
1.  Introduction
Miocene climate was generally warm, and the Mid Miocene Climatic Optimum (MMCO; ∼17–15 Ma) was as-
sociated with a global average surface temperature around 5°C warmer than the pre-industrial (Burls et al., 2021; 
Goldner et al., 2014; Zachos et al., 2008). This resulted from a stronger greenhouse effect, with atmospheric 
CO2 levels between 600 and 800 ppm (Rae et al., 2021). Projections of anthropogenic climate change predict 
that atmospheric CO2 (pCO2) will reach levels unseen since the MMCO (c. 600 ppm) by 2100 under ‘business 
as usual’ conditions (IPCC, 2014; Rae et al., 2021). The fact that Earth's continental configuration was similar to 
modern-day, and that biota were close to modern (Steinthorsdottir et al., 2020), means the MMCO may be a good 
proxy for investigating future climatic change on Earth.

A warmer Miocene world is likely the result of higher rates of CO2 input from arcs and rifts (Brune et al., 2017; 
Domeier & Torsvik, 2019; Merdith et al., 2019), combined with a less ‘weatherable’ continental surface (Caves 
Rugenstein et al., 2019; Raymo & Ruddiman, 1992), while the MMCO onset has been linked to the emplacement 
of the Columbia River Basalt Group (CRBG) in the northwestern United States (Barry et al., 2013; Reidel, 2015). 
The CRBG represents the effusive phase of a Large Igneous Province (LIP) which erupted between 17 and 6 Ma 
(Barry et al., 2013; Kasbohm et al., 2021; Kasbohm & Schoene, 2018). Recent research indicates ∼95% of the 
CRBG was emplaced in a 750 kyr period from 16.7 Ma onwards (Kasbohm & Schoene, 2018), supporting the 
theory that volcanic greenhouse gas release may have led to the MMCO (Armstrong McKay et al., 2014; Babila 
& Foster, 2021).

The Mid-Miocene Climate Transition (MMCT) which follows the MMCO is less well understood, with nu-
merous mechanisms potentially having played a role in the rapid cooling at ∼13.9 Ma (Scotese et  al.,  2021; 
Westerhold et al., 2020). Research suggests that the MMCT is linked primarily to changes in ocean circulation, 
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growth of Antarctic ice sheets (Levy et al., 2016) and pCO2 decrease (Rae et al., 2021). High rates of organic 
carbon (Corg) burial during the MMCO are more likely a response to the warming and sea level rise rather than a 
factor in the subsequent cooling episode (Sosdian et al., 2020). Another explanation is the deposition of calcium 
sulphate evaporites, a process which increases ocean alkalinity and CO2 uptake (Shields & Mills, 2021). This is 
supported by evidence for evaporite deposition across the Mediterranean during the Mid-Miocene (De Leeuw 
et al., 2010). One unexplored possibility is that volcanic eruptions themselves drove the cooling at the end of the 
MMCO. It is known basaltic terranes, such as the CRBG, are highly erodible and reactive, thus may increase the 
global rate of silicate weathering and CO2 draw-down (Dessert et al., 2001, 2003). These terranes may also supply 
large amounts of nutrients to the oceans, where in the right conditions they stimulate productivity and sequester 
carbon via the biological pump (Dessert et al., 2003; Li et al., 2016). Furthermore, explosive volcanic eruptions, 
and deposition of volcanic ash in the oceans, are known to lead to enhanced drawdown and burial of marine Corg 
(Longman et al., 2019; Longman, Gernon, et al., 2021), potentially providing a separate sink for CO2.

