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Abstract. Long-term measurements of particle number size

distribution (PNSD) produce a very large number of obser-

vations and their analysis requires an efficient approach in

order to produce results in the least possible time and with

maximum accuracy. Clustering techniques are a family of

sophisticated methods that have been recently employed to

analyse PNSD data; however, very little information is avail-

able comparing the performance of different clustering tech-

niques on PNSD data. This study aims to apply several clus-

tering techniques (i.e. K means, PAM, CLARA and SOM)

to PNSD data, in order to identify and apply the optimum

technique to PNSD data measured at 25 sites across Bris-

bane, Australia. A new method, based on the Generalised

Additive Model (GAM) with a basis of penalised B-splines,

was proposed to parameterise the PNSD data and the tem-

poral weight of each cluster was also estimated using the

GAM. In addition, each cluster was associated with its pos-

sible source based on the results of this parameterisation, to-

gether with the characteristics of each cluster. The perfor-

mances of four clustering techniques were compared using

the Dunn index and Silhouette width validation values and

the K means technique was found to have the highest per-

formance, with five clusters being the optimum. Therefore,

five clusters were found within the data using the K means

technique. The diurnal occurrence of each cluster was used

together with other air quality parameters, temporal trends

and the physical properties of each cluster, in order to at-

tribute each cluster to its source and origin. The five clusters

were attributed to three major sources and origins, includ-

ing regional background particles, photochemically induced

nucleated particles and vehicle generated particles. Overall,

clustering was found to be an effective technique for attribut-

ing each particle size spectrum to its source and the GAM

was suitable to parameterise the PNSD data. These two tech-

niques can help researchers immensely in analysing PNSD

data for characterisation and source apportionment purposes.

1 Introduction

Atmospheric aerosols affect climate, air quality and subse-

quently human health (Stevens and Feingold, 2009; Pope

and Dockery, 2006; Lohmann and Feichter, 2005). Despite

their small contribution to particle volume and mass, ultra-

fine particles (particles with diameter < 100 nm) make a sig-

nificant contribution to particle number concentration (PNC)

(Morawska et al., 1998; Harrison and Yin, 2000) and tox-

icological studies show evidence of their adverse effects on

human health (WHO, 2006). Therefore, measurements of the

chemical and physical properties of aerosol particles are cru-

cial in order to understand their effects on climate and human

health. One of the most important properties of particles is

their size distribution, which helps in understanding aerosol

dynamics, as well as determining their sources (Charron et

al., 2008; Harrison et al., 2011). Long-term particle num-

ber size distribution (PNSD) measurements have been con-
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ducted in a number of different environments and the mea-

sured size range can extend from less than 10 nm up to more

than 10 µm. In addition, these long-term measurements gen-

erally result in a large number of observations and analysing

such a massive data set often requires sophisticated tech-

niques. The clustering technique has recently been used to

divide particle size data into groups with similar characteris-

tics and then relate each group to its sources and/or to inves-

tigate aerosol particle formation and evolution (Beddows et

al., 2009; Dall’Osto et al., 2012; Wegner et al., 2012; Tunved

et al., 2004; Costabile et al., 2009; Charron et al., 2007).

Several clustering algorithms currently exist, which makes

the selection of an appropriate clustering technique a daunt-

ing task. Determining the most appropriate number of clus-

ters can be an additional challenge for researchers. Clusters

should ideally be compact, well-separated and scientifically

relevant. Beddows et al. (2009) assessed the performance of

four clustering techniques (Fuzzy, K means, K median and

model based clustering) on PNSD data using different val-

idation indices, particularly the Dunn index, and found the

K means technique capable of finding clusters with smallest

size, furthest separation and highest degree of inner cluster

similarity compared to others. Throughout their work, four

techniques were evaluated while several other methods (e.g.

