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Genetic and familial factors can substantially increase the lifetime 
risk of developing breast cancer and are associated with the devel-
opment of cancer at a young age. However, despite the fact that 
high-risk genes contribute to less than 5% of new breast cancer 
diagnoses (1), many health-care systems screen patients for high-
risk genes before decisions regarding surveillance, prevention, or 
therapeutic strategies are made. In fact, many so-called family 
history clinics have been implemented in this setting so that 
patients who are considered to be at high risk of breast cancer can 
be adequately assessed and managed (2). In this setting, an accurate 
assessment of individualized risk is of paramount importance. 
Here, we review the various tools that are available for the assess-
ment of this risk.

Overview of Breast Cancer Risk
Although the widely quoted general population risk of being diag-
nosed with breast cancer—one in eight to one in 12—is a lifetime 
risk, the 10-year risk in any given decade of life is never greater 
than one in 25 (see Figure 1) (3). In addition to this population risk 
of breast cancer, other risk factors, such as family history, endo-
crine factors, and host factors including breast density and history 
of benign proliferative breast disorders, can substantially modify 
the risk of developing breast cancer.

Other than age, the presence of a substantial family history of 
breast cancer is probably the most important risk factor for the 
development of this disease. Consequently, the search for specific 

germline genetic susceptibility factors, such as mutations in the 
BRCA family of tumor suppressor genes, is of utmost importance 
in risk assessment. Hereditary factors are virtually certain to play a 
role in a high proportion of sporadic breast cancer; however, these 
factors are harder to evaluate, and it is hoped that genome-wide 
association studies will unravel them in the future (4).

Importance of Risk Assessment
Breast cancer remains a major global problem. Despite a steady 
reduction in the mortality rates from breast cancer in many 
Western countries, with the exception of the United States (5), the 
incidence of breast cancer continues to increase (6). Although this 
increase in incidence is likely to be related predominantly to 
changes in dietary and reproductive patterns, evidence from ge-
netic studies has also shown an increase in incidence in patients 
with BRCA1 and BRCA2 mutations (7–9).

Except in very rare cases such as Cowden syndrome (10), a 
hereditary disorder caused by germline mutations in the PTEN 
tumor suppressor that is characterized by macrocephaly, slowly 
progressive cerebellar ataxia, multiple tumor-like growths, and an 
increased risk of certain forms of cancer including breast cancer, 
there are no phenotypic clues that help to identify people who 
carry pathogenic mutations that increase the risk of breast cancer. 
Consequently, a family history evaluation is necessary to assess the 
likelihood of predisposing genes for breast cancer in a family. 
Many family history clinics use a two-pronged approach to assess 
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breast cancer risk. First, they identify those patients who are at risk 
of carrying a germline mutation and offer them formal genetic 
testing. Second, for those who do not meet the criteria for genetic 
testing or who test negative for germline mutations, there is a need 
to quantify the risk of developing cancer over a specified length of 
time. With the resulting information, surveillance, lifestyle, phar-
macological, or surgical interventions can be instituted to improve 
a patient’s risk profile (Figure 2). It should be noted, however, that 
among breast cancer patients with a substantial family history  
of cancer who test negative (wild type) for BRCA1 and BRCA2, 
approximately 12% can be expected to carry a large genomic dele-
tion or duplication in one of these genes, and approximately 5% 
can be expected to carry a mutation in other breast cancer-predis-
posing genes (11). Effective methods for identifying these muta-
tions should also be made available to these women.

Risk Assessment Modeling
Over the past two decades, a number of statistical models have 
been designed and validated to assess breast cancer risk in both 
populations and individuals. For health-care policy-makers or in-
surers, models that have been calibrated to accurately estimate 
population risk are sufficient because they can be used for cost– 
benefit analyses. However, for clinicians, it is imperative that a risk 
assessment tool has a good ability to assess individual risks so that 
appropriate preventative treatment can be individually tailored. 
For such a tool to provide accurate individualized risk assessment, 
it must achieve a good balance between sensitivity and specificity. 
In statistical terms, receiver operating characteristic curves best 
represent this balance, with the area under the receiver operating 
characteristic curve (AUC; also known as the c-statistic) quanti-
fying a model’s discriminatory accuracy. An AUC of 0.5 identifies 
a model whose discriminatory accuracy is no better than a flip of 
a coin, whereas an AUC of 1.0 identifies a model with perfect 
discriminatory accuracy. Realistically, however, an AUC of 0.7 or 
0.8 is consistent with good discriminatory accuracy. It is therefore 
important when assessing any model’s performance that the setting 
for its use is known.

Individualized risk assessment is a crucial component in the 
effective assessment of women at high risk of breast cancer. In this 
review, we focus on individualized risk estimation for carrying 
specific breast cancer predisposing genes and for the development 
of breast cancer over a specified timeframe. We aim to distill the 
diverse literature and provide practicing clinicians with an over-
view of the available risk assessment methods.