In this study, we use the new SCION (Spatial Continuous Integration) Earth Evolution model (Mills et al., 2021) 
to investigate changes to the global carbon and nutrient cycles throughout the Miocene, with a particular focus 
on the MMCO and MMCT. SCION uses a 3-dimensional interpolation scheme to link physical climate model 
outputs (from the Fast Ocean Atmosphere Model – FOAM; Jacob, 1997) to long-term biogeochemical cycles. 
The model allows the investigation of changes to surface processes like silicate weathering in 2D over geological 
time under a realistic steady-state climate dynamically linked to the model carbon cycle (Mills et al., 2021). SCI-
ON is a ‘forwards’ model which makes predictions for climate and global elemental cycles using only tectonic 
and evolutionary boundary conditions, and relies on a large number of General Circulation Model (GCM) runs 
performed at discrete points in geological time and for a range of CO2 levels (Donnadieu et al., 2006; Goddéris 
et al., 2014). Advances in modeling have been matched by recent advances in compilations of palaeo-proxy data 
(Rae et al., 2021; Scotese et al., 2021; Westerhold et al., 2020), and so comparisons between the two approaches 
should be possible at levels of accuracy previously unobtainable, helping us to assess the model predictions.

2.  Materials and Methods
2.1.  Model Setup and Scenarios

We use the SCION model version 1.1 for this work, which contains an important update to the first model version 
(1.0: Mills et al., 2021). In the original model, the Cenozoic climate was represented by GCM runs at 52, 30 and 
0 Ma. In this version, we add GCM runs for 15 Ma, which were part of the set used by Goddéris et al. (2014) but 
had not been converted for the SCION framework due to the whole-Phanerozoic focus of the first SCION paper 
and some minor issues in scaling the digital elevation model to the same resolution as the climate outputs, which 
have now been resolved. The model is run forwards in time for the whole Phanerozoic, as in Mills et al. (2021), 
but we only show the Oligocene-to-present estimates here. We concentrate on the model predictions for atmos-
pheric CO2, global average surface temperature and whole-ocean δ13C of DIC, and use 1000-member ensembles 
to test the variation in key parameters as in Mills et al. (2021). An extended description of the model may be 
found in Text S1 of Supporting Information S1. The full model flux data are included in Figure S1 of Supporting 
Information S1 and the model code can be downloaded at https://github.com/bjwmills/SCION.

2.2.  Model Scenarios

Figure 1 shows the evolving continental configuration, including the location of the CRBG, alongside the modi-
fied chemical inputs assumed throughout the model runs. The baseline model assumes a decreasing rate of CO2 
input throughout the last 30 million years, based on the declining material subduction rate (Domeier & Tors-
vik, 2019) and the reduction in the extent of continental arcs and rifts (Brune et al., 2017; Mills et al., 2017). The 
uncertainty range is described in Mills et al. (2021) and represents the boundaries of the estimates based on arc 
length alone versus those based on material subduction flux alone.

To estimate CRBG degassing flux (orange in Figure 1d) we use the timeframe of 16.7  to 15.9 Ma, and derive a 
maximum CO2 flux estimate in a manner similar to Armstrong McKay et al. (2014). This method compares the 
size of the CRBG and that of the Siberian traps, probably the most well-studied LIP in terms of its ‘cryptic de-
gassing’ budget – carbon degassed from the surrounding sediments rather than the basalt itself, which forms the 
major part of the CO2 budget (perhaps 90%; Armstrong McKay et al., 2014; Svensen et al., 2009). A conservative 
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estimate places the Siberian traps volume at roughly 1 × 106 km3 (Ivanov et al., 2013), five times the volume of 
the CRBG (2 × 105 km3; Reidel et al., 2013), meaning the contacted surface area of surrounding sediment was 
around three times that of the CRBG (assuming spherical shape). Thus, an assumed cryptic degassing flux of 
7.2 × 1012 mol C yr−1 from the Siberian traps (Dal Corso et al., 2020; Svensen et al., 2009) would imply a flux 
of 2.38 × 1012 mol C yr−1 from the CRBG, for a total maximum possible CO2 degassing of 2.64 × 1012 mol yr−1, 
assuming the CRBG was emplaced into relatively carbon-rich surroundings (Armstrong McKay et al., 2014).

