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Gas-surface interactions play important roles in internal rarefied gas flows, especially
in micro-electro-mechanical systems with large surface area to volume ratios. Although
great progresses have been made to solve the Boltzmann equation, the gas kinetic bound-
ary condition (BC) has not been well studied. Here we assess the accuracy the Maxwell,
Epstein, and Cercignani-Lampis BCs, by comparing numerical results of the Boltzmann
equation for the Lennard-Jones potential to experimental data on Poiseuille and thermal
transpiration flows. The four experiments considered are: Ewart et al. [J. Fluid Mech. 584,
337-356 (2007)], Rojas-Cárdenas et al. [Phys. Fluids, 25, 072002 (2013)], and Yam-
aguchi et al. [J. Fluid Mech. 744, 169-182 (2014); 795, 690-707 (2016)], where the mass
flow rates in Poiseuille and thermal transpiration flows are measured. This requires the
BC has the ability to tune the effective viscous and thermal slip coefficients to match the
experimental data. Among the three BCs, the Epstein BC has more flexibility to adjust
the two slip coefficients, and hence in most of the time it gives good agreement with the
experimental measurement. However, like the Maxwell BC, the viscous slip coefficient
in the Epstein BC cannot be smaller than unity but the Cercignani-Lampis BC can.
Therefore, we propose to combine the Epstein and Cercignani-Lampis BCs to describe
gas-surface interaction. Although the new BC contains six free parameters, our approxi-
mate analytical expressions for the viscous and thermal slip coefficients provide a useful
guidance to choose these parameters.

Key words: Authors should not enter keywords on the manuscript

1. Introduction

The Boltzmann equation is the fundamental equation for the dynamics of dilute gases,
which uses the velocity distribution function (VDF) to describe the system state at the
mesoscopic level, and incorporates the intermolecular potential into its bilinear collision
operator (Chapman & Cowling 1970). It is computationally far more efficient to solve
the Boltzmann equation than running a molecular dynamics (MD) simulation at the
microscopic level; especially, noise-free deterministic solvers of the Boltzmann equation
are much more efficient than MD solvers in gas microflow simulations where the flow speed
is small (Hadjiconstantinou et al. 2003). The Boltzmann equation has found applications
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in space shuttle re-entry problems, gas micro-electro-mechanical systems, and even shale
gas extractions, where the computational fluid dynamics based on the Navier-Stokes
equations fails (Bird 1994; Gad-el-Hak 1999).

In order to reliably predict the behavior of rarefied gas flows, the Boltzmann equa-
tion with the realistic intermolecular potential should be solved accurately. Moreover,
the kinetic boundary condition (BC) for the gas-surface interaction, which determines
the VDF of the reflected gas molecules at the surface in terms of that of the incident
molecules, must be properly described.

Recently, the former problem has been tackled by the discrete velocity method (Sharipov
& Bertoldo 2009b), the direct simulation Monte Carlo method (Sharipov & Strapasson
2012; Strapasson & Sharipov 2014; Sharipov & Strapasson 2014; Weaver et al. 2014), the
conservative projection method (Dodulad & Tcheremissine 2013; Dodulad et al. 2014),
and the fast spectral method (Wu et al. 2014, 2015a,c), where the Boltzmann equation
with the Lennard-Jones and ab initio potentials has been solved. It has been found that
in canonical flows such as the Poiseuille, thermal transpiration, Couette, and Fourier
flows, the relative difference in macroscopic quantities between the Lennard-Jones and
hard-sphere (HS) potentials could reach about 20%. For instances, in the free-molecular
flow regime, even when the density, temperature, and shear viscosity of the two molecular
models are exactly the same, the HS model has a mass flow rate (MFR) 16% higher than
that of the Lennard-Jones potential for Xenon in the Poiseuille flow between two parallel
plates, while in thermal transpiration the HS model has a MFR 24% higher (Sharipov &
Bertoldo 2009b; Wu et al. 2015a). Moreover, in the coherent Rayleigh-Brillouin scatter-
ing of light by rarefied gases, it has been shown that the extraction of gas bulk viscosity
could have an relative error of about 100% when inappropriate intermolecular potentials
are used (Wu et al. 2015b).

