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Assessing Whether an Allele Can Account in Part for a Linkage Signal: The
Genotype-IBD Sharing Test (GIST)
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To fine map genes, investigators often test for disease-marker association in chromosomal regions with evidence
for linkage. Given a marker allele tentatively associated with disease, one would ask if this allele, or one in linkage
disequilibrium (LD) with it, could account in part for the observed linkage signal. This question can be addressed
by determining if families selected on the basis of the presence of the tentatively associated allele show stronger
evidence of linkage as measured by increased allele sharing identical by descent (IBD) by affected family members.
However, common selection strategies can be biased for or against linkage in the marker region, even given no
disease-marker association. We define unbiased selection schemes and extend the definition to allow weighted
selection on the basis of all genotyped family members. For affected-sibship data, we describe three genotype-based
weight variables, corresponding to dominant, recessive, and additive models. We then introduce a test for association
of a family weight variable with excess IBD sharing. This test allows us to determine if the linkage signal in a
region can be attributed in part to the presence of a marker allele, either because of direct involvement in disease
etiology or because of LD with a predisposing genetic variant. For samples of 500 affected sib pairs, the tests are
powerful in detection of genotype-IBD sharing association, even for disease models with sib relative risk as low as

, or when evidence for linkage is absent because of sampling variation. This makes our method a newl p 1.1S

tool for detecting linkage as well as association, especially in regions harboring a candidate gene. We have imple-
mented these methods in the software package GIST (Genotype-IBD Sharing Test).

Introduction

In a gene-mapping study, we seek to map and identify
genetic variants that predispose to a human disease. There
have been many successes in identifying genes for Men-
delian diseases such as Huntington disease (Huntington’s
Disease Collaborative Research Group 1993), or special
Mendelian forms of complex diseases such as mature-
onset diabetes of the young (e.g., Yamagata et al. 1996).
However, it is much more challenging to identify genetic
variants that predispose to complex diseases that are mul-
tifactorial and heterogeneous.

For complex diseases, investigators often map the dis-
ease of interest first by linkage analysis, followed by
association analysis in regions with evidence for linkage.
In this setting, genotypes will be available for most fam-
ily members for the genetic markers used in linkage
analysis and will be available for some or all family
members for markers used for association analysis.
When an allele is found to be statistically associated

Received July 29, 2003; accepted for publication November 25,
2003; electronically published February 6, 2004.

Address for correspondence and reprints: Dr. Chun Li, Center for
Human Genetics Research, Vanderbilt University Medical Center, 519
Light Hall, Nashville, TN 37232-0700. E-mail: chun.li@vanderbilt.edu

� 2004 by The American Society of Human Genetics. All rights reserved.
0002-9297/2004/7403-0011$15.00

with disease in our sample, we call it an “associated”
allele, with an understanding that the association is ten-
tative and may not be functional. Given an allele that
is associated with disease, we wish to ask if this allele,
or one in linkage disequilibrium (LD) with it, could
account in part for the observed linkage signal.

One way to address this question is to determine if
subsets of families selected on the basis of presence of
an associated allele show stronger evidence of linkage
as measured by increased allele sharing identical by de-
scent (IBD). One possible subset is the set of families in
which any genotyped affected member carries the as-
sociated allele; a second is the set of families in which
the genotypes of included affected members are all ho-
mozygous for the allele (Horikawa et al. 2000). Un-
fortunately, if multiple affected family members are ge-
notyped, even if the marker is not associated with
disease, standard linkage analysis on the first subset is
biased against linkage in the region of the marker, re-
ducing or even eliminating possible linkage signals,
whereas linkage analysis on the second subset is biased
for linkage in the region of the marker, artificially gen-
erating or amplifying linkage signals. Horikawa et al.
(2000) proposed a simulation-based correction for this
bias under the assumption of no association.

Alternatively, one may select families in which the
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index case carries (or is homozygous for) the associated
allele (Horikawa et al. 2000). This avoids bias (see the
“Methods” section). However, if multiple affected fam-
ily members are genotyped, this approach ignores fam-
ilies in which the index case happens not to carry (or
to be homozygous for) the associated allele, while one
or more of his or her affected relatives do. Moreover,
inclusion of families solely on the basis of the index case
seems quite arbitrary, unless the index cases represent
a particular set of individuals different from their af-
fected relatives. If multiple affected family members are
genotyped, one might first randomly choose an affected
member from each family and then select families on
the basis of the genotype of the chosen individual. This
also avoids bias; however, it usually results in different
subsets of families and different numbers of families,
introducing additional variability. This variation can be
substantial, particularly if the associated allele is rela-
tively infrequent. We wish to have a valid subset linkage
analysis that both reflects the effect of the associated
allele and does not depend on the choice of affected
member in families with 11 genotyped member.

In this paper, we investigate selection schemes for af-
fected sibships with genotype data available on �1 sib.
To reduce variation and make full use of the sibship
genotype information, we consider all possible subsets
that result on the basis of the genotype of one random
sib. Each sibship is selected into a proportion of the
subsets, with the proportion being determined by the
genotypes of all affected sibs. We then use this propor-
tion as a weight variable for the sibship, resulting in a
weighted selection scheme. For affected sibships, we de-
fine three weight variables, corresponding to dominant,
recessive, and additive models.

To determine if a marker allele can account in part
for the linkage signal in a region, either due to direct
predisposition or LD between the marker and a pre-
disposing variant nearby, we introduce procedures to
test for association of a genotype-based family weight
variable with excess allele sharing IBD. Since for vari-
ants that predispose to complex diseases, the genetic
model generally is unknown, we also consider a test
based on 11 weight variables. Using simulations we
show that for samples of 500 affected sib pairs (ASPs),
our tests are powerful to detect genotype-IBD sharing
association, even for disease models with sib relative
risk as low as , or even when there is no evi-l p 1.1S

dence for linkage due to sampling variation. In the latter
situation, an association between genotype and IBD-
sharing will suggest underlying linkage. This makes our
method a new tool for detecting linkage as well as as-
sociation. We have implemented our methods in the
software package GIST (Genotype-IBD Sharing Test).

Methods

Outline

In what follows, we first discuss the concept of IBD-
sharing configuration and introduce some notation. Sec-
ond, we define unbiased selection of families so that
linkage analysis on the resulting subset is valid. Third,
we extend our definition to allow weighted selection, in
order both to reduce variation and to make full use of
available genotype information when multiple affected
family members are genotyped. For affected sibship
data, we give three examples of unbiased weighted se-
lection schemes, corresponding to dominant, recessive,
and additive models. Fourth, to determine if the linkage
signal in a chromosomal region can be attributed in part
to the presence of a marker allele, we describe tests for
association between a genotype-based family weight var-
iable with excess allele sharing IBD at the marker. Fi-
nally, given a weighted selection scheme, we define the
NPL (Kruglyak et al. 1996) and LOD scores (Kong and
Cox 1997) for the corresponding associated families.