We include the emplacement of the CRBG as a highly weatherable terrane covering the entire gridbox around lat-
itude 47°N, 60°W (Figure 1b). The gridbox area is 280,000 km2, similar to the estimated initial area of the CRBG 
(Ernst et al., 2021; Mills et al., 2014; Reidel et al., 2013). The CRBG is included in the land map for 15 Ma but 
not in the present-day simulation, assuming that it’s enhanced weathering effect has waned sufficiently (Vance 
et al., 2009). The weathering effects of the LIP are assumed to begin at 16.7 Ma and are linearly interpolated 
out of the land map between 15 and 0 Ma. We calculate the weathering effects in a similar manner to previous 
research (Goddéris et al., 2017; Lefebvre et al., 2013). Total present-day mafic rock area is around 6.8 million 
square kilometers (Mkm2), contributing ∼35% of the silicate weathering flux (Dessert et al., 2003). The total 
weatherable land area which may contain silicates (i.e., ignoring carbonates and evaporites) is about 120 Mkm2 
(Hartmann et al., 2014). So, if mafic lithologies represent around ∼5% of weatherable silicates, we determine 

Figure 1.  Summary of topographical change for the three GCM model runs used in this study: 30 Ma (a), 15 Ma (b) and 0 Ma (c). Green and brown grid cells indicate 
topography below and above 1 km respectively. Panel B shows the location of the Columbia River Basalt Group (CRBG). D displays the long-term CO2 degassing rate 
(orange line) and the two proposed forcings tested by this work, the input of excess CO2 from the emplacement of the CRBG, and phosphorous input to the oceans from 
the deposition of tephra in central Europe.
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them to be ∼7 times more weatherable than the homogeneous silicates which comprise the remainder of the 
model land surface. Thus, we multiply the silicate weathering flux for the CRBG gridcell by a factor 7. Sensitivity 
tests are detailed in Table S1 of Supporting Information S1.

To consider nutrient supply from the major silicic volcanic episodes in central Europe during the Mid-Miocene 
(Lukács et al., 2018), we use an ash depletion model adapted from Lee et al.  (2018). This approach uses the 
GeoROC database to estimate the initial composition of erupted volcanic material, before comparing it to meas-
ured compositions of altered tephra to estimate the amount of phosphorous loss (Longman, Mills, et al., 2021). 
This is then used to estimate productivity increases associated with the input of P by including it as an additional 
P flux to the model ocean. There are two clear pulses of volcanic input at 14.36  and 14.88 Ma, associated with 
the eruption of the Harsany and Demjen tephras (Lukács et al., 2018). To estimate the volume of these eruptions 
and the amount of P supplied, we use Monte Carlo simulations considering errors on a range of variables. For 
the two relevant tephras, we estimate their volume as a proportion of the total 4,000 km3 erupted across the Mid 
Miocene, using their relative extent (compared to the total extent of all tephras) as observed in outcrops (Lukács 
et al., 2018). For Monte Carlo simulations, we estimate error on these values to be 20%. We then convert these 
values to P supply using ash density, P content and P depletion factors (and associated errors) from Longman, 
Mills, et al. (2021). Finally we assume 90% of the erupted tephra was deposited in the ocean, based on paleogeo-
graphic reconstructions (Lukács et al., 2018). These formations were deposited in what was the Pannonian Sea, 
a back-arc basin which persisted in central Europe until the Pliocene Epoch (Balázs et al., 2016). All variables 
and their associated errors used in the Monte Carlo modeling may be found in Table S2 of Supporting Informa-
tion S1. For simplicity we model these eruptions as a single Gaussian input curve which begins at the timing 
of the Harsany tephra and peaks at the timing of the Demjen tephra, as the model is not designed to represent 
timescales of less than 100 kyrs.