Assessing the Risk of Carrying a Germline 
Mutation
In addition to increasing the risks of breast and ovarian cancers, 
germline mutations in BRCA1 and BRCA2 are associated with an 
increased risk of prostate cancer and BRCA2 mutations are associ-
ated with increased risks of pancreatic and gastric cancers and 
melanoma (12). BRCA mutations tend to cluster within certain 
ethnic groups, such as Ashkenazi Jews (13–15), and in some popu-
lations, such as those in the Netherlands (16), Iceland (17,18), and 
Sweden (19). Germline mutations that are associated with familial 
breast cancer have been identified in other genes, including TP53, 
PTEN, ATM, CHEK2, NBS1, RAD50, BRIP, and PALB2, and 
others are suspected (20,21).

There is evidence that strategies to reduce the risk of cancer in 
populations that carry such mutations are effective (22). Therefore, 
identifying individuals who should undergo genetic testing for 
mutations is very important. Although formal mutational analysis 
on all patients is possible, it would be a laborious and expensive 
process: Full sequencing of BRCA1 and BRCA2 costs approxi-
mately US $3000 in North America but is cheaper in Europe 
because of the absence of substantial patent rights. Therefore, 
most family history clinics have been offering such testing to 
patients who have high-risk features, such as early-onset breast 
cancers or a family history consistent with germline mutations.

There are two main approaches to identify patients for whom 
formal genetic testing would be beneficial. These approaches, 
which involve the use of family history patterns and the use of 
statistical models to predict the likelihood of carrying a mutation, 
are not mutually exclusive and are often used in conjunction. The 

Figure 1. Risk of developing breast 
cancer by age. Percentage risk refers 
to chance of developing breast cancer 
over the following 10 or 20 years. For 
example, a 60-year-old woman would 
have a 3.4% risk of breast cancer over 
the following 10 years and a 6.7% risk 
over the following 20 years.
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US Preventative Services Task Force (23) published specific guide-
lines for referring a patient for BRCA mutation testing. These 
guidelines include two first-degree relatives with breast cancer, 
with one diagnosed at or before age 50 years; three or more first- 
or second-degree relatives with breast cancer regardless of age at 
diagnosis; a combination of both breast and ovarian cancers among 
first- and second-degree relatives; a first-degree relative with bilat-
eral breast cancer; two or more first- or second-degree relatives 
with ovarian cancer regardless of age at diagnosis; a first- or 
second-degree relative with both breast and ovarian cancers at any 
age; a history of breast cancer in a male relative; or a woman of 
Ashkenazi Jewish heritage with any first-degree relative (or any 
two second-degree relatives) with breast or ovarian cancer. Similar 
guidelines have been published elsewhere, including in the United 
Kingdom by the National Institute for Clinical Excellence (24).

A number of models and scoring systems have been derived to 
assess the probability of the presence of a BRCA1 mutation or a 
BRCA2 mutation in a given individual based on family history. 
These models fall into two general groups: the empirical models 
and the genetic risk prediction models.

Empirical Models
Empirical models estimate the probability that genetic testing will 
detect a BRCA1 or BRCA2 mutation and do not make explicit as-
sumptions about the underlying genetic risks (eg, penetrance, 
mutation frequencies, and method of inheritance). The empirical 
models include some of the early models, such as the Shattuck-
Eidens model (also known as the Myriad I model) (25) and the 
Couch model (also known as the UPenn or Penn Model) (26), 
which were derived before the widespread use of genetic testing. 
The Couch model was recently updated as the Penn II model (27) 
and now includes more comprehensive personal and family cancer 
histories. However, although this model is available online (27), 
the details of its development and validation have not yet been 
published. Other empirical models include tabular scoring systems 
that were derived from the Myriad Genetic Laboratories genetic 
testing program (28,29), of which the second scoring system, 
Myriad II (also known as the Frank model), was based on testing 
in more than 10 000 individuals (29). In an attempt to simplify the 
use of these models, which can be time-consuming, two similar 
models were developed, both of which use scoring systems and 

Figure 2. Flowchart of the 
management of women who 
are referred to family history 
clinics. *High risk usually 
defined as more than 10% risk 
of harboring mutation, and 
low risk usually defined as 
10% or lower risk. †High risk 
usually defined as a 5-year risk 
of developing breast cancer 
more than 1.67%, and low risk 
usually defined as a 5-year risk 
of developing breast cancer 
1.67% or lower.

D
ow

nloaded from
 https://academ

ic.oup.com
/jnci/article/102/10/680/2515894 by guest on 20 August 2022



jnci.oxfordjournals.org   JNCI | Review 683

cutoff values to define patients who are at risk of carrying a germ-
line mutation. These include the family history assessment tool 
(30) and the Manchester model (31), the latter of which was devel-
oped and validated in two independent datasets and was shown to 
perform well compared with other established models. Another 
group of empirical models that use regression analysis to generate 
risk estimates include the Australian LAMBDA model (32) and the 
National Cancer Institute (NCI) model (33), both of which were 
developed for use in Ashkenazi Jewish women, as well as models 
that were derived from data from Spanish (34) and Finnish (35) 
populations. A comparison of these scoring system models and the 
Myriad II model in a Spanish dataset showed that all models had 
similar discriminatory power and concluded that models that are 
targeted to specific populations did not have improved discrimina-
tory accuracy compared with those that are not targeted to specific 
populations and, therefore, may not be necessary in all cases (36).

