging is the most widespread method used in preclinical and 

clinical studies. It is involved in the delineation of the targeted 
volumes for radiotherapy planning. However, this method 
requires the injection of a radiotracer, and the imaging can only 
be achieved after a delay to allow tracer accumulation in hypoxic 
areas. Pulsed EPR imaging is of great interest in assessing tumor 
hypoxia in preclinical models. However, the instrumentation for 
pulsed EPR in preclinical conditions is restricted to a few imaging 
laboratories and the lack of clinical EPR imagers as well as the 
injection of an EPR sensor limit its applications. MR methods 
such as T2

*
 measurements and T1 measurement are promising, 

since they use oxygen as an endogenous contrast agent and can 
be easily implemented on all MRI scanners. Nevertheless, further 
studies are needed to investigate whether the relaxation times can 
be established as biomarkers of hypoxia and, more importantly, as 
predictive markers of radiotherapy outcome.
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