3.  Results and Discussion
The SCION model baseline run (Figures  2a–2c; no LIP and no tephra) simulates the long-term temperature 
decline of the Miocene well, but overestimates CO2 before ∼10 Ma (Figure 2b). This is likely due to the low 
CO2 climate sensitivity of the FOAM climate model (Donnadieu et al., 2006; Goddéris et al., 2014), meaning 
relatively high CO2 levels are required to raise the surface temperature to a point of carbon cycle balance (Mills 
et al., 2021). Climate and carbon cycle balance at 15 Ma has previously been simulated in the GEOCLIM model 
using the same climate model runs that we use here (Lefebvre et al., 2013). The previous investigation used a 
present-day CO2 degassing rate rather than an elevated rate of degassing, resulting in lower steady state CO2 
concentrations than the current model – ∼500 ppm. Here, the increase over preindustrial levels was due partly to 
the positioning of weatherable basaltic terranes in arid areas, not considered in the present work. Returning to the 
SCION predictions, a clear mismatch between the baseline output and proxy data is visible during the MMCO 
(∼17–14 Ma) and the following MMCT (13.9 –12 Ma) where the model does not capture temperature, CO2 and 
the carbon isotope composition change associated with climatic variability (Figure 2).

The addition of degassing from the emplacement of the CRBG improves this mismatch considerably across the 
MMCO, especially regarding global temperature change (Figures 2d–2f). Previous modeling used a smaller CO2 
input, even when a cryptic element was considered, insufficient to force the MMCO in its entirety (Armstrong 
McKay et al., 2014). The difference here is that our calculations are based on new chronological constraints indi-
cating the majority of CRBG emplacement in as little as 750 kyr (Kasbohm & Schoene, 2018), and our method 
of comparison to the Siberian traps considers the difference in contacted sediment surface area directly. The in-
jection of CO2 associated with this event is sufficient to drive the MMCO inception, and constraining the majority 
of CO2 degassing to a short period after 16.7 Ma places the CRBG emplacement at the same time as the onset of 
the MMCO (Kasbohm & Schoene, 2018). Such a finding supports previous assertions of a causative link between 
Mid Miocene volcanism and climate change (Hodell & Woodruff, 1994; Kasbohm & Schoene, 2018; Kürschner 
et al., 2008; Steinthorsdottir et al., 2021).

The model estimate of global temperature increase at the MMCO onset is ∼1°C, lower than some proxy recon-
structions (e.g., 2.3°C rise; Scotese et al., 2021). However, this is well within proxy reconstruction variability 
and is also somewhat affected by a low climate sensitivity in FOAM compared to more complex modern climate 
models (e.g., Zhu et al., 2019). It is possible that other greenhouse gases were also released as part of the CRBG 
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Figure 2.  Model outputs of global average surface temperature (GAST), atmospheric CO2 and carbonate δ13C, comparing various SCION runs through the Miocene. 
(a–c) display the baseline SCION run, with no additional forcings. (d–f) show the baseline with additional LIP CO2 degassing. (g–i) show baseline with additional LIP 
CO2 degassing and basaltic terrane weathering. (j–l) show baseline with additional LIP CO2 degassing, basaltic terrane weathering and phosphorous supply from tephra 
input. The surface temperature approximation is calculated from the oxygen isotope data set of Westerhold et al. (2020), under the temperature conversion of Hansen 
et al. (2013). CO2 proxy data is from boron isotope measurements (indicative of pH) from Rae et al. (2021). Carbon isotope data is from Westerhold et al. (2020).
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emplacement, with evidence for hydrothermal alteration of organic-rich sediments and associated CH4 release 
(Bindeman et  al.,  2020), potentially enhancing the greenhouse effect. Comparison of the model output with 
reconstructions of CO2 further supports an assertion of CRBG degassing as a primary driver of Mid Miocene 
climatic change (Figure 2), with simulated CO2 of ∼1,200 ppm at the MMCO peak in line with previous recon-
structions (Rae et al., 2021), but above a number of previous estimates (e.g., Steinthorsdottir et al., 2020, 2021).