Partitioning around Medoids (PAM), Clustering of Large Ap-

plications (CLARA), self-organising map (SOM), and Affin-

ity Propagation (AP)) are available whose performance on

PNSD data has not been assessed so far. Therefore, these

techniques were selected to be compared with K means us-

ing two validation measures.

K means is an iterative algorithm minimising the within-

cluster sum of squares to find a given number of clusters

(Hartigan and Wong, 1979). PAM is an iterative algorithm

similar to K means which constructs clusters around a set

of representative objects by assigning all data to the nearest

representative object using sum of pair-wise dissimilarities

(Kaufman and Rousseeuw, 2009). CLARA performs PAM

on a number of subgroups of data, allowing faster perfor-

mance for a large number of observations (Kaufman and

Rousseeuw, 2009). SOM is a neural networks based method,

with the ability to map high dimensional data to two dimen-

sions, and has been widely used in data mining researches

(Kohonen, 2001). The AP algorithm is a relatively new clus-

tering technique which has been employed in different fields

since its introduction in 2007. AP considers all data as poten-

tial exemplars and finds the best set of exemplars and corre-

sponding clusters by exchanging messages between the data

points (Frey and Dueck, 2007).

In a recent study, three years of PNSD data were clus-

tered using the K means technique to produce seven clus-

ters. Those clusters were found to form three main groups,

anthropogenic (69 %), maritime (29 %) and nucleation (2 %),

which characterised the whole data set (Wegner et al., 2012).

In another study, Dall’Osto et al. found nine clusters within

the PNSD data collected over a 1 year period in an urban

area and found four typical PNSD groups using diurnal vari-

ation, and directional and pollution association (Dall’Osto et

al., 2012). The authors called those groups traffic, dilution,

summer background and regional pollution, which included

69, 15, 4 and 12 % of the total data respectively. In the above

and all other previous studies, PNSD data were averaged to

decrease the number of data and consequently reduce com-

putational cost and complexity. However, averaging can en-

cumber the transient characterisation of PNSD data and the

larger the averaging interval, the more transient characteris-

tics will be lost.

Parameterisation of PNSD data in terms of a mixture of

few log-normal components is common and beneficial, par-

ticularly for data averaged over a longer interval. Multi-log-

normal function with predefined number of peaks where the

means of each log-normal distribution are constrained to vary

around some initial estimates in the nucleation, Aitken, ac-

cumulation and coarse modes have been used in literature

(Hussein et al., 2004, 2005; Heintzenberg et al., 2011; Shen

et al., 2011). However, not all of the measured particle size

data are able to be expressed in this way and this imposing

a predefined number of separated peaks may not accurately

represent all of the variation in the collected data. In addition,

this method can result in losing the transient trends if applied

to each single particle size spectrum.

This study aimed to identify the optimum clustering tech-

nique and number of clusters by comparing the performance

of three clustering techniques (i.e. PAM, CLARA and SOM)

with the K means technique for several numbers of clusters

and to associate each cluster with its possible sources using

the cluster characteristics, PNSD parameterisation results,

diurnal variation, temporal variation and several air quality

parameters.

2 Materials and methods

2.1 Background

This study was performed within the framework of the Ultra-

fine Particles from Traffic Emissions and Children’s Health

(UPTECH) project, which aimed to determine the effects of

exposure to traffic-related ultrafine particles (UFPs) on the

health of primary school-aged children. Air quality measure-

ments were conducted for two consecutive weeks at each of

the 25 randomly selected state primary schools across the

Brisbane Metropolitan Area, in Australia, during the period

October 2010 to August 2012. Further details regarding the

UPTECH project can be found in Salimi et al. (2013) and the

study design is available online (UPTECH).