IBD-Sharing Configurations and Notation

An IBD-sharing configuration for a pedigree repre-
sents a pattern of allele sharing IBD among pedigree
members (Thompson 1974; Whittemore and Halpern
1994). Let S be the set of all possible configurations for
a pedigree. For an ASP, S may be represented as {0, 1,
2}, where each element denotes the number of alleles the
ASP shares IBD.

Among affected members of a pedigree, the distri-
butions of IBD-sharing configurations at a locus under
linkage and under no linkage are different; this serves
as the basis of allele sharing-based tests for linkage
(Whittemore and Halpern 1994; Kruglyak et al. 1996;
Kong and Cox 1997). Different pedigree structures gen-
erally have different sets of possible IBD-sharing config-
urations. To combine signals from different pedigree
structures, a scoring function is required to assign a nu-
merical value to each IBD-sharing configuration .s � S
Examples of scoring functions include Spairs and Sall

(Whittemore and Halpern 1994); a broader set of scor-
ing functions is described by Sengul et al. (2001). For
each pedigree structure, a scoring function is standard-
ized to have mean zero and variance one under no link-
age, resulting in a family NPL score (KruglyakZ p Z(s)
et al. 1996). In real applications, we may not have
complete IBD information for a locus. In this situation,
we calculate the expected family NPL score

—
Z p

conditioned on family genotype data g� Z(s) Pr (s d g)s�S

and assuming no linkage (Kruglyak et al. 1996). In all
the simulations in this paper, we define NPL scores based
on Spairs.

Suppose there are n families. We consider an auto-
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Table 1

Joint Distribution of Ordered Genotype and IBD-Sharing
Configuration for ASPs at a Biallelic Marker Under No Association

ORDERED GENOTYPES

OF INDEXgo

CASE AND SIB

WEIGHT Pr( , )g IBD p io

fdom frec fadd i p 0 i p 1 i p 2

AA:

AA 1 1 1 4z p0
3z p1

2z p2

Aa 1 1
2

3
4

3z 2p q0
2z p q1 0

aa 1
2

1
2

1
2

2 2z p q0 0 0

Aa:

AA 1 1
2

3
4

3z 2p q0
2z p q1 0

Aa 1 0 1
2

2 2z 4p q0 z pq1 z 2pq2

aa 1
2 0 1

4
3z 2pq0

2z pq1 0

aa:

AA 1
2

1
2

1
2

2 2z p q0 0 0

Aa 1
2 0 1

4
3z 2pq0

2z pq1 0

aa 0 0 0 4z q0
3z q1

2z q2

Total z0 z1 z2

NOTE.—We assume a marker at Hardy-Weinberg equilibrium with
two alleles, A and a, with frequencies p and . is the prob-q p 1 � p zi

ability that an ASP shares i alleles IBD at the marker locus. fdom is the
proportion of sibs carrying allele A, frec the proportion of sibs ho-
mozygous for allele A, and fadd the proportion of allele A among all
four alleles in the ASP.

somal marker in Hardy-Weinberg equilibrium with two
or more alleles. Let p be the frequency of allele A. Let
a denote the aggregate of all the other alleles, with fre-
quency . Let ( , 1, 2) be the probabilityq p 1 � p z i p 0i

that an ASP shares i alleles IBD at the marker. If the
marker is unlinked to disease, , , andz p .25 z p .50 1

. For an ASP, if we order the sibs’ genotypes byz p .252

listing the genotype of the index case before that of the
other sib, an ASP has nine possible ordered genotypes
at a biallelic marker; table 1 lists the joint distribution
of ordered genotype and IBD sharing at the marker, al-
lowing for linkage but assuming no disease-marker
association.

Unbiased Selection Schemes

When there is evidence for both linkage and associ-
ation in a region, we wish to ask if the associated marker
allele, or one in LD with it, could account in part for
the linkage signal. One way to address this question is
to determine if a subset of families selected based on
presence of the allele show stronger evidence of linkage
as measured by increased allele sharing IBD. In order
for linkage analysis on the subset to be valid for this
purpose, families similarly selected on the basis of a non-
associated allele should on average neither increase nor
decrease allele sharing IBD compared to the whole data
set; we say such a selection scheme is unbiased. In other
words, a selection scheme is unbiased for a chromosomal
locus if for any pedigree structure of affected members,
the distribution of IBD-sharing configuration at the locus
conditioned on being selected is the same as the uncon-
ditional distribution. Equivalently, a selection scheme is
unbiased if inclusion of a family is independent of the
IBD-sharing configuration among affected family mem-
bers at the locus. We define several genotype-based se-
lection schemes that are unbiased when there is no dis-
ease-marker association.

Given no disease-marker association, a single affected
individual’s genotype is independent of the IBD-sharing
configuration among affected members in his/her family.
Hence selection of families based on the genotype of one
affected member is unbiased. For example, the selection
of ASPs in which the index case carries allele A (rows
1–6 in table 1) results in a conditional distribution of
IBD sharing with ratio for sharing 0, 1, or 2z :z :z0 1 2

alleles IBD (see appendix A), the same as that for the
unconditional distribution. Analogously, the selection of
ASPs in which the index case is homozygous for allele
A (rows 1–3 in table 1) also is unbiased. Similar unbi-
asedness arguments hold for sibships of size 12.

If multiple affected family members are genotyped,
one may first randomly choose an individual from each
family and then select families in which the chosen in-
dividual carries (or is homozygous for) allele A. It can

be shown that under no disease-marker association, this
selection scheme also is unbiased, although different ran-
dom choices usually will result in different subsets and
numbers of families, introducing additional variability.
To take into account all available genotype information,
one might select families based on the genotypes of 11
members. One example is to select families in which any
affected member carries allele A; a second is to select
families in which all affected members are homozygous
for allele A. In Appendix B, we show such schemes often
are biased, even under no disease-marker association.

Weighted Selection Schemes

We noted previously that under no disease-marker as-
sociation, the selection of affected sibships on the basis
of whether a randomly chosen sib carries allele A is
unbiased but generally results in different subsets and
numbers of families, introducing additional variability.
This variation can be substantial, particularly if the as-
sociated allele is relatively infrequent (see the “Results”
section). To reduce variation and make full use of all
sibship genotype information available, we consider all
possible subsets that result from this selection scheme.
Each sibship is selected into a proportion of the subsets,
with the proportion being determined on the basis of
the genotypes of all affected sibs. This proportion then
can be used as a weight variable for each sibship. For
affected sibships, if the selection scheme is based on
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whether a randomly chosen sib carries allele A, the pro-
portion of subsets containing a sibship equals the pro-
portion of sibs in the sibship carrying allele A; for ASPs,
the resulting weight variable is listed as column fdom in
table 1.