Genetic Risk Prediction Models
Genetic risk prediction models make explicit assumptions about 
the number of susceptibility genes involved, the allele frequencies 
in the general population, and the cancer risks that are conferred 
by these alleles. These models use pedigree analysis methods, 
which are based on information about the exact relationships 
among individuals within a family. The main advantage of genetic 
risk prediction models is that they can, in principle, compute can-
cer risks and mutation carrier probabilities regardless of the family 
structure and disease pattern. However, their accuracy depends on 
their underlying assumptions. At best, the current genetic risk 
prediction models give approximate risk estimates because not all 
breast cancer susceptibility genes have been identified (37). These 
models include the most widely used and validated model, 
BRCAPRO (38–40), as well as the Yale University model (41), the 
International Breast Cancer Intervention Study (IBIS) model (also 
known as the Tyrer–Cuzick model) (42), and the Breast and 
Ovarian Analysis of Disease Incidence and Carrier Estimation 
Algorithm (BOADICEA) (43).

Comparison of Germline Mutation Risk Prediction Models
There have been many attempts to validate and compare these 
BRCA1 and BRCA2 risk estimation models (38–40,44–47). A 
number of these models were also independently compared and 
validated in a 2007 study, which showed that no one type of model 
is best (48). However, the authors noted that although both empir-
ical and genetic models are able to discriminate well between mu-
tation carriers and noncarriers, the sensitivity and specificity varied 
among the models and test populations (48). More recently (49), 
data from six genetics clinics in the United Kingdom were used to 
compare the most commonly used models in that country, namely 
BOADICEA, BRCAPRO, IBIS, the Myriad II model, and the 
Manchester model. Of the five models, only BOADICEA accu-
rately predicted the overall observed number of mutations that 
were detected. BOADICEA also provided the best discrimination 
between mutation carriers and noncarriers and was statistically 
significantly better than all of the other models except BRCAPRO 
(AUC: BOADICEA = 0.77, BRCAPRO = 0.76, IBIS = 0.74, 
Manchester = 0.75, and Myriad II = 0.72). All of the models under-
estimated the number of BRCA1 and BRCA2 mutations in a popu-

lation with a low estimated risk of carrying BRCA1 or BRCA2 
mutations (49). A single-institution study from Toronto, Canada, 
compared the BRCAPRO, Myriad II, Couch, family history as-
sessment tool, Manchester, Penn II, IBIS, and BOADICEA 
models and showed that the BRCAPRO, Penn II, Myriad II, 
family history assessment tool, and BOADICEA models had simi-
larly good discriminatory accuracy (all AUCs were approximately 
0.75), whereas the Manchester and IBIS models had somewhat 
lower discriminatory accuracy (AUCs were 0.68 and 0.47, respec-
tively) (50). Of interest, when assessing the probability of carrying 
a mutation at which a patient is eligible for testing, the Penn II 
model achieved higher sensitivity at the 10% testing threshold 
compared with the other models.

Perhaps the most useful aspect of work that has assessed thresh-
olds for genetic testing referral has been the development of a 
cutoff at the 10% or 20% level. Because genetic testing for BRCA1 
and BRCA2 mutations costs approximately $3000, insurance com-
panies and health-care systems require a mutation carrier proba-
bility threshold for test use. In the United Kingdom, this threshold 
is set at a mutation carrier probability of 20% (24); in most of the 
rest of Europe and North America, the threshold is 10%. Although 
these cutoffs are helpful in the clinical context, the quantitative 
choice of cutoff has a number of limitations that need to be 
addressed. For example, in high-risk populations, a referral thresh-
old of 10% results in relatively high sensitivity but a very low 
specificity, whereas in population-based cohorts, the specificity is 
high but the sensitivity is low, and the 10% threshold misses a 
large proportion of patients who have BRCA1 and/or BRCA2 mu-
tations (48). However, in the context of family history clinics, 
which select for high-risk patients on the basis of their referral 
criteria, these scoring systems can be beneficial.

Practical Limitations of Risk Models
Although simple tabular or scoring systems are easy to use and can 
generate mutation carrier probabilities in as little as 1–2 minutes, 
computer-based programs can take up to 15 minutes to input all 
the relevant data. Nonetheless, computer-based programs can be 
carried out in clinics to generate pedigrees and store family 
information.

All risk assessment models have limitations: Adoption, small 
family size [or “limited family structure” (51)], and lack of informa-
tion about family history reduce the usefulness of all models to 
some degree. It is known that because of the reluctance of people 
to discuss their medical conditions, particularly those involving 
cancer, generations of family medical history are lost to present-day 
patients who are receiving care in the era of genetic testing (52). 
Of additional concern is the mistaken assumption that a paternal 
family history of breast or ovarian cancer is not relevant to risk 
for cancer (53). Furthermore, it is known from the noncancer 
(54) and cancer (55) literature that the reporting of parental medical 
history by offspring can be inaccurate. There is therefore a need 
to improve methods for collecting and acknowledging family 
history even while risk models continue to have their accuracy 
improved.