The spatial pattern of modeled surface air temperatures at 15 Ma (Figure 3a) shows general agreement with a data 
set of MMCO proxy reconstructions of temperature (Goldner et al., 2014). The largest offsets between model and 
proxy data are in polar regions, where the model simulates anomalously low temperatures (Figure 3a). This is a 
common issue when modeling warm periods of the Earth history such as the Eocene and the Pliocene (Haywood 

Figure 3.  Gridded map outputs for the complete SCION model scenario shown in Figures 2j–2l at 15 Ma. Displayed here are 
surface air temperature (a), continental runoff (b) and silicate weathering rates (c). Panel A includes a comparison of model 
surface air temperature at 15 Ma with proxy reconstructions of mean annual temperature (filled circles; Goldner et al., 2014), 
with map colors the same as the individual proxy reconstructions. All panels show the location of the Columbia River basalt 
using a dashed line.
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et al., 2020; Huber & Caballero, 2011), and it remains a challenge to successfully model the Miocene polar re-
gions with fully coupled ocean-atmosphere models (Burls et al., 2021).

We assume a value of zero for the δ13C composition of the CRBG-degassed CO2. While mantle-derived carbon 
would be expected to have a negative fractionation compared to the PDB standard, most of the degassed carbon 
is assumed to have come from sediments with varied fractionations. The SCION model has an average sediment 
δ13C value of zero, used here in the absence of more detailed constraints. It is possible that Miocene volcanic 
carbon contained more positive δ13C than usual, although there is little experimental evidence of such δ13C values 
in mantle carbon (Deines, 2002). Under the current scenario, the model produces a small positive δ13C excursion 
during the CRBG degassing due to elevated temperature, weathering, and productivity. This suggests the hypoth-
esis of Sosdian et al. (2020) may be correct; high atmospheric CO2 across the MMCO led to a positive shift in the 
fractionation factor associated with photosynthesis, offsetting any negative mantle δ13C emissions (Armstrong 
McKay et al., 2014; Sosdian et al., 2020). This additional factor is not considered in the model, but the error win-
dow on δ13C shown encompasses likely changes due to photosynthetic fractionation (Mills et al., 2021).

By also modeling enhanced silicate weathering from the CRBG, we consider the impact of LIP emplacement ho-
listically across the Mid Miocene (Figures 2g–2i). Basaltic terranes such as the CRBG are highly erodible and the 
products which enter the oceans contain abundant silicate cations and are nutrient-rich (Dessert et al., 2001, 2003; 
Gaillardet et al., 1999; Hartmann et al., 2009; Li et al., 2016). As such, it has been suggested that as well as in-
creasing silicate weathering rates, these nutrients may enhance productivity, and raise the levels of marine organ-
ic carbon (Corg) burial, a process which removes CO2 from the ocean-atmosphere system and leads to cooling on 
long timescales (Berner et al., 1983; Li et al., 2016; Li & Elderfield, 2013).

The inclusion of CRBG weathering in the SCION model has little impact on the model results (Figures 2g–2i). 
This is because although the terrain is assumed to contribute seven times more silicate weathering (and P deliv-
ery) than the rest of the model homogeneous lithology, it still only represents a small fraction of the land surface 
and is emplaced in an area of relatively low temperature in the high latitudes. The position of the CRBG in the 
model is in an area where temperature is well-predicted (Figure 3a), and runoff rates are reasonably high (Fig-
ure 3b). Accordingly, the weathering rate of the CRBG is estimated to be more than two times higher than any 
local gridcell. Despite this clear contribution to high-latitude weathering, its overall weathering contribution is 
similar to a single equatorial gridcell.