This is an example of a weighted selection scheme for
affected sibships in which fdom is the weight variable.
For a class of pedigree structures, we say that a weighted
selection scheme with weight variable W is unbiased for
a chromosomal locus if the conditional expectation of
W given an IBD-sharing configuration s, , is aE(WFs)
constant for all s � S at the locus, and the constant is
the same across all pedigree structures in the class. This
constant is , the expecta-E(WFs) p E[E(WFs)] p E(W)
tion of W. The unbiasedness of fdom for affected sibships,
under the assumption of no disease-marker association,
is shown in appendix A. If the weight variable W only
takes values 0 and 1, so that a family is either in a subset
or not, a weighted selection scheme reduces to a yes/no
(unweighted) selection scheme. In this situation, the un-
biasedness of a weighted selection scheme is equivalent
to independence between W and IBD-sharing configu-
ration (see appendix C), and therefore the definitions
of unbiasedness in this and the last subsections are
consistent.

If a weighted selection scheme based on W is unbiased
for a locus, W is uncorrelated with any scoring function
F defined on IBD-sharing configurations at the locus;
however, W may not be independent of F (see appendix
C). In particular, the correlation coefficient rW,Z between
W and the family NPL score Z is zero, while W and Z
are not independent (see appendix C).

For affected sibships, we can define other weighted
selection schemes. For selecting affected sibships in
which the index case is homozygous for allele A, the
corresponding weight variable frec is the proportion of
genotyped affected sibs homozygous for allele A. A third
weight variable fadd is the proportion of allele A among
the alleles carried by the affected sibs. Note that

does not have a corresponding (un-f p (f � f )/2add dom rec

weighted) selection scheme. As indicated by the sub-
script, the weight variables fdom, frec, and fadd should be
well suited for disease variants that act in a dominant,
recessive, or additive manner, respectively (see the “Re-
sults” section). These weights for ASPs are listed in table
1. It can be shown easily that given no disease-marker
association, frec and fadd also result in unbiased weighted
selection schemes.

We have focused so far on markers for which geno-
types for more than one affected family member are
available. When fine mapping genes, one may choose to
genotype only one individual per family. In this situation,
the weight variables can be defined on the basis of the
single available genotype; fdom and frec only take val-
ues 0 and 1, thus reducing to (unweighted) selection

schemes, whereas fadd can take values 0, .5, and 1, still
resulting in a weighted selection scheme. Given no dis-
ease-marker association—since the genotype of a single
individual is independent of the IBD-sharing configu-
ration among affected members in his/her family—a
weight variable W defined on the basis of the genotype
of one individual is not only uncorrelated with the family
NPL score Z but also independent of Z.

Testing for Genotype-IBD Sharing Association

For affected sibship data, we provide test procedures
to determine if the linkage signal in a region can be
attributed in part to the presence of a marker allele. We
first consider the situation in which we have complete
IBD information and then extend to the situation with
incomplete IBD information.

Given a weight variable W, 1�W also can be viewed
as a weight variable. Hence, for a weighted selection
scheme with weight variable W, there are two weighted
subsets: family i contributes to the first subset with pro-
portion and to the second, complementary subsetWi

with proportion . For the two subsets, the total1 � Wi

contributed weights are and
—� W p nW � (1 � W) pi i

, where and the average per-fam-
— —

n(1 � W) W p � W /ni

ily NPL contributions are and
—

a p � WZ /nW a p1 i i 2

, respectively. We wish to assess
—� (1 � W)Z /n(1 � W)i i

whether and differ. Note thata a a � a p � (W �1 2 1 2 i

. Since , if were con-
— — —
W)Z /nW(1 � W) var(Z ) p 1 Wi i i

stants, would be
— —2 2 2var(a � a ) � (W � W) /n W (1 �1 2 i

, and would be
— 2 �W) (a � a )/ var(a � a )1 2 1 2

—� (W � W)Zi i — 2�p r (Z � Z) ,�W,Z i— 2�� (W � W)i

where and
—
Z p � Z /ni

—� (W � W)Zi i

r pW,Z — —2 2� �� (W � W) 7 � (Z � Z)i i

— —� (W � W)(Z � Z)i i

p
— —2 2� �� (W � W) 7 � (Z � Z)i i

is the sample correlation coefficient between family
weight variable W and NPL score Z. This motivates us
to use as the basis for our test statistic.rW,Z

For affected sibships, we may choose W to be any one
of the weight variables fdom, frec, and fadd, defined on
the basis of an allele A. Let be the correlation co-rW,Z

efficient between W and Z. We showed that, given no
disease-marker association, . If allele A is a dis-r p 0W,Z

ease-predisposing variant or is associated with one, we
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expect that . In fact, for ASPs and affected sibr 1 0W,Z

trios, this is true for nearly all disease models that are
relevant to complex diseases (see the “Results” section).
Hence, we test the null hypothesis (H :r p 0 i p0i f ,Zi

, rec, add) against the alternative todom H :r 1 01i f ,Zi

determine if the linkage signal in the region can be at-
tributed in part to the presence of allele A.

Fisher (1921) demonstrated that if (W, Z) is distrib-
uted as bivariate normal, when the number of families
n is large, is approx-�1 �1�n � 3[tanh (r ) � tanh (r )]W,Z W,Z

imately distributed as standard normal, where
. For a general bivar-�1tanh (x) p 0.5 ln [(1 � x)/(1 � x)]

iate distribution of (W, Z) with finite moments, if W and
Z are independent, this result still holds; if they are not
independent, large-sample theory dictates that is a-rW,Z

symptotically normal, and so is (Ferguson�1tanh (r )W,Z

1996).
For each of our weighting schemes i ( ,i p dom

rec, add), let and let�1�X p n � 3tanh (r ) m pi f ,Z ii

. Since is an increasing function of�1�n � 3tanh (r ) mf ,Z ii

, the hypotheses now are againstr H :m p 0W,Z 0i i

. At significance level a, we reject H0i andH :m 1 01i i

accept H1i if , where is theX � z z 100(1 � a)i 1�a 1�a

percentile of the standard normal distribution.
The power of these tests can be estimated easily. At

significance level a, for each weight variable and afi

disease model with correlation coefficient , the pow-rf ,Zi

er of the corresponding test is approximately 1 �
, where F is the cumulative distribution func-F(z � m )1�a i

tion of the standard normal distribution. The resulting
power estimates agree well with the corresponding sim-
ulation-based estimates (see the “Results” subsection).