2.2 Instrumentation, quality assurance and data

processing

PNSD within the size range 9–414 nm was measured every

5 min using a TSI scanning mobility particle sizer (SMPS).
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The SMPS system included a TSI 3071 differential mobil-

ity analyser (DMA) connected to a TSI 3782 water-based

condensation particle counter (CPC). A combination of a di-

aphragm pump and a critical orifice was used to supply a

sheath flow of 6.4 L/min. A zero particle filter and silica gel

dryer were used to supply a dry, particle-free air stream. PNC

was measured using a TSI 3781 water-based CPC, particle

mass concentration (PM2.5 and PM10) measurements were

conducted using a TSI DustTrak, solar radiation and other

meteorological parameters were measured by a Monitor Sen-

sors weather station, and EcoTech gas analysers measured

gaseous emission (i.e. CO, NOx and SO2) concentrations.

These data were averaged according to 5 min intervals prior

to data analysis.

The sheath and aerosol flow rate of the SMPS system was

checked three times per week using a bubble flow meter. A

zero check of the system was done at the start of the measure-

ments at each school using a high efficiency particle (HEPA)

filter connected to the inlet of the system. Size accuracy of

the SMPS was calibrated using monodisperse polystyrene la-

tex (PSL) particles with a nominal diameter of 100 nm. Size

accuracy calibrations were conducted five times throughout

the whole measurement campaign and all instruments passed

the test with a maximum error of 3.5 % from the nominal di-

ameter, as recommended by Wiedensohler et al. (2012). Par-

ticle losses inside the tube were corrected using the formula

derived for the laminar flow regime (Hinds, 1999). Equiv-

alent tube length was used to correct for particle loss in-

side the bipolar charger and DMA (Karlsson and Martins-

son, 2003; Covert et al., 1997). On-site calibration checks

(span and zero) of the gas analysers were conducted on the

second day of the 2 week measurement campaigns at each

school when the analysers reached the stable running condi-

tions. The DustTrak zero check was performed every second

day and calibrated if it was not showing zero within the un-

certainty of the instrument. Information regarding the quality

assurance and data processing procedures for the CPC can be

found in Salimi et al. (2013).

2.3 Clustering particle number size distribution data

Principal component analysis (PCA) was performed on the

whole data set, in order to reduce its high dimensionality and

remove the correlation between features, so as to increase the

performance of the clustering. Ideally, clusters should min-

imise intra-cluster variation (compactness) and maximise the

distance between clusters (separation) (Handl et al., 2005;

Brock et al., 2008), resulting in small, homogenous clus-

ters which are clearly separated from each other. Validation

measures reflecting the compactness and separation of the

clusters were used to find the optimal method and number

of clusters using the “clValid” package in R (R Develop-

ment Core Team, 2014; Brock et al., 2008). As the number

of clusters increases, improving compactness, the separation

decreases due to multiple clusters being created which could

be described by a single cluster (consider the extreme case of

every observation belonging to its own cluster). Combining

compactness and separation into a single measure is an effec-

tive way to address this issue. The Dunn index (Dunn, 1974)

and Silhouette width (Rousseeuw, 1987) are scores resulting

from nonlinear combination of compactness and separation.

Therefore, those scores were chosen in order to compare the

performance of different clustering techniques and to find the

optimum number of clusters.

The maximum vector length allowed by R is “231
− 1”,

therefore the Dunn index can only be calculated for a maxi-

mum of 46 340 observations. To address this issue, half of the

observations were randomly selected and their cluster valid-

ity values calculated by applying PAM, CLARA, SOM and

K means techniques using 2 to 20 clusters. Then validity val-

ues for the other half of observations were calculated. This

procedure allowed us to evaluate the whole set of observa-

tions considering the vector size limitation.

The AP clustering technique was initially selected as a

candidate, in addition to the aforementioned techniques. The

AP technique was implemented using “APcluster” R package

(Bodenhofer et al., 2011) and was computationally expen-

sive but ultimately unsuccessful at clustering our huge data

set effectively. Based on our experience with this technique

and the recommendations of its developers, AP is not recom-

mended for finding a small number of clusters in a large data

set, but it is more appropriate for finding a large number of

relatively small clusters.