Other important weaknesses of the available genetic risk assess-
ment models include the fact that they incorporate information 
only about first- or second-degree relatives of the person who is 
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being assessed. Such practice may underestimate cancer risk if 
there are many third-degree or higher relatives with breast or 
ovarian cancer. Some models do not include a family history of 
other types of cancer, such as prostate cancer and pancreatic can-
cer, which are known to be influenced by BRCA1 or BRCA2 muta-
tions (12). These models can be further improved by incorporating 
population-specific risks, mutation prevalence, or tumor-specific 
characteristics. For example, BRCA1 mutations are associated with 
triple-negative grade 3 breast cancer histology [reviewed in (56)]. 
Therefore, the presence of this phenotype should allow for an 
increase in the estimated risk of carrying a BRCA1 mutation. 
These pathological correlates are increasingly being added to the 
established models described above and have resulted in improved 
discriminatory accuracy (57,58).

In view of the current weaknesses in the collection of data 
needed for these models and the inherent limitations of the model 
algorithms themselves, it has been recommended that the use of 
these model-based predictions should only occur in conjunction 
with clinical judgment (59).

Assessing the Risk of Breast Cancer Over 
Time
To assess breast cancer risks over time as accurately as possible, it 
is important to assess as many risk factors for breast cancer as pos-
sible. A number of risk factors for breast cancer have been identi-
fied and quantified. These are summarized below.

Risk Factors
Family History of Breast Cancer. A good quality family history of 
breast cancer requires the following information: the age at onset 
of breast cancer, unilateral vs bilateral disease, the degree of rela-
tionship (first or greater), whether there are multiple cases in the 
family (particularly on the maternal or paternal side), other related 
early-onset tumors (eg, ovary, sarcoma), and the number of unaf-
fected individuals (large families with many unaffected relatives 
will be less likely to harbor a high-risk gene mutation). Compared 
with women with no affected relatives, women with one affected 
first-degree relative have twice the risk of breast cancer, those 
with two first-degree relatives have thrice the risk, and those with 
three or more first-degree relatives have quadruple the risk (60). 
A younger age at breast cancer diagnosis in a family member is 
associated with an increased risk of breast cancer. However, this 
increase in risk appears to only affect first-degree relatives. For 
example, compared with a first-degree relative diagnosed with 
breast cancer after the age of 65 years, women who have a first-
degree relative who was diagnosed with breast cancer before age 
40 years have approximately thrice the risk of breast cancer, 
women with a first-degree relative who was diagnosed with breast 
cancer between age 40 and 50 years have twice the risk, and those 
with a first-degree relative diagnosed between age 50 and 65 years 
have approximately 1.5 times the risk. There appears to be little 
increase in risk associated with having a single first-degree relative 
who was diagnosed after age 65 years unless there are multiple 
first-degree relatives in this age group (60). A relative with bilateral 
breast cancer can be counted as two affected relatives for the pur-
poses of these calculations.

Hormonal and Reproductive Risk Factors. Hormonal and 
reproductive factors have long been recognized to be important in 
the development of breast cancer. Prolonged exposure to endoge-
nous estrogens resulting from early menarche (age <12 years) and/
or late menopause (age >55 years) is associated with an increased 
risk of breast cancer (61–63). Early age at menarche is associated 
with a 4% per-year increase in the relative risk of breast cancer, 
whereas late menopause is associated with a 3% per-year increase 
(60). Use of the oral combined contraceptive pill is also associated 
with an increased risk of breast cancer. In addition, the latest data 
from the Million Women Study showed that the use of hormone 
replacement therapy was associated with a 5% per-year increase in 
the risk of breast cancer but only in current users; the risk returned 
to baseline within a year of stopping hormone use (64). Furthermore, 
long-term combined hormone replacement therapy treatment (ie, 
estrogen plus progestin for >5 years) after menopause is associated 
with a statistically significant increase in risk (64). However, 
shorter times of treatment may also be associated with an increased 
risk of breast cancer for those with a family history of the disease 
(62). In a large meta-analysis of population-based studies, the risk 
of breast cancer appeared to increase cumulatively by 1%–2% per 
year with hormone replacement therapy but disappeared within 
5 years of stopping treatment (63). The risk associated with estrogen-
only hormone replacement therapy appears to be much less than 
that associated with combined estrogen and progestin and may be 
negligible (65,66). Another meta-analysis suggested a 24% increase 
in the risk of breast cancer during current use of the combined oral 
contraceptive and for 10 years after discontinuation (61).

Younger age at first pregnancy is associated with a decrease in 
the relative risk of breast cancer because pregnancy transforms 
breast parenchymal cells into a more stable state, potentially result-
ing in less cell proliferation in the second half of the menstrual 
cycle. As a result, women who give birth to their first child after age 
30 years have double the risk of breast cancer as women who give 
birth to their first child before age 20 years (67). Breast feeding 
appears to be associated with a reduced risk of breast cancer. The 
latest estimates show a 4.3% relative reduction in risk for every 
year of breast feeding (68); therefore, a number of years of breast 
feeding would be necessary to have a substantial impact on risk.