For complex diseases, we usually do not know the
underlying disease model. Carrying out all three tests
requires adjustment for multiple comparisons, with a
likely reduction in power. As an alternative, let

, and the P value for an ob-X p max (X ,X ,X )max dom rec add

served maximum t is under no disease-Pr (X � t)max

marker association.
We now estimate the distribution of Xmax under no

disease-marker association. Let be ther p corr(X ,X )ij i j

correlation coefficient of and (i, , rec, add).X X j p domi j

These correlations depend on several factors: the fre-
quency p of allele A, the distribution of IBD-sharing
configurations at the locus, the sample size n, and the
composition of pedigree structures in the sample. Sim-
ulations suggest that for complex diseases, when n �

, the three correlation coefficients vary little with100
respect to changes in these factors except the allele fre-
quency p (data not shown). Hence, for various values
of p, we estimate by simulating a large number ofrij

ASPs under no linkage. Assuming the vector (Xdom, Xrec,
Xadd) is approximately distributed as trivariate normal,
we generate a large number of random vectors from this

distribution and derive an empirical estimate of the dis-
tribution of Xmax.

We have outlined our tests assuming complete IBD
information. Given incomplete IBD information, we cal-
culate the sample correlation coefficient between W—rW,Z

and the expected NPL score conditioned on family
—
Z

genotype data, and carry out the above tests using .—rW,Z

Because of the additional variation due to incomplete
IBD information, the correlation between W and tends

—
Z

to be weaker than that between W and Z, the magnitude
of E( ) tends to be smaller, and the power of the testsXi

may be reduced. However, for a flanking marker density
of �2 cM, the reduction in power is not substantial (see
the “Results” section).

Weighted-Subset NPL and LOD Scores

Given a weighted selection scheme, we define the NPL
(Kruglyak et al. 1996) and LOD scores (Kong and Cox
1997) for the corresponding associated families. Again,
we first consider the situation in which we have complete
IBD information, and then we extend the methods to
handle incomplete IBD information and to incorporate
further weighting based on family size.

At a locus and for family i, let be the NPL score,Zi

which has been standardized to have mean zero and
variance one under no linkage (Kruglyak et al. 1996).
The NPL score for the complete sample is , where�� Z / ni

the sum ranges over all n families. For a weighted se-
lection scheme with weight variable , wenW p {W}i ip1

define as the weighted NPL contribution from fam-WZi i

ily i. If the scheme is unbiased for the locus, andW Zi i

are uncorrelated, and the mean of under no link-WZi i

age is . We might define aE(WZ ) p E(W)E(Z ) p 0i i i i

weighted-subset NPL score for the sample to be
divided by its standard deviation under�� WZ � (WZ )i i i i

no linkage. However, the formula for variesvar(WZ )i i

for different pedigree structures and can be very com-
plicated; it also depends on the unknown frequency p
of allele A. Instead, we choose to estimate em-var(WZ )i i

pirically. Since , if were a constant,var(Z ) p 1 Wi i

would be . This motivates us to define a2var(WZ ) Wi i i

weighted-subset NPL score at the locus as NPL pW

. Note that if W only takes values 0 and2�� WZ / � Wi i i

1, so that a family is either in a subset or not, NPLW is
the same as the NPL score calculated on the basis of the
subset.

For affected sibship data, we noted previously that the
selection of sibships based on whether a randomly cho-
sen sib carries allele A usually results in different subsets,
depending on the choices made. By considering all pos-
sible subsets resulting from this scheme, we defined the
weight variable fdom for each sibship. We may expect
that the NPL scores for all the subsets can be summarized
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by the weighted-subset NPL score definedNPLfdom

above. Indeed, simulations show that for ASPs and af-
fected sib trios, is approximately the average ofNPLfdom

NPL scores over all the subsets (see the “Results” sec-
tion). Similar conclusion also holds for the weight var-
iable frec.

As an alternative to the NPL score, Kong and Cox
(1997) introduced a one-parameter allele-sharing model
(ASM) with parameter , in which for nod � 0 d p 0
linkage and for linkage. Under their model, thed 1 0
log-likelihood for all families is l(d) p l(0) �� ln (1 �

(Kong and Cox 1997). For a weighted selectiondZ )i
scheme with weight variable , we substitutenW p {W}i ip1

for and call the resulting LOD score a weighted-WZ Zi i i

subset LOD score.
In the more general situation of incomplete IBD infor-

mation, we can replace with the expected NPL scoreZi

. In standard linkage analysis, to leverage strength of
—
Zi

signals from families of different sizes, a weighting factor
may be assigned to each family i (Kruglyak et al. 1996).gi

When calculating weighted-subset NPL and LOD scores,
we can incorporate this information by using weighted
family contribution in place of . Note that, be-

—
WgZ Zi i i i

cause of the way we define weighted contribution for a
family, the effects of and are multiplicative, and theyW gi i

act as if there is a single weight variable, . CalculationWgi i

of the weighted-subset NPL and LOD scores can easily
be implemented in existing software such as GENE-
HUNTER (Kruglyak et al. 1996) and Allegro (Gudbjarts-
son et al. 2000).

We caution that the LOD scores defined in this sub-
section are not comparable across different loci because
their magnitude depends on the effective sample size in
the weighted subset, which is determined by the allele
frequency. As a result, such a LOD score cannot be in-
terpreted in the same way as scores defined over the
whole sample.

Results

Variation of NPL Scores for Subsets of ASPs Selected
on the Basis of the Genotype of a Random Sib

To ask whether an associated allele can account in
part for a linkage signal, the simplest strategy is to per-
form linkage analysis on the subsets of families selected
on the basis of the genotype of a single affected family
member. We use the term “subset NPL score” for the
NPL score that is calculated over a subset of families.
We noted previously that selection of affected sibships
in which a randomly chosen sib carries allele A generally
results in different subsets of families and therefore dif-
ferent subset NPL scores in the region of the marker (see
the “Methods” section). We evaluated the extent of this

variation using simulation. We simulated a biallelic
marker independent of disease status, either unlinked
( ) or completely linked ( ) to disease, andv p .5 v p 0
further assumed that we had complete IBD information
at the marker. We considered two frequencies p for
marker allele A ( , .5), in combination with twop p .1
scenarios of IBD sharing at the marker: no linkage with

( ) and linkage with(z ,z ,z ) p (.25,.50,.25) l p 10 1 2 S

( ). For each combi-(z ,z ,z ) p (.23,.50,.27) l p 1.10 1 2 S

nation, we simulated 100 replicate data sets of 500 ASPs.
For each data set, we generated 200 random subsets of
families selected on the basis of whether a randomly
chosen sib carries allele A and calculated the mean
E(subset NPL) and standard deviation sd(subset NPL)
of the corresponding 200 subset NPL scores. Figure 1
plots sd(subset NPL) versus E(subset NPL) for a total
of 100 replicate data sets.

Figure 1 suggests that the magnitude of variation in
subset NPL scores does not depend strongly on whether
the whole data set yields evidence for linkage. With the
same allele frequency, the variation of subset NPL score
is slightly smaller for a linked marker than for an un-
linked marker, presumably because IBD sharing at a
linked locus is less variable than that at an unlinked
locus.