2.4 Non-parametric estimation of particle number size

distribution temporal trends

In this paper, a new approach was developed to parame-

terise the PNSD data by finding the local peaks and the nor-

malised concentration at each peak. In order to find the real

local peaks, the noisy trend of PNSD data should be firstly

smoothed. To achieve this, we used the Generalised Additive

Model (GAM), with a basis of penalised B-splines (Wood,

2003; Eilers and Marx, 1996), which allows for the flexi-

ble estimation of non-linear effects without assuming, a pri-

ori, the functional form of the non-linearity (Wood, 2003).

In contrast with the multi lognormal fitting method, this ap-

proach keeps all the local peaks while smoothing the noisy

data. The fitted function was then used to find the local peaks,

which were defined to be the local maxima in a neighbour-

hood of five PNSD bins on each side (Fig. 1). The bi-variate

kernel density estimate, using the Gaussian kernel, was com-

puted to visualise the distribution of the peaks of the PNSD

data for each cluster (Wand, 1994).

Understanding the temporal trend of clusters provides fur-

ther information about the nature and source of each clus-

ter. The GAM allows for a flexible approach to investigating

these temporal trends. Therefore, the GAM, with a basis of

B-spline, was employed to calculate the temporal trend of

each cluster. The resulting fitted smooth functions, and their
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Figure 1. An example of a fitted smooth function (solid line) on

PNSD data (circles) and the identified local peaks (solid circles).

95 % confidence intervals, indicate the temporal variation of

each cluster.

3 Results and discussion

3.1 Particle number size distribution

Around 82 000 SMPS measurements with 5 min intervals

were conducted during the whole UPTECH project, which

comprised about 285 days of measurements. All of the pre-

vious long-term studies averaged the data to reduce the com-

plexity and calculation costs; however, averaging can con-

ceal the transient peaks and troughs in PNSD data (Beddows

et al., 2009). Therefore, we decided not to average the mea-

sured PNSD data and to use the high performance computers

for handling such a large quantity of data instead.

3.2 Optimum clustering technique and number of

clusters

Figure 2 illustrates the performance of each clustering tech-

nique for two randomly selected data. Horizontal and vertical

axes show the number of clusters and validation value (Dunn

index and Silhouette value) respectively. K means produced

the highest Dunn index and Silhouette width values for all

of the number of clusters, for both sets of randomly selected

data, while the rest of the techniques showed the same level

of performance (Fig. 2). This indicates that the K means

technique was able to produce more compact clusters that

were well separated from each other. The other techniques

resulted in almost the same Dunn index value, but SOM re-

sulted in better Silhouette width values, followed by PAM

and then CLARA. The performance of the K means tech-

nique was significantly higher than the rest of the techniques

and was therefore selected as the preferred technique.

Cluster schemes with 2–8 and 10 clusters had the highest

Silhouette width values in the first and second set of ran-

domly selected data, respectively. Five clusters had the high-

est Dunn index value for the first set of data and it resulted in

Table 1. Characteristics of clusters.

Cluster # Occurrence Source/origin

percentage

1 4.5 % Photochemically induced

nucleated particles (fresh)

2 14.1 % Photochemically induced

nucleated particles

(relatively aged)

3 31.6 % Vehicle generated

particles (primary and

secondary)

4 22.6 % Regional background

aerosols + biomass

burning

5 27.2 % Regional background

aerosols

a high value in the second set as well. However, 9–10 clus-

ters resulted in a higher Dunn index value in the second set of

data. As much as possible, clustering with the optimum num-

ber of clusters should have the highest validation value, while

still having an appropriate number of clusters for distinguish-

ing between different sources and processes (Wegner et al.,

2012; Beddows et al., 2009). Therefore, five was selected as

the optimum number of clusters, as it had a high validation

value, as well as a scientifically relevant number of clusters

to relate each cluster to a source and to find the processes

related to each cluster.