Mammographic Density. Mammographic density is perhaps the 
single most important risk factor that is assessable and that may 
also have a substantial heritable component (69). It remains 
unclear whether this variable can truly be considered hormonal or 
whether its etiology is more diverse. Mammographic density is 
generally quantified as the proportion of the breast tissue on a 
mammogram that appears dense. Approximately 5% of the white 
female population worldwide has mammographic density covering 
more than 75% of the breast (70). These women have a fivefold 
increased risk of breast cancer compared with women with mam-
mographic breast density of less than 10%. The increase in relative 
risk for women with 50%–75% mammographic breast density is 
approximately twice that of women with mammographic breast 
density of less than 10%, and these women comprise approxi-
mately 14% of white women (70). Breast density can be rapidly 
and reliably measured from mammograms, and such mammo-
graphic data have yielded good risk prediction accuracy (71).
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Table 1. Known risk factors and their incorporation into existing risk models*

Variable Relative risk at extremes† Gail Claus BRCAPRO IBIS BOADICEA Jonker

Personal information
 Age 30 Yes Yes Yes Yes Yes Yes
 Body mass index 2 No No No Yes No No
 Alcohol intake 1.24 No No No No No No
Hormonal and reproductive factors
 Age at menarche 2 Yes No No Yes No No
 Age at first live birth 3 Yes No No Yes No No
 Age at menopause 4 No No No Yes No No
 Hormone replacement therapy use 2 No No No Yes No No
 Oral contraceptive pill use 1.24 No No No No No No
 Breast feeding 0.8 No No No No No No
 Plasma estrogen level 5 No No No No No No
Personal history of breast disease
 Breast biopsies 2 Yes No No Yes No No
 Atypical ductal hyperplasia 3 Yes No No Yes No No
 Lobular carcinoma in situ 4 No No No Yes No No
 Breast density 6 No No No No No No
Family history of breast and/or ovarian cancer
 First-degree relatives with breast cancer 3 Yes Yes Yes Yes Yes Yes
 Second-degree relatives with breast cancer 1.5 No Yes Yes Yes Yes Yes
 Third-degree relatives with breast cancer 1.3 No No No No Yes No
 Age of onset of breast cancer in a relative 3 No Yes Yes Yes Yes Yes
 Bilateral breast cancer in a relative 3 No No Yes Yes Yes Yes
 Ovarian cancer in a relative 1.5 No No Yes Yes Yes Yes
 Male breast cancer 3–5 No No Yes No Yes Yes

* BOADICEA = Breast and Ovarian Analysis of Disease Incidence and Carrier Estimation Algorithm; IBIS = International Breast Cancer Intervention Study.

† Data from Evans and Howell (79).

Benign Proliferative Breast Disease. Certain types of benign 
breast disease are associated with an increased risk of breast cancer. 
For example, lobular carcinoma in situ, unlike ductal carcinoma in 
situ, is a benign condition and is associated with a 10-fold increase 
in the relative risk of breast cancer (72). The presence of atypical 
ductal hyperplasia or lobular hyperplasia is associated with a four- 
to fivefold increase in the risk of breast cancer compared with 
normal breast parenchyma. Proliferative hyperplasia without aty-
pia is associated with a doubling of the risk (72). Nonproliferative 
lesions, including fibroadenomata and cysts, have not been associ-
ated with an increased risk of breast cancer (73).

Other Risk Factors. A number of other risk factors for breast 
cancer are being further validated. Obesity, diet, and exercise are 
risk factors that are probably interlinked (74,75). Other risk factors 
such as alcohol intake and smoking history have a fairly small effect 
on breast cancer risk (76). More recently, attention has been paid 
to the possible link between vitamin D deficiency and breast 
cancer risk (77,78).

Incorporation of Risk Factors Into Risk Assessment 
Models
Current risk prediction models are based on combinations of risk 
factors, and in general, their outputs include a breast cancer risk 
estimate over a specific time and/or over the lifetime of the patient. 
A number of models have been designed for this purpose, and 
commonly used ones are summarized in Table 1. All of these 
models have important limitations, foremost of which is their reli-
ance on known risk factors, despite data that show that up to 60% 

of breast cancers can arise in the absence of any known risk factors 
(80). Furthermore, at present, many of the known risk factors that 
are unrelated to family history are not included in these risk 
models. In particular, mammographic density, perhaps the most 
important risk factor apart from age, is not included in any main-
stream model except for an adaptation of the Gail model (71).

Gail Model. The most widely known and most commonly used 
model for breast cancer risk assessment is the Gail model (81). This 
model was initially designed in 1989 using data that were collected 
as part of the Breast Cancer Detection and Demonstration Project, 
a nested case–control study of almost 300 000 women who were 
undergoing breast screening between 1973 and 1980. The model 
was then validated in the Nurses’ Health Study (82). It was subse-
quently modified in 1999 (83). The modified model (occasionally 
called the NCI–Gail model) differs from the original model in 
three ways. First, the incidence rates in the modified model include 
only invasive cancers rather than both invasive and in situ cancers 
as in the original model. Second, the age-specific incidence rates 
in the modified model were obtained from the Surveillance, 
Epidemiology, and End Results database rather than from the 
Breast Cancer Detection and Demonstration Project. Finally, 
composite incidence rates for African American patients were 
added to the modified model. Both the original and the modified 
versions of the Gail model use six breast cancer risk factors, namely 
age, hormonal or reproductive history (age at menarche and age at 
first live birth), previous history of breast disease (number of breast 
biopsies and history of atypical hyperplasia), and family history 
(number of first-degree relatives with breast cancer).
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The Gail model is the only model to our knowledge that  
has been validated in three large population-based databases 
(82–84). However, a recent systematic review (85) reported that 
although eight studies comprising almost 13 000 patients have 
shown that the Gail model is well calibrated, it has limited dis-
criminatory accuracy. This limitation is the likely reason for the 
poor individualized risk assessment of the Gail model when it 
was tested in higher-risk populations, such as patients enrolled 
in family history clinics (86,87) or those with atypical hyper-
plasia (88).