It has been proposed that MMCO length was extended by a delayed silicate weathering feedback (Babila & 
Foster, 2021), but our model results suggest the warm interval length is consistent with the single injection of 
mantle CO2, with no clear requirement for a delay in the onset of CRBG weathering to reproduce proxy data (Fig-
ure 2). Additionally, the scale of sequestration associated with silicate weathering of the CRBG does not appear 
to be sufficient to drive the transition to cooler climate after ∼13.9 Ma, the end of the MMCO (Steinthorsdottir 
et al., 2020), with proxy evidence suggesting a much more rapid shift to cooler temperatures than the SCION 
reconstruction (Figure 2g).

We now consider other potential controls on Miocene cooling. In central Europe, extremely large tephra depos-
its (∼4,000 km3 tephra per eruption) are preserved (Lukács et al., 2018). Since these primarily erupted into the 
Paratethys Ocean, and as the alteration of tephra is known to release nutrients (Browning et al., 2015; Frogner 
et al., 2001; Jones & Gislason, 2008; Longman et al., 2019), we consider these as a potential source of bioavaila-
ble nutrients to the ocean system. Dates for these eruptions indicate two pulses, the first at 18.2–16.8 Ma, and the 
second between 14.9 and 14.4 Ma (Lukács et al., 2018), with evidence of ashfall from southern Germany (Arp 
et al., 2021) to western Russia (Danišík et al., 2021) indicative of the scale of the events. Using a separate mod-
eling approach (see Methods), we are able to estimate the scale of P supply from these eruptions (Figure 1). The 
input of additional P to the ocean plays very little role in global-scale climate change in our model (Figures 2j–2l). 
This contrasts with a separate study, which linked the Ordovician glaciations to tephra-derived P supply (Long-
man, Mills, et al., 2021), indicating the volcanic episodes observed in central Europe across the mid-Miocene 
were not large enough to play a major role in global climate cycles – the P supply we calculate here is more than 
an order of magnitude smaller than the Ordovician events.

Another mechanism which may have enhanced the cooling feedback following the CRBG emplacement is the rel-
atively high sea levels during the MMCO, a result of Antarctic ice shelf loss (Gasson et al., 2016; Lear et al., 2010; 
Steinthorsdottir et al., 2020). Higher sea levels would have flooded large areas of shallow continents, and resulted 
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in larger areas of continental shelves (Sosdian et al., 2020), locations known to be centers of Corg burial (Bianchi 
et al., 2018; Burdige, 2007). It is possible high CO2 atmospheres as a result of volcanism during the MMCO 
provided a source of carbon to the upper ocean, with nutrients additionally supplied by weathering of the CRBG 
(Sosdian et al., 2020). Easily available nutrients, high atmospheric CO2, and high temperatures combined with 
the large extent of continental shelves, likely resulted in the deposition of large areas of Corg-rich sediments in the 
circum-Pacific area (e.g., the Monterey formation; Flower & Kennett, 1993; Pisciotto & Garrison, 1981). There 
is evidence to suggest the high Corg contents are not related to exceptionally high productivity, rather near-perfect 
conditions for preservation (Föllmi et al., 2005; Laurent et al., 2015). Whatever the exact mechanism, the timing 
of this event (∼16–14 Ma; Sosdian et al., 2020) indicates it cannot have played a role in the MMCT, but was 
rather a feature of the warm temperatures in the aftermath of the CRBG emplacement. Our modeling supports 
this assertion, with global Corg burial rates increasing by 10% during the MMCO.

Another proposed cooling mechanism at the end of the MMCO is the closure of the Panama gateway (Montes 
et al., 2015), which led to the formation of the Atlantic Meridional Overturning Circulation (AMOC), which in 
the modern ocean acts as the single largest carbon sink in the Northern Hemisphere (Gruber et al., 2002). Re-
search has suggested this occurred between 15 and 12 Ma, a period which could have implications for the end of 
the MMCO and the MMCT (Bacon et al., 2015; Montes et al., 2015). However, most evidence suggests ongoing 
throughflow between the Pacific and the Atlantic until the Pliocene (Karas et al., 2017; Lessios, 2015; O’Dea 
et al., 2016; Panitz et al., 2018).