3.3 Clustering PNSD data

The K means clustering technique was applied to all PNSD

data in order to find five clusters. Figure 3 shows the nor-

malised number spectra and 95 % confidence interval asso-

ciated with each cluster, together with the diurnal variation

of their occurrence and their association with solar radiation

intensity, particle mass concentration, PNC and gaseous pol-

lutants concentrations.

Local peaks of each single PNSD spectrum were found

using the technique described in Sect. 2.4. Plotting the nor-

malised concentration of the peaks vs. their diameter is useful

in order to determine the frequency of peaks and their diam-

eter for each cluster. However, with too many data, points are

over-plotted which makes it impossible to distinguish the un-

derlying trends and relationships. Therefore, Bi-kernel den-

sity estimation, which is a very effective technique to address

this issue, was used to visualise the distribution of peaks in

PNSD for each cluster (Fig. 4). Characteristics of each clus-

ter and the associated sources are summarised in Table 1

and explained in the following sections, based on Figs. 3, 4,

and 5.

Atmos. Chem. Phys., 14, 11883–11892, 2014 www.atmos-chem-phys.net/14/11883/2014/
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Figure 2. Dunn index and Silhouette width for K means, SOM, PAM and CLARA clustering techniques for different cluster numbers.

Cluster 1: this cluster included 4.5 % of the total mea-

sured particle size spectra with a mode at the SMPS lowest

size detection limit (9 nm). The diurnal pattern of occurrence

showed nocturnal minima with a peak at midday. Cluster1

was associated with the highest solar intensity and lowest

PM2.5 among all clusters, and it was also associated with

high PNC and low CO and NOx. Local peaks predominantly

occurred at diameters lower than 30 nm, with the highest

density and normalised concentration at 9 nm. This clearly

shows the dominance of newly formed particles which have

grown in size and reached the instrument’s size detection

limit. The strength of the local peaks was the highest among

all clusters, indicating the dominance of the smallest parti-

cles.

The abovementioned observations indicate that this clus-

ter was attributed to photochemically induced nucleated par-

ticles in the ambient air. New particles mainly formed dur-

ing the middle of the day and grew to reach the instrument’s

size detection limit. The same type of particles was observed

in Barcelona for 4 % of the observations (Dall’Osto et al.,

2012). These types of particles were not observed in Lon-

don, which could be due to long time averaging of the data

and/or different climatological conditions of the monitored

environment in that study (Beddows et al., 2009).

Cluster 2: this cluster included 14.1 % of the total PNSD

data and showed a mode for particles with a diameter less

than 20 nm. The diurnal pattern of occurrence for Cluster 2

peaked strongly at 2 hours after midday (14:00 LT), with a

nocturnal minimum, which was in agreement with its associ-

ation with high solar radiation intensity. Its diurnal pattern of

occurrence and association with a low concentration of traffic

generated primary pollutants (NOx and CO) indicated that it

had non-traffic related sources. This cluster was also associ-

ated with high PNC. Local peaks were mainly present at di-

ameters less than 20 nm, with the highest density occurring at

a normalised concentration around 0.03. Local peaks present

at diameters larger than 30 nm were lower and corresponded

to normalised concentrations of less than 0.01. This cluster

was attributed mainly to aged, photochemically induced nu-

cleated particles in the ambient air. Minor peaks at diameters

larger than 30 nm revealed the contribution of vehicle gener-

ated particles to this cluster (Morawska et al., 2008). How-

ever, their contribution to the total PNC was minimal.

Clusters 1 and 2 were attributed to the same source of par-

ticles, but were distinguished as relatively fresh and aged,

respectively. Nucleated particles initially grew and reached

the instrument detection size limit in Cluster 1, before grow-

ing further and gradually shifting to Cluster 2 after about 2

hours. Nucleated particles grew in size by condensation and

coagulation, and as they aged their number concentration de-

creased and their size increased. This illustrates why Cluster

1 had higher PNC but lower PM2.5 compared to Cluster 2.