Claus Model. Another model in widespread use is the Claus 
model (41). This model was developed using data from the Cancer 
and Steroid Hormone Study, a nested population-based case– 
control study conducted between 1980 and 1982 using breast 
cancer patients registered in eight Surveillance, Epidemiology, and 
End Results regions. The original model only included data on 
family history of breast cancer; the model was subsequently 
updated to include data on ovarian cancer as well (89). Unlike the 
Gail model, the Claus model only uses family history to estimate 
risk; however, it incorporates a substantially more comprehensive 
history than the Gail model and includes affected first- and sec-
ond-degree relatives and the age at which cancers in those relatives 
were diagnosed. The Claus model also includes cancers in the 
paternal lineage. However, to our knowledge, the Claus model has 
never been validated in an independent dataset.

To facilitate the use of the Claus model in the clinical setting, 
lifetime risk tables for most combinations of affected first-degree 
and second-degree relatives were subsequently published (90). 
Although these tables do not give risk estimates for some combi-
nations of relatives (eg, it is not possible to estimate the combined 
risk of having an affected mother and maternal grandmother), an 
estimation of this risk can be extrapolated using other combina-
tions, such as mother and maternal aunt.

The Claus model has three major drawbacks that limit its rou-
tine use. First, the model does not include any nonhereditary risk 
factors (eg, hormonal or reproductive factors). Second, the Claus 
lifetime risk tables reflect risks for North American women in the 
1980s, which are known to be lower than the current incidence of 
breast cancer in North America and in most of Europe (5,6). 
Third, the published tables and computerized versions of the 
model appear to give different results (91): The tables give consis-
tently higher risk figures than the computer model. A possible 
explanation for this discrepancy is that whereas the tables make no 
adjustments for unaffected relatives, the computerized version is 
able to reduce the likelihood of a germline mutation in an indi-
vidual with an increasing number of unaffected women. It may also 
be possible that a population risk element is not added back into 
the calculation by the computer model or that the adjustment for 
unaffected relatives is made from the original averaged figure 
rather than from assuming that each family will have already had 
an “average” number of unaffected relatives. It is interesting that 
concordance of risk estimates between the Gail and Claus models 
has also been shown to be relatively poor. The greatest discrep-
ancies in the risk estimate were seen in women with nulliparity, 
multiple benign breast biopsies, and a strong paternal or first-
degree family history (92,93).

BRCAPRO Model. In addition to assessing the likelihood of car-
rying a BRCA gene mutation, the computerized BRCAPRO model 
(94) also includes an extension software package (95) that is able to 
calculate overall breast cancer risk based on the Bayes rules of 
determination of the probability of a mutation, given the family 
history. The model gives the option of using estimates of mutation 
frequencies from three independent populations: two unselected 
populations [using data from Claus et al. (96) and from Ford et al. 
(97)] and one Ashkenazi Jewish population [using data from 
Struewing et al. (13)].

An advantage of this model is that it includes information on 
both affected and unaffected relatives. However, this model has a 
number of limitations. For example, none of the nonhereditary 
risk factors have yet, to our knowledge, been incorporated into 
the model, and therefore, this model is likely to underestimate 
breast cancer risk in women who have nonhereditary risk factors. 
Furthermore, because no other “genetic” elements (eg, non--
BRCA gene mutations) are incorporated into the model, it is likely 
that the model will underestimate risk in breast-cancer-only 
families.

Jonker Model. Jonker et al. (98) published a genetic model to 
predict breast cancer risk based on the family history of breast and 
ovarian cancers. In this model, which is essentially an extension of 
the Claus model combined with the BRCAPRO model, familial 
clustering of breast and ovarian cancers is explained by three 
genes: BRCA1, BRCA2, and a hypothetical third gene called 
BRCAu. The hypothetical gene was modeled to explain all familial 
clustering of breast cancer that was not accounted for by the 
BRCA1 and BRCA2 genes. The model parameters were estimated 
using published population incidence and relative risk estimates. 
The Jonker model does not include data on personal risk factors 
for breast cancer.

The Jonker model gave rise to a model that was validated and 
is known as the Claus extended model (99). This model was 
derived by linear regression of the independent variables on the 
predictions given by the Jonker model and, therefore, includes 
estimates of the risk of bilateral breast cancer, of ovarian cancer, 
and of having three or more affected relatives. The Claus ex-
tended model has been criticized (100) for two major limitations, 
namely its inability to estimate risk in women with complex family 
histories and its validation in individual families rather than in an 
independent series.