The timing of the end of the MMCO also correlates well with evidence for intensification of physical weathering 
in the Himalaya Mountains linked to the onset of the winter monsoon (Ali et al., 2021; Bretschneider et al., 2021; 
Lee et al., 2020). This supports studies which proposed that enhanced weathering of the Himalayas led to Mio-
cene cooling but were limited by temporal uncertainties (Allen & Armstrong, 2012; Tada et al., 2016). Such a 
process would have enhanced CO2 drawdown, and may have led to cooling (Allen & Armstrong, 2012), but it is 
unlikely this process was sizable enough to have controlled the end MMCO cooling (Clift & Jonell, 2021). Ear-
lier work using these FOAM simulations has shown that the South Asian Monsoon amplified silicate weathering 
rates at the present-day, relative to 15 Ma (Lefebvre et al., 2013), and this feature persists in the SCION model. 
More detailed testing of monsoonal effects on climate on the Myr scale would require a larger set of continental 
configuration and climate model runs.

Another potential cause for the rapid cooling observed at the MMCT is widespread evaporite deposition (Shields 
& Mills, 2021). Deposition of thick calcium sulphate evaporites depletes ocean calcium, impacting calcium car-
bonate precipitation and increasing marine alkalinity. This alkalinity increase leads to drawdown of CO2 into the 
ocean on a million-year scale, before the silicate weathering feedback balances the alkalinity and calcium budget 
and restores equilibrium (Shields & Mills, 2021). It has been demonstrated that around 1019 mol of gypsum dep-
osition would roughly halve oceanic Ca concentration, potentially driving ∼1.5 degrees of cooling over 1 Myr 
(Shields & Mills, 2021). The mid-Miocene did indeed see widespread evaporite deposition, culminating in the 
Badenian Salinity Crisis at around 13.8 Ma and the deposition of evaporite facies across much of eastern Europe 
(De Leeuw et al., 2010; Peryt, 2006). The total weight of sulphate evaporites deposited is uncertain, but the esti-
mated budget for the whole Miocene (including the later Messinian Salinity Crisis) is around 𝐴𝐴 1.5 × 10

19  mol (Hay 
et al., 2006), so is compatible with a large Langhian-Serravallian deposition contributing to the MMCT. The im-
pact of evaporite disposition on climate cannot be explicitly modeled in SCION because it employs steady-state 
carbonate chemistry, but it is feasible that the disconnection between model and proxy data 15–13 Ma is linked 
to this process (Figures 2j and 2k).

4.  Conclusions
Using a new coupled biogeochemical-climate model, we investigate the driving forces behind the climate of the 
Miocene. We demonstrate the emplacement of the Columbia River Basalt Group, and associated CO2 degassing 
led to the warming of the Mid Miocene Climatic Optimum (MMCO; 17–15 Ma). The modeled response of the 
Earth system to the injection of magmatic CO2 is very similar in magnitude and extent of the warming and CO2 
increase observed in proxy records from this time. The cooling following the MMCO cannot be easily explained 
by either weathering of the basalt group, or a greater phosphorus supply associated with large-scale volcanism. 
The abundant organic carbon deposition observed in Pacific facies across the MMCO (the Monterey event) is also 



Geophysical Research Letters

LONGMAN ET AL.

10.1029/2021GL096519

9 of 11

unlikely to have driven to the cooling, rather it appears this was a feature of high MMCO temperatures leading 
to greater productivity. We suggest the most likely cause of the rapid cooling period is the emplacement of giant 
evaporites in central-eastern Europe, which depleted the ocean calcium reservoir and raised ocean alkalinity.

Data Availability Statement
All data from the model runs is presented in the Supporting Information, and available for download at https://
doi.org/10.6084/m9.figshare.17306372. The model code is available at https://github.com/bjwmills/SCION and 
permanently archived at https://doi.org/10.5281/zenodo.5819102.
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