The fraction of PNSD data related to nucleated particles in

this study was higher than in another study in the same envi-

ronment, which used the classic approach to find the banana-

shaped new particle formation events (Cheung et al., 2011).

This shows that the actual occurrence of new particle for-

mation events is much higher than what is generally found

by classic approaches, because in most particle formation

events, the newly formed particles would be scavenged by

www.atmos-chem-phys.net/14/11883/2014/ Atmos. Chem. Phys., 14, 11883–11892, 2014
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Figure 3. Clustering results using SMPS data. Graphs on the left show the particle size distributions with 95 % confidence intervals, the

associated graphs on the middle show the diurnal cycle of the hourly percentage of occurrence for each cluster, and the graphs on right show

the associated solar radiation (SR), PM2.5, PM10, NOx, CO, SO2, total PNC.

the pre-existing particles as a result of coagulation, before

they grew by means of condensation. However, this does not

mean that the nucleation events would not occur and that the

particles resulting from them would not be present in the air.

Cluster 3: this cluster included 31.6 % of the total mea-

sured data, with a mode at 20 nm and a minor peak at the

smallest instrument size limit (≈ 9 nm), showing a strong as-

sociation with morning and afternoon rush hour traffic (Sal-

imi et al., 2013). This cluster was associated with low solar

Atmos. Chem. Phys., 14, 11883–11892, 2014 www.atmos-chem-phys.net/14/11883/2014/
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Figure 4. Density of peaks in particle number size data at each clus-

ter.

radiation and high vehicle generated primary pollutants, in-

cluding CO and NOx, and the particle number size modes

were in the range of vehicle generated primary particles

and nucleated particles during the exhaust emissions dilu-

tion (Casati et al., 2007; Ntziachristos et al., 2007; Janhäll

et al., 2004). Local peaks were mainly present at diameters

less than 30 nm, particularly at the lowest detection size limit

of the instrument. The normalised concentration correspond-

ing to peaks was highest at the smallest particle size. These

observations suggest that this cluster was attributed to vehi-

cle generated particles, including primary particles (having

a diameter of around 40 nm) and particularly secondary par-

ticles formed in the vehicle exhaust (having a diameter of

around 9 nm). Similar types of particles were observed in the

literature (Dall’Osto et al., 2012; Beddows et al., 2009).

Cluster 4: this cluster included 22.6 % of the total data,

with a mode at 60 nm. The diurnal pattern of occurrence

showed nocturnal maxima, with a minimum during the mid-

day and early afternoon hours, and it was associated with

the highest PM2.5 among all clusters as well as with high

NOx and CO. Local peaks were present at diameters smaller

than 20 nm and of 50–70 nm. The normalised concentration

corresponding to either of these diameter ranges had a sim-

Figure 5. Temporal trend of occurrence of each cluster, with their

95 % confidence intervals.

ilar magnitude. These findings suggest that cluster 4 was at-

tributed mainly to regional background aerosols. However,

a source of small particles and gaseous emissions is also

present in this cluster.

Cluster 5: this cluster included 27.2 % of the total PNSD

data, with a mode at 40 nm. The diurnal pattern of occurrence

followed almost the same trend as Cluster 4, with a mini-

mum during the early afternoon and a peak during the night-

time. The local peaks’ density was almost evenly distributed

through the whole range of diameters, with smaller particles

having more peaks particularly for diameters less than 20 nm.

However, normalised concentrations corresponding to each

local peak were highest at diameters of 30–60 nm, showing

the dominance of particles at this size range. The observa-

tions mentioned above suggest that, like Cluster 4, this clus-

ter was attributed to regional background aerosols.