IBIS or Tyrer–Cuzick Model. No single model has to our knowl-
edge integrated family history, surrogate measures of endogenous 
estrogen exposure, and benign breast disease in a comprehensive 
fashion. The IBIS model (42), also known as the Tyrer–Cuzick 
model, which was based in part on a dataset acquired from the 
International Breast Intervention Study and other epidemiological 
data, has attempted to address these deficiencies by including the 
most comprehensive set of variables of all the models. Furthermore, 
unlike the Claus and BRCAPRO models, the IBIS model allows 
for the presence of multiple genes of differing penetrance. The 
IBIS model is similar to the Jonker model, in that its algorithm 
includes the likelihood of BRCA1 and BRCA2 mutations while 
allowing for a lower penetrance of BRCAu.
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BOADICEA Model. The BOADICEA model was designed with 
the use of segregation analysis in which susceptibility is explained 
by mutations in BRCA1 and BRCA2 as well as a polygenic compo-
nent that reflects the multiplicative effect of multiple genes, which 
individually have small effects on breast cancer risk (43). This 
algorithm allowed predicted mutation probabilities and cancer 
risks in individuals with a family history to be estimated. Early 
validation studies of BOADICEA were carried out for the proba-
bility of germline mutation only (43); more recently, validation 
included cancer risk prediction over time (57).

Comparisons of Model Accuracy
To our knowledge, only one study has compared multiple cancer 
risk models in a prospective fashion (86). In this relatively small 
study of 1933 women enrolled in family history clinic, 52 cancers 
were observed. The Gail, BRCAPRO, and IBIS models were 
tested. The BRCAPRO model was calibrated to use the mutation 
prevalence estimates described by Claus (96) and by Ford (97), 
hereafter referred to as BRCAPRO (Claus) and BRCAPRO 
(Ford), respectively. Model inputs were derived from data col-
lected over a mean follow-up of 5.27 years, and outputs of breast 
cancer risk estimate were obtained. The ratios of the expected to 
the observed numbers of breast cancers were 0.48 (95% confidence 
interval [CI] = 0.37 to 0.64) for the Gail model, 0.56 (95% CI = 
0.43 to 0.75) for the BRCAPRO (Claus) model, 0.49 (95% CI = 
0.37 to 0.65) for the BRCAPRO (Ford) model, and 0.81 (95% 
CI = 0.62 to 1.08) for the IBIS model. The accuracy of the models 
for individual patients was evaluated using receiver operating char-
acteristic curves: The AUC was 0.735 for the Gail model, 0.716 for 
the BRCAPRO (Claus) model, 0.737 for the BRCAPRO (Ford) 
model, and 0.762 for the IBIS model. It was therefore concluded 
that the IBIS model was the most consistently accurate model for 
predicting the risk of breast cancer.

Subgroup analyses (86) showed that the Gail, BRCAPRO 
(Claus), and BRCAPRO (Ford) models all underestimated the risk 
of breast cancer, particularly in women who had a single first-de-
gree relative affected with breast cancer. The IBIS model was an 
accurate predictor of risk in this subgroup. Conversely, all of the 
models accurately predicted risk in women with two first-degree 
relatives or one first-degree relative plus two other relatives with 
breast cancer. These findings suggest that having a single affected 
first-degree relative influences risk more than was previously ap-
preciated. It is not surprising that the BRCAPRO (Ford) and IBIS 
models—the only ones to include a woman’s family history of 
ovarian cancer—were the only models to accurately predict breast 
cancer risk in women with a family history of ovarian cancer. This 
finding confirms that family history of ovarian cancer has a sub-
stantial effect on breast cancer risk. The Gail, BRCAPRO (Claus), 
and BRCAPRO (Ford) models all statistically significantly under-
estimated the risk of breast cancer in women who were nulliparous 
or whose first live birth occurred after age 30 years. A more recent 
retrospective study that included the Gail, Claus, Claus extended, 
Jonker, IBIS, and BOADICEA models also showed that the Gail, 
Claus, and Jonker models underestimated breast cancer risk. The 
authors concluded that for current clinical practice, the IBIS 
and BOADICEA models appeared to be the most accurate for 
assessing the risk of breast cancer (101).

It is clear that some models are better than others in certain 
circumstances. In Figure 3, we present a flowchart for selecting a 
breast cancer risk assessment model in the clinical setting. It 
should be noted, however, that the presence of only one prospec-
tive comparison of cancer risk models (86) is a major limitation to 
the formulation of guidelines for the choice of risk assessment 
model for breast cancer. Clearly, more prospective studies  
are necessary to gauge the accuracy of the existing, and newer, 
models.

Future Directions
Studies are in progress to examine whether inclusion of additional 
factors, such as mammographic density (102–104), weight gain 
(75), and serum steroid hormone measurements (105), into exist-
ing models will improve breast cancer risk prediction. Results of 
these studies reported thus far suggest that the addition of mam-
mographic density data can improve the discriminatory accuracy of 
existing models that are based on classical factors (85). It should be 
noted, however, that variability in the approach for measuring 
mammographic density places substantial limitations on the 
impact that the addition of mammographic density has on overall 
model accuracy. First, current methods require that the mammo-
gram is digitized and a trained operator makes decisions about how 
to define the dense and nondense areas. This approach, therefore, 
disregards all grayscale information from the image because each 
pixel is considered to be either black (nondense) or white (dense). 
Furthermore, this method is also liable to introduce operator-
dependent variability. Second, mammography produces a two-
dimensional image of a three-dimensional object. Obtaining a 
measure of the total dense volume of the breast or of the per-
centage of the breast volume that is dense may give a more precise 
and reproducible measure of density that might predict breast 
cancer more accurately than the current two-dimensional measure 
(106). Some of the breast cancer risk assessment models have been 
updated to include mammographic density but still require inde-
pendent validation before they can replace the models that are 
currently available. Clearly, advances in breast imaging that focus 
on reproducible measures of breast density are needed before this 
variable is routinely included in risk assessment modeling.