From figure 1, we also see that particularly if allele A
is relatively rare, but even if it is not, the variation of
NPL score for a random subset of families can be sub-
stantial. For example, when , sd(subset NPL) forp p .1
most replicate data sets is ∼0.45. Thus, if a data set of
500 ASPs has average subset NPL score 2.5, the NPL
scores for different subsets easily can vary from 1.6 to
3.4 ( ), with the corresponding LOD2.5 � 2 # 0.45
scores, calculated as , varying2LOD p NPL /(2 ln 10)
from 0.56 to 2.51. Even with , sd(subset NPL)p p .5
for most replicate data sets is ∼0.25, and the NPL scores
for different subsets can often vary from 2.0 to 3.0, with
the corresponding LOD scores varying from 0.87 to
1.95. If we had selected families on the basis of whether
a randomly chosen sib is homozygous for allele A, the
variation is even greater (data not shown). These results
suggest that when genotype data on �1 sibs are avail-
able, we should not do subset linkage analysis solely on
the basis of the genotype of a single sib.

Since the weight variable fdom for a sibship represents
the proportion of random subsets of the sample con-
taining this sibship, we would expect that the weighted-
subset NPL score defined in this paper wouldNPLfdom

summarize well the NPL scores for all possible subsets.
For the replicate data sets previously generated, we cal-
culated the corresponding and found that it isNPLfdom

quite comparable with E(subset NPL) (data not shown).
A similar conclusion holds for affected sib trios and for
the weight variable frec (data not shown).
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Figure 1 Plots of sd(subset NPL) vs. E(subset NPL) for 100 replicate data sets of 500 ASPs. For each data set, the horizontal coordinate
is the mean of NPL scores for 200 random subsets selected on the basis of whether a randomly chosen sib carries allele A, and the vertical
coordinate is the standard deviation of the 200 subset NPL scores. The marker is not associated with disease variant. p is the frequency of
allele A. lS is the sib relative risk.

Correlation between fdom, frec, fadd and Z under
Disease Models

We showed that for affected sibships, if W is one of
the three weight variables ( , rec, add) definedf i p domi

on the basis of allele A, and given no disease-marker
association, the correlation coefficient . If alleler p 0W,Z

A is a disease-predisposing variant or is associated with
one, we would expect that , and we have usedr 1 0W,Z

this assumption as the basis for using a one-sided test.
To verify this assumption, we considered the general

one-locus, two-allele disease model , where(p ,f ,f ,f )D 0 1 2

is the frequency of disease-predisposing allele D inpD

the population, and ( , 1, 2) is the penetrance forf i p 0i
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Table 2

Estimated Type I Error Rates for the Four Tests, at Nominal
Significance Level %, Using Genotypes of One ora p 1
Both Sibs

p

ESTIMATED TYPE I ERROR RATE (%) FOR

One Sib Both Sibs

Tdom Trec Tadd Tmax Tdom Trec Tadd Tmax

.1 1.0 .3 1.0 .6 .8 .2 .8 .5

.2 1.0 .8 1.0 .9 1.0 .7 .9 .8

.3 1.0 .9 1.0 1.0 1.1 .9 .9 1.0

.4 1.0 1.0 1.0 1.0 1.2 .9 .9 1.1

.5 1.0 1.0 .9 1.0 1.3 1.0 1.0 1.2

.6 1.0 1.0 1.0 1.1 1.5 1.0 1.0 1.3

.7 1.0 1.0 1.0 1.1 1.7 1.1 1.0 1.5

.8 1.0 1.0 1.0 1.0 2.2 1.1 1.0 1.8

.9 .4 1.1 1.0 .7 1.3 1.1 1.2 1.2

NOTE.—Based on 100,000 replicates of 200 ASPs. p is the
frequency of marker allele A. is the test based on (T X i pi i

, rec, add, max).dom

the genotype with i copies of allele D. We assumed that
and that the values of are not all equal.0 ! f � f � f f0 1 2 i

Let ( , 2) be the genotypic risk ratio (GRR)g p f /f i p 1i i 0

of the genotype with i copies of allele D versus that with
0 copies. Then, , and . For ASPs and1 � g � g 1 ! g1 2 2

affected sib trios, we calculated , where W is one ofrW,Z

the three weight variables fdom, frec, fadd defined on the
basis of allele D. We considered a total of 1,701 disease
models specified by (a) disease allele frequencies p pD

, .2,…, .9, and (b) GRRs and.1 1 � g � g � 10 1 !1 2

, in increments of 0.5. For ASPs, the correlation co-g2

efficients were 10 except for seven (0.4%) dominant
models. For affected sib trios, for all the mod-r 1 0f ,Zdom

els considered, except for 121 (7.1%) domi-r 1 0f ,Zrec

nant models, and except for 4 (0.2%) models.r 1 0f ,Zadd

Not only were nearly all correlation coefficients positive,
but the magnitude of the negative ones all were very
small. If we restricted attention to models with GRR

, a likely situation for complex diseases, all cor-g � 41

relation coefficients were 10, ranging from 0.002 to
0.44.

Type I Error Rates of the Tests

We carried out simulations to assess the properties of
our tests. Under no disease-marker association, we sim-
ulated 100,000 replicate data sets of 200 ASPs for allele
frequencies , .2,…, .9. We used an additive modelp p .1
(with and ) to generate the backgroundp p .5 l p 1.1D S

distribution of IBD sharing at the locus; simulations
showed that small changes in the background distri-
bution of IBD sharing have little effect on the results
(details not shown). Let ( , rec, add, max)T i p domi

denote the test based on . Table 2 lists the estimatedXi

type I error rates at nominal significance level a p .01
using genotypes of one or both sibs and given complete
IBD information.

When the tests are based on genotypes of both sibs,
the type I error rates increase as p increases. All the tests
are conservative when , and Tdom and hence Tmaxp p .1
are somewhat anticonservative when , whereas Trecp 1 .5
and Tadd are consistent with nominal values for .p 1 .1
At significance level , the patterns are similara p .05
and the type I error rates range from 4.2% to 8.8%
(data not shown).

We noted previously that under no disease-marker as-
sociation, a weight variable W defined on the genotype
of a single individual is independent of family NPL score
Z, and the statistics are asymptotically distributed as
standard normal. Hence, we expect that for tests based
on genotypes of one sib, the type I error rates converge
to corresponding nominal significance levels when the
number of families is large. Results in table 2 support
this conclusion.

For the more realistic situation of incomplete IBD in-

formation, we generated flanking markers with four
equally frequent alleles (heterozygosity .75) and various
intermarker distance d. When cM, the estimatedd � 2
type I error rates were very similar to those given com-
plete IBD information (data not shown).