However, there has been little progress in developing accurate gas kinetic BCs. Physi-
cally, when the alignment of the wall molecules and the intermolecular potential between
the gas and wall molecules are known, the gas-surface interaction can be captured by MD
simulation (Barisik & Beskok 2014, 2016). However, the time step in this microscopic
simulation is several femtoseconds, which is far smaller than that in the mesoscopic
simulation based on the Boltzmann equation (the mean collision time of gas molecules
is about a few fraction of one nanosecond). This greatly limits the application of the
MD or even hybrid MD-direct simulation Monte Carlo methods (Gu et al. 2001; Liang
et al. 2013; Liang & Ye 2014; Watvisave et al. 2015). Some attempts have been made to
model the gas-surface interaction also at the mesoscopic level. For instance, Frezzotti &
Gibelli (2008) and Barbante et al. (2015) proposed to use the Enskog collision operator
to model the fluid-wall interaction, while Brull et al. (2016) adopted the Boltzmann-type
gas atom-phonon collision operator to describe the gas-surface interaction. Whether these
approaches are accurate/useful or not remains an open question and needs further ex-
tensive investigation.

For the practical calculation of internal rarefied gas flows, the determination and eval-
uation of the gas kinetic BC, which specifies the relation between the VDF f(v) of the
reflected and incident gas molecules at the boundary via a non-negative scattering kernel
R(v′ → v), is of great interest (Cercignani 1988):

vnf(v) =

∫
v′n<0

|v′n|R(v′ → v)f(v′)dv′, vn > 0. (1.1)

Here, v′ and v are velocities of the incident and reflected molecules, respectively, and vn
is the normal component of the molecular velocity v directed into the gas.

Only a few gas kinetic BCs have been developed empirically since the gas kinetic the-
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ory was established more than one century ago. The first BC was proposed by Maxwell
(1879) and is still being used widely. The Maxwell model employs only one parameter,
the tangential momentum accommodation coefficient (TMAC), which describes the pro-
portion of diffusely reflected molecules at the wall, while the remaining gas molecules are
assumed to be specularly reflected. This model has been improved by Epstein (1967) by
introducing a molecular velocity-dependent TMAC. Unfortunately, the Epstein model is
rarely used by (or even known to) the community of rarefied gas dynamics, although it
has successfully described the temperature-dependence of the thermal accommodation
coefficient for various gases interacting with tungsten. Four years later, Cercignani &
Lampis (1971) developed a BC having two disposable parameters, which has also been
widely used nowadays. Later, Klinc & Kuěčer (1972) introduced an isotropic scattering
to account for the influence of the roughness of the wall surface. Recently, Struchtrup
(2013) combined the models of Epstein (1967) and Klinc & Kuěčer (1972), which has
more flexibility to fit the experimental data.

The gas-surface interaction plays an important role in internal rarefied gas flows, espe-
cially in gas micro-electro-mechanical systems with large surface area to volume ratios;
sometimes it is more important to get the BC correct than solving the Boltzmann equa-
tion with the realistic intermolecular potential accurately. For example, in Poiseuille flow
through a circular capillary, the MFR in the free molecular flow regime increases by nearly
a factor of two when the TMAC decreases from 1 to 0.8 (Porodnov et al. 1978). Therefore,
extensive experimental and theoretical works have been conducted (see Knudsen (1909);
Edmonds & Hobson (1965); Porodnov et al. (1974, 1978); Ewart et al. (2007); Rojas-
Cárdenas et al. (2013); Yamaguchi et al. (2014, 2016); Sharipov (2011) and references
therein) to quantify the influence of gas-surface interaction and test the applicability of
the BC: most of the time, the Maxwell model is tested (Porodnov et al. 1978; Ewart
et al. 2007; Yamaguchi et al. 2016), and the Cercignani-Lampis model is checked for a
few cases (Cercignani & Lampis 1971; Sharipov 2003b). The use of the Maxwell model
is not satisfactory, since in Poiseuille flow it has been seen that the TMAC has to be
adjusted at different range of the rarefaction parameter (Ewart et al. 2007), while in
thermal transpiration flow (Yamaguchi et al. 2014, 2016) neither the Maxwell model nor
the Cercignani-Lampis model can recover the MFR and thermomolecular pressure dif-
ference (TPD, a parameter indicating the performance of the Knudsen pump) exponent
simultaneously, see § 5.1 below.