Further genome-based research is also likely to yield new risk 
prediction methods. Thus far, only one common variant in the 
CASP8 gene with a minor allele frequency greater than 5% has 
been found, by using the candidate gene approach, to be associated 
with breast cancer risk (107). Consequently, examinations of a 
range of high-risk genes as well as single-nucleotide polymorphisms 
(SNPs) in several genes that are associated with low risks of breast 
cancer have been conducted to potentially improve our under-
standing of cancer genetics. Genome-wide association studies have 
identified multiple, new, common genetic variants that are associ-
ated with breast cancer risk. The largest of these studies (4) geno-
typed 390 breast cancer patients with a family history of breast 
cancer and 364 control subjects in a multistage process. A total of 
227 876 SNPs were initially analyzed. Of these, 10 405 SNPs of 
interest were assessed in a second-stage replication study. Finally, 
30 SNPs were analyzed in a third stage that involved an indepen-
dent validation set comprising more than 9000 subjects. Eventually, 
five chromosomal loci were identified as risk factors for breast  
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cancer: 10q26 (the site of FGFR2), 16q12.1 (TOX3), 5q11.2 
(MAP3K1), 8q24, and 11p15.5 (LSP1). In another study that was 
conducted by the National Cancer Institute Cancer Genetic 
Markers of Susceptibility initiative, a SNP in intron 2 of FGFR2 
was found to be associated with the risk of breast cancer based on a 
follow-up of 10 SNPs from the stage I genome-wide association 
study (108). The same SNP in the FGFR2 locus was subsequently 
confirmed to be associated with breast cancer risk in an Icelandic 
population, as was another locus at 2q35 that was associated with 
estrogen receptor–positive breast cancer (109). A combined analysis 
of a promising signal in the three published genome-wide associa-
tion studies led to the identification of an additional locus on 5p12 
that is associated with breast cancer risk (110). Most recently, a 
genome-wide association study has confirmed strong association 
signals for the genomic regions described above and has also iden-
tified new associations with genome-wide statistical significance for 
markers on chromosomes 1p11.2 and 14q24.1 (111). In addition, 
the authors confirmed that the two loci previously associated with 
genome-wide statistical significance, namely, 2p24.1 (CASP8) and 
11p15.5 (LSP1), were again associated with a high risk of breast 
cancer. These data show that because of the variable presence of 
these SNPs in the general population, very large datasets are 
required to identify, at genome-wide statistical significance levels, 
loci with small estimated per-allele effect sizes.

At present, none of the breast cancer risk models described in the 
previous section incorporate any of the SNPs that were found in the 
genome-wide association studies of breast cancer into their risk cal-
culations. Research on genetics, epigenetics, gene expression pro-
filing, and, most recently, whole genome scans has already provided 
exciting findings that have led to the discovery of novel risk alleles. 

However, because of the large number of low-risk alleles that 
are associated with breast cancer, these methods are both time- 
consuming and prohibitively expensive. Therefore, at present, these 
discoveries cannot be translated into personalized medicine. Ongoing 
efforts in developing innovative networking algorithms to under-
stand, assess, and measure extremely complex gene–gene and gene– 
environment interactions may ultimately lead to improved 
individualized risk assessment and thereby allow for better targeting 
of breast cancer screening and chemoprevention strategies. Therefore, 
despite the excitement related to these methods and the expectation 
that they could be incorporated into prediction programs with other 
known risk factors, at present, there are insufficient data to support 
their routine inclusion in breast cancer risk estimation.

Conclusions
It is well established that the greatest benefit from breast cancer 
prevention strategies comes from treating women who are at high 
risk of the disease (112). Among high-risk women, such prevention 
strategies have been shown to potentially reduce the incidence of 
breast cancer by up to 1500 cases per 100 000, whereas among low-
risk women, the reduction is at best 25 cases per 100 000 (113). 
Consequently, it is imperative that accurate and individualized risk 
assessment can be carried out so that appropriate women are selected 
for prevention strategies. A number of models are available to assess 
both breast cancer risk and the chances of identifying a BRCA1 or 
BRCA2 mutation. Some models perform both tasks, but to date, 
none are totally able to discriminate between families that do and do 
not have mutations or between women who will and will not develop 
breast cancer. Steady and incremental improvements in the models 

Figure 3. Flowchart for the choice of model for assessing risk of breast cancer over time. BOADICEA = Breast and Ovarian Analysis of Disease 
Incidence and Carrier Estimation Algorithm; IBIS = International Breast Cancer Intervention Study.
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are being made, but these changes require revalidation. The dis-
covery of alleles that are associated with breast cancer risk will add a 
new layer of complexity to all of these models.
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