Power of the Tests

We next carried out simulations of ASPs to compare
the power to detect genotype-IBD sharing association
among the four tests Tdom, Trec, Tadd, Tmax, and between
tests in which the weight variables are based on the
genotypes of one or both sibs. We considered two pop-
ulation disease allele frequencies ( , .5) and threep p .2D

disease models: dominant, recessive, and additive. All
models had disease prevalence 10% and single-locus rel-
ative risk for sibs of an affected individuall p 1.1S

(table 3). For each disease model, we generated 10,000
replicate data sets of 500 ASPs. Table 3 lists the esti-
mated power for the tests at significance level .a p .01

We noted previously that the definitions of weight
variables fdom, frec, and fadd reflect dominant, recessive,
and additive effects of an allele, respectively. As ex-
pected, among the first three tests, Tdom is the most pow-
erful to detect genotype-IBD sharing association for
dominant models, as are Trec for recessive models and
Tadd for additive models, although the degree of advan-
tage varies by model and allele frequency. For all the
models we simulated, the power of Tmax is nearly as good
as the highest power that can be obtained using Tdom,
Trec, or Tadd.

With the same prevalence and single-locus relative risk
lS, it was relatively easier to detect a disease gene with
the smaller disease allele frequency than thatp p .2D

with . When we have genotypes for only one sibp p .5D

per ASP, we experienced some loss of power compared



426 Am. J. Hum. Genet. 74:418–431, 2004

Table 3

Disease Models and Estimated Power (%) for the Four Tests, at
Significance Level %, Using Weight Variables Defined on thea p 1
Basis of Genotypes of One or Both Sibs

, / / , ANDp f f fD 0 1 2

NO. OF SIBS

ESTIMATED POWER

(%)

Complete IBD
Information

Incomplete IBD
Information, Tmax

Tdom Trec Tadd Tmax d p 2 d p 5 d p 10

.2:
.065/.162/.162:

1 85 3 72 79 71 62 49
2 95 4 86 92 86 78 65

.089/.089/.368:
1 72 100 98 100 99 98 95
2 83 100 100 100 100 100 98

.068/.148/.228:
1 80 32 83 81 74 64 51
2 92 45 93 91 86 78 66

.5:
.015/.128/.128:

1 27 1 4 19 15 11 9
2 55 1 5 45 40 32 24

.072/.072/.185:
1 28 92 86 88 84 76 63
2 40 98 94 96 93 89 78

.036/.100/.164:
1 44 51 68 64 55 46 36
2 66 68 83 83 76 67 54

NOTE.—Results are based on 10,000 replicates of 500 ASPs. ispD

the frequency of disease allele D in the population. isf (i p 0, 1, 2)i

the penetrance for the genotype with i copies of allele D. Given in-
complete IBD information, d (in cM) is the flanking marker density.
All models have disease prevalence 10% and single-locus sib relative
risk .l p 1.1S

to using both sibs. However, for most of the models we
considered, the power is still sufficient to make our tests
useful tool for screening markers in a candidate region
by genotyping one sib per sibship. Models with the same
values of lS and but different disease prevalencespD

yielded similar estimates of power (results not shown).
To assess the more realistic situation of incomplete

IBD information, we generated flanking markers with
four equally frequent alleles (heterozygosity .75) and at
marker densities , 5, and 10 cM (table 3). To sim-d p 2
ulate the scenario with the least information content, we
placed the disease locus midway between the two nearest
flanking markers and did not include the genotype at
the disease locus in the estimation of IBD sharing. Be-
cause of the additional variability due to incomplete IBD
information, the power to detect genotype-IBD sharing
association is reduced, but the reduction is not substan-
tial when the marker density is �2 cM. Even when the
marker density is 10 cM, which is often the situation
for initial genome scans, the power to detect genotype-
IBD sharing at a candidate gene is still good for some
disease models.

Testing Without Prior Evidence of Linkage

Although we described our method in the context of
fine mapping genes in regions with evidence of linkage,
the method also may be used for regions where we do
not have linkage signals. Complex diseases are likely
heterogeneous. If only a small proportion of families
carry a predisposing variant at a locus, a linkage signal
may be small and masked by random fluctuation. Fur-
thermore, even if a disease-predisposing variant is com-
mon, because of sampling variation, traditional linkage
approaches may by chance not detect evidence of linkage
in the region of the variant. This is especially true for
genes with modest effect. For example, if the disease
model is additive with , even with 500 ASPs,l p 1.1S

the median NPL score for the whole data set is 1.44,
corresponding to a LOD score of 0.45. When no linkage
is detected because of sampling variation, we want to
know if our tests still have type I error rate under con-
trol and good power to detect genotype-IBD sharing
association.

Simulation results comparing samples with LOD �0
and those with LOD 10 showed no systematic difference
in type I error rate and power of our tests between the
two samples (data not shown). In other words, the over-
all linkage signal for the total sample has little effect on
sample correlation between a family weight variable and
IBD sharing at the locus. In fact, it can be shown that
under the null hypothesis of no association, these two
statistics are asymptotically independent. Hence, in
regions for which the data fail to show evidence for
underlying linkage, our method can still be used to detect
the association between a tentative disease variant and
excess allele sharing IBD at the locus. Such an associa-
tion will suggest underlying linkage. This property
makes our method a new tool for detecting linkage as
well as association.

Discussion

Mapping genetic variants for complex diseases is a chal-
lenging endeavor. One common strategy is to map the
disease of interest first by linkage analysis, followed by
disease-marker association analysis to fine map genes in
regions with evidence of linkage. In this setting, geno-
types will be available for most family members for the
genetic markers used in the linkage analysis, and will be
available for some or all family members for markers
used for LD mapping. Given an observed disease-marker
association, we often ask if the tentative disease-risk al-
lele can account for a significant portion of the linkage
signal, by either direct involvement in disease etiology
or LD between the marker and a predisposing variant.
We addressed this question by first building a framework
for unbiased family selection and extending it to allow
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weighted selection and then deriving a test for associa-
tion of a genotype-based family weight variable with
excess allele sharing IBD.

For affected sibship data, we described three geno-
type-based weight variables, corresponding to domi-
nant, recessive, and additive models for a marker allele.
If the allele is not associated with disease, each weight
variable W is uncorrelated with the family NPL score
Z. We showed that, if the allele is itself a disease-pre-
disposing variant or is associated with one, W is almost
always positively correlated with Z for a very broad
class of genetic models relevant to complex diseases.
Hence, a positive association between W and Z will
indicate that the linkage signal in the region of the
marker can be attributed in part to the presence of the
marker allele.

Under the null hypothesis of no disease-marker as-
sociation, although the weight variable and family NPL
score are uncorrelated, they are not independent. This
makes existing nonparametric tests for correlation, for
example, Kendall’s t, Spearman’s rank test, and the per-
mutation test (Hollander and Wolfe 1999), invalid be-
cause they require independence as part of the null hy-
pothesis, and ignoring non-independence may result in
inflation in the type I error rate (Keller-McNulty and
McNulty 1987). Based on large sample theory for the
sample correlation coefficient, we introduced three tests
for genotype-IBD sharing association, each test being
powerful for dominant, recessive, and additive models,
respectively. To avoid multiple comparisons, we intro-
duced a fourth test that is based on the maximum of
all three correlation coefficients and has good overall
power. With sample sizes typical for complex disease
gene mapping studies, even for disease models with sib
relative risk as low as , the tests are powerfull p 1.1S

to detect genotype-IBD sharing association. When the
tests are based on genotypes of 11 sib, the type I error
rates for Tmax and Tdom are slightly higher than the nom-
inal rate, presumably due to less accurate large-sample
approximation for these two tests than for Trec and Tadd.
When the tests are based on only one sib, the approx-
imation works well for all four tests, and the type I
error rates are similar to the corresponding nominal
rate.