3.4 Temporal trend of clusters

A non-parametric regression model was fitted to the daily

occurrence fraction of each cluster, in order to determine the

temporal trend of each cluster. The regression model quan-

tified the presence of each cluster as the sum of a smooth

function for each month and a trend which included the day,

month and year. It should be noted that no data were collected

during the first two months of the year.

The smooth monthly function for Cluster 1 did not show

any significant variation before November, at which point it

increased moderately; it peaked during December. Solar ra-

diation intensity is also known to increase during the last 2

months of the year in the southern hemisphere, which in-

dicates that this may be the driving force of more atmo-

spheric nucleation events. Cluster 2 showed similar trends

of increase in December in conjunction with the expected in-

www.atmos-chem-phys.net/14/11883/2014/ Atmos. Chem. Phys., 14, 11883–11892, 2014
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crease in solar radiation intensity. The prevalence of Clus-

ter 4 increased, peaked around July–August and then de-

creased. Cluster 4 showed the strongest monthly variation

among all clusters. As mentioned earlier, this cluster was as-

sociated with regional background aerosols and its monthly

variation showed a positive correlation with biomass burning

within the studied region, which mostly took place during

July to September. Biomass burning associated PNSDs peak

at 100–200 nm (Friend et al., 2012); however, the PNSD of

Cluster 4 peaked at around 60 nm, which was 20 nm larger

than Cluster 5, which was also associated with background

aerosols. This implies that Cluster 4 included the mixture

of background and biomass burning aerosols, which made

the average PNSD peak shift by 20 nm. In addition, peaks at

diameters larger than 100 nm were present with higher nor-

malised concentration compared to Cluster 5, indicating the

effect of biomass burning aerosols (Fig. 4).

The prevalence of Cluster 3 decreased, with a trough dur-

ing August, before increasing, which is likely to be the result

of the biomass burning which occurred during August and

consequently decreased the prevalence of particles belong-

ing to Cluster 3. For Cluster 5, a peak was observed during

June, which decreased to show a trough during August, be-

fore peaking again during November. This trend is the op-

posite to what was observed for Cluster 4 and given that the

peaks for Cluster 5 were observed when there were fewer

biomass burning events, it was most likely associated with re-

gional background aerosols, without the influence of biomass

burning events. The PNSDs which were attributed to regional

background aerosols in this study had different modes com-

pared to the one observed in London (Beddows et al., 2009),

but similar ones to the observations in Barcelona (Dall’Osto

et al., 2012).

4 Conclusions

In summary, the K means clustering technique was found

to be the preferred technique when compared to SOM,

PAM and CLARA. The K means clustering technique cat-

egorised the PNSD data into five clusters and each cluster

was attributed to its source and origin. Five clusters were

attributed to three major sources and origins, as follows:

(1) Regional background particles: Clusters 4 and 5, which

included 49.8 % of the total data, were attributed to regional

background aerosols with clear modes at 60 and 40 nm, re-

spectively; (2) Photochemically induced nucleated particles:

Clusters 1 and 2, which included 18.6 % of the total data,

were attributed to photochemically induced nucleated parti-

cles; and (3) Vehicle generated particles: Cluster 3, which

included 31.6 % of the data, was attributed to vehicle gen-

erated particles. A new method was proposed for the pa-

rameterisation of particle size spectra, based on the GAM,

which was found to be an effective tool and is recommended

to be used for particle size data. K means clustering suc-

cessfully attributed each particle size spectrum to its source

and/or origin. However, while this technique could attribute

each particle size spectrum to its major contributing source,

several sources with different levels of contribution are often

responsible for the pattern of each particle size spectrum. The

structure of the contribution of sources can be further investi-

gated using other techniques, such as Bayesian infinite mix-

ture modelling (Wraith et al., 2011; Kulis and Jordan, 2011),

Bayesian K means, Bayesian beta-process clustering (Brod-

erick et al., 2012) and positive matrix factorisation (Harrison

et al., 2011).
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