Our method also can be used for candidate genes in
regions for which IBD-sharing information is available
from an initial genome scan. In the situations we con-
sidered, the overall linkage signal had little effect on the
power of our test. As a result, in regions with underlying
linkage but for which the data do not yield evidence of
linkage due to sampling variation, the test is as powerful
as in the situation of having observed linkage. Such an
association between genotype and IBD-sharing will sug-
gest underlying linkage. Thus, our method can comple-
ment existing linkage analysis methods by detecting

linkage, especially when the effect of a disease variant
is modest. This property makes our method a new tool
for detecting linkage as well as association. The marker
density in the initial scan determines the IBD-sharing
information content in the region, which has a direct
effect on the power of our test. However, as is shown
in the simulations, the power of GIST at a candidate
gene is still good for some disease models, even when
the marker density is 10 cM.

Horikawa et al. (2000) proposed a different approach
to address a similar question. For a marker of interest,
they started with a target genotype and focused on the
subset of ASPs in which the two affected sibs both had
the target genotype. As we have shown here, this may
result in bias in linkage signals even under the null, and,
thus, correction may be needed. Horikawa et al. (2000)
proposed a simulation-based bias correction by gener-
ating an empirical distribution of subset LOD scores
under the null hypothesis and comparing it with the
subset LOD score from the real data. In our approach,
we try instead to stay unbiased under the null hypothesis
and derive an appropriate weight variable. We then use
this weight variable in our test for association. Given
an allele that is associated with disease, their approach
focuses on a genotype formed by the allele, while our
approach focuses on the allele itself. We plan a more
detailed comparison of these methods in a separate
paper.

Both our method and the transmission/disequilibrium
test (TDT) (Spielman et al. 1993) are joint tests for
linkage and association. However, they work in quite
different situations. For a marker of interest, TDT re-
quires genotypes for parents or unaffected sibs, in ad-
dition to affected offspring; our method requires ge-
notypes only for affected family member(s), while
taking advantage of existing IBD-sharing information
estimated from genome scans.

Our method also can be used to screen typed markers
in a large region or on the whole genome for genotype-
IBD sharing association as long as the IBD-sharing in-
formation is available from an initial linkage scan. The
test should be carried out for each marker allele. In this
situation, one needs to adjust for multiple comparisons,
a challenging problem that also confronts genomewide
case-control association analysis. To scan the maximum
number of markers in a fine mapping project, we may
choose to type only one sib per family. The power of
GIST is lower with one genotyped sib than with two,
but the power may still be sufficient to make our test
a useful tool for screening markers in a candidate region.
When information on IBD sharing is already available
from genome scans, only the cases need to be genotyped
to test for genotype-IBD sharing association by means
of GIST. In contrast, to test for disease-marker associ-
ation using the traditional case-control design, an ad-
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ditional set of controls need to be genotyped, signifi-
cantly increasing the genotyping cost. Thus, our method
will potentially reduce genotyping effort compared to
the case-control approach. We are currently working on
comparing per-genotype efficiency between these two
approaches and on combining results from these two
approaches.

A limitation of our method, as for some other as-
sociation analysis methods, is that it does not distin-
guish a disease predisposing variant from an allele that
is in LD with it. As a result, if an allele is found to be
significantly associated with excess allele sharing IBD
at the marker, the allele still may not have a direct effect
on disease pathogenesis.

Other researchers previously have used the idea of
doing linkage analysis on families stratified on the basis
of an associated allele, either to determine whether the
allele can account for a portion of the linkage signal
(Horikawa et al. 2000) or to determine whether there
are additional linked disease-predisposing variants (Hu-
got et al. 2001). Hugot et al. (2001) reported that link-
age of Crohn disease to chromosome 16 could not be
entirely explained by the detected associated alleles, be-
cause the subset of families without those associated
alleles had a LOD score of 1.6. In this subset, analogous
to what we demonstrated in appendix B, the uniformly
high degree of allele sharing identical by state at the
locus would result in an upward bias for linkage. Hence,
the LOD score of 1.6 may be inflated compared to the
true effect of other unknown disease variants in the
region.

The idea in Hugot et al. (2001) of calculating “re-
sidual” linkage signals and using them as a signpost for
additional disease variants is very tempting. Unfortu-
nately, even if one did a weighted-subset linkage analysis

for families without the associated alleles, the resulting
LOD score would not be sufficient to indicate if there
are additional disease-predisposing variants in the re-
gion. Our simulation results showed that, even if there
is no extra disease-predisposing gene or variant in the
region, the weighted-subset NPL score representing the
“residual” linkage signal is no longer approximately
distributed as normal and behaves differently for dif-
ferent disease models (data not shown). Sun et al. (2002)
proposed a method to test for the presence of additional
causal loci in the region, given that the current marker
is causative for the disease. An extension of their method
to multiple causative variants may help answer this
question.

The difficulty in mapping genes for complex diseases
calls for new techniques in data analysis. In this paper,
we provided a general framework for unbiased selection
of families stratified based on a marker allele, and for
affected sibship data, we introduced test procedures to
determine if the linkage signal in a chromosomal region
can be attributed in part to the presence of a marker
allele. We believe that these procedures will prove to be
a valuable addition to the geneticist’s toolbox for map-
ping genes for complex diseases. The methods devel-
oped in this paper have been implemented in our soft-
ware GIST, available at the Web site of the Vanderbilt
Program in Human Genetics.
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Appendix A

In the “Methods” section, we introduced two selection schemes for affected sibships: (A1) selecting sibships in
which the index case carries allele A, and (A2) selecting sibships in which the index case is homozygous for allele
A. For ASPs, we show that under the assumption of no disease-marker association, (A1) is unbiased. The unbi-
asedness of (A2) can be similarly shown.

For ASPs and for a biallelic marker with alleles A and a, table 1 lists the joint distribution of ordered genotype
and IBD sharing at the marker locus under the assumption of no disease-marker association. Under that assumption,
the probability that the index case carries allele A (rows 1–6 in table 1) is , and21 � Pr (aa) p 1 � q p p(1 � q)

4 3 2 2 3Pr (IBD p 0, index case carries A) p z (p � 4p q � 5p q � 2pq ) p z p(1 � q) ,0 0

3 2 2Pr (IBD p 1, index case carries A) p z (p � 2p q � pq � pq ) p z p(1 � q) ,1 1

2Pr (IBD p 2, index case carries A) p z (p � 2pq) p z p(1 � q) .2 2

Thus, the conditional distribution of IBD sharing, given that the index case carries allele A, has a ratio z0:z1:z2 for
sharing 0, 1, 2 alleles IBD, and hence the selection scheme (A1) is unbiased.

In the “Methods” section, we also introduced three weighted selection schemes for affected sibships, with weight
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variables fdom, frec, and fadd, respectively. It can be shown that, given no disease-marker association, all three weight
variables result in unbiased weighted selection schemes. For example, for ASPs and scheme fdom, by table 1,

14 3 2 2 2 2 3E(f d IBD p 0) p 1 7 (p � 4p q � 4p q ) � 7 (2p q � 4pq ) p p(1 � q) ,dom 2

13 2 2E(f d IBD p 1) p 1 7 (p � 2p q � pq) � 7 (2pq ) p p(1 � q) ,dom 2
2E(f d IBD p 2) p 1 7 (p � 2pq) p p(1 � q) .dom

The conditional expectations all equal . Similarly, it can be easilyE(f ) p Pr (a sib carries allele A) p p(1 � q)dom

shown that and2E(f d IBD) p E(f ) p Pr (a sib is homozygous for allele A) p p E(f d IBD) p E(f ) prec rec add add

. These equations also hold for affected sibships of size 12.E[(f � f )/2] p pdom rec

Appendix B

When multiple affected family members are genotyped, with a desire to take into account all genotype information,
one might select families in which any affected member carries allele A. We show that this is biased against linkage
at and around the marker locus.

Consider the complement subset of families—that is, the families in which all affected members have genotype
aa. These families have a uniformly high degree of allele sharing identical by state at the marker. Therefore, linkage
analysis on this complement subset is biased for linkage in the region, and, consequently, linkage analysis on the
original subset is biased against linkage. Breaking up allele a into several different alleles yields the same conclusion.

It is easy to quantify this bias for ASPs. Given no disease-marker association, the selection of ASPs in which any
sib carries allele A (rows 1–8 in table 1) results in a conditional distribution of IBD sharing at the marker with
ratio , which is different from for . Since and4 3 2 4 3z (1 � q ):z (1 � q ):z (1 � q ) z :z :z 0 ! q ! 1 (1 � q )/(1 � q ) 1 10 1 2 0 1 2

, the conditional distribution of IBD sharing is stochastically smaller than the unconditional3 2(1 � q )/(1 � q ) 1 1
distribution. Therefore, this selection scheme results in a downward bias in IBD sharing at the marker locus and
consequently in the region of the marker, and hence reduces evidence for linkage. For example, suppose we have

ASPs, the disease model is additive with , and the frequency of allele A at a completely linkedn p 500 l p 1.1S

marker (recombination fraction ) is . Given complete IBD information and no disease-marker asso-v p 0 p p .5
ciation, on average, the NPL score for the complete sample is 1.44, corresponding to a LOD score of 0.45. For
the subset of ASPs in which one or more sibs carries allele A (86% of families), on average, there will be fewer
ASPs sharing two alleles IBD than those sharing zero alleles IBD, with corresponding LOD scores of !0.

Another possible selection scheme might be to select families in which all affected members are homozygous for
allele A (Horikawa et al. 2000). A similar argument shows that this scheme results in an upward bias in IBD
sharing in the region of the marker and hence amplifies evidence for linkage. In the above example, even with no
disease-marker association, for the subset of ASPs in which both sibs are homozygous for allele A (14% of families),
on average, the NPL score for the subset is 4.48, corresponding to a LOD score of 4.37. Horikawa et al. (2000)
proposed to correct this bias by simulations under the assumption of no association.

It can be shown analogously that selecting families in which all affected members carry allele A is biased for
linkage and that selecting families in which any affected member is homozygous for allele A is biased against
linkage.

Appendix C

In the “Methods” section, we defined unbiased weighted selection schemes. For a class of pedigree structures, a
weighted selection scheme based on weight variable W is unbiased for a chromosomal locus if E(W d s) p E(W)
for all IBD-sharing configurations at the locus, and the constant is the same across all pedigree structures ins � S
the class. Here, we prove some properties for such a scheme.

If W only takes values 0 and 1, then for any ,s � S Pr (W p 1,s) p Pr (W p 1 d s) 7 Pr (s) p E(W d s) 7 Pr (s) p
, and, similarly, . In this situation, the unbiased-E(W) 7 Pr (s) p Pr (W p 1) 7 Pr (s) Pr (W p 0,s) p Pr (W p 0) 7 Pr (s)

ness of a weighted selection scheme implies independence between the weight variable W and IBD-sharing config-
uration; it can easily be shown that the reverse also is true. Thus, the two definitions of unbiasedness are consistent.
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Let F be a scoring function defined on IBD-sharing configurations. If a weighted selection scheme with weight
variable W is unbiased for a locus, then, for a single pedigree structure,

E(WF) p W(g)F(s) Pr (g,s) p F(s) Pr (s) W(g) Pr (g d s)�� � �
s g s g

p F(s) Pr (s)E(W d s) p E(W) 7 F(s) Pr (s)� �
s s

p E(W) 7 E(F) ,

and W is uncorrelated with F at the locus. This property also holds when we have a mixture of pedigree structures.
For example, suppose we have two types of pedigrees, and a family has pedigree type 1 with probability b and
pedigree type 2 with probability 1�b. Let and denote the weight variable and score, respectively, for a familyW Fi i

with pedigree type i. By the definition of unbiasedness, . Then,E(W ) p E(W ) p E(W)1 2

E(WF) p E[bW F � (1 � b)W F ] p b 7 E(W F ) � (1 � b) 7 E(W F )1 1 2 2 1 1 2 2

p b 7 E(W )E(F ) � (1 � b) 7 E(W )E(F )1 1 2 2

p E(W) # [b 7 E(F ) � (1 � b) 7 E(F )]1 2

p E(W) 7 E(F) .

Given complete IBD information, the family NPL score Z (Kruglyak et al. 1996) itself can be viewed as a scoring
function, and so W is uncorrelated with Z. However, even with complete IBD information, W may not be inde-
pendent of a scoring function F at the locus. For example, for ASPs, IBD sharing can be viewed as a function of
the scoring function Spairs. The nonindependence between the weight variables in table 1 and IBD sharing is easily
shown by the fact that when an ASP shares two alleles IBD, fdom, and frec can take only values 0 and 1, and fadd

can take only values 0, 0.5, and 1.

Electronic-Database Information

Accession numbers and URLs for data presented herein are
as follows:

Vanderbilt University Center for Human Genetics Research,
http://phg.mc.vanderbilt.edu/GIST.shtml or http://chgr.mc
.vanderbilt.edu (for GIST software)
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