It is the purpose of this paper to assess the accuracy of various gas-surface BCs, in par-
ticular the overlooked Epstein model, and develop a new BC if necessary, by comparing
the numerical solution of the Boltzmann equation to recent sound and reliable experi-
ments of Poiseuille and thermal transpiration flows (Ewart et al. 2007; Rojas-Cárdenas
et al. 2013; Yamaguchi et al. 2014, 2016). Especially, in thermal transpiration flows, the
MFR and TPD exponent have been measured using the same gas and solid surface,
which provides an ideal and strict case to test the BCs. We will use the Boltzmann
equation with Lennard-Jones potentials, which is the perfect model to study the rarefied
gas flows; for example, it gives good agreements in the shock wave profile with those
obtained both from the experiment and MD simulation, see comparisons in Fig. 17 (and
the corresponding experimental result by Kowalczyk et al. (2008)) and Fig. 18 in Wu
et al. (2013). We will solve the Boltzmann equation with the Lennard-Jones potential
in the whole rarefaction regime by the fast spectral method and fast iteration method
accurately and efficiently (Wu et al. 2014, 2015a, 2017). With the perfect theoretical
model, accurate and efficient numerical simulation, and reliable experimental data, the
BC can be assessed with good accuracy.

The remainder of the paper is organized as follows: In § 2, the Boltzmann equation
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and various BCs are introduced. Approximate analytical expressions for the viscous and
thermal slip coefficients are obtained in § 3, which help us to choose the free parameters
in the BC to compare with the experimental data. In § 4, the Boltzmann equation and
BCs are linearized, and dimensionless MFRs in the Poiseuille flow between two parallel
plates and through a circular capillary are tabulated, for the HS gas with the Cercignani-
Lampis BC. The influence of the intermolecular potential is analyzed for typical noble
gases. In § 5, the linearized Boltzmann equation (LBE) with the Lennard-Jones potential
is solved, and the performance of the Maxwell, Cercignani-Lampis, and Epstein BCs are
assessed by the experimental data. The results lead us to propose a linear superposition
of Cercignani-Lampis and Epstein BCs, which can be fitted better to the experimental
results than individual BCs. The paper closes with some final comments in § 6.

2. The Boltzmann equation and its boundary condition

In this section, we introduce the Boltzmann equation for rarefied gas dynamics, as well
as various kinetic BCs for the gas-surface interaction: the Maxwell, Cercignani-Lampis,
and Epstein models.

2.1. The Boltzmann equation

The state of a dilute monatomic gas can be described by the VDF f(t,x,v), where t is
the time, x = (x1, x2, x3) is the space coordinate, and v = (v1, v2, v3) is the molecular
velocity. The number of gas molecules in the six-dimensional phase space dvdx is given by
f(t,x,v)dvdx, and macroscopic quantities can be calculated via the velocity moments of
the VDF: the molecular number density is n =

∫
fdv, the flow velocity is V =

∫
vfdv/n,

the temperature is T = m
∫
|v − V|2fdv/3kn, the pressure tensor is Pij = m

∫
(vi −

Vi)(vj − Vj)fdv, and the heat flux is q = m
∫
|v − V|2(v − V)fdv/2, where m is the

mass of the gas molecules, k is the Boltzmann constant, and the subscripts i, j denote
the spatial directions. The ideal gas law p = (P11 + P22 + P33)/3 = nkT is satisfied.

The dynamics of a dilute monatomic gas in the whole flow regime is governed by the
Boltzmann equation,

∂f

∂t
+ v · ∂f

∂x
=

∫∫
B(θ, |u|)[f(v′∗)f(v′)− f(v∗)f(v)]dΩdv∗, (2.1)

where v and v∗ are the pre-collision velocities of the two colliding gas molecules, while v′

and v′∗ are their corresponding post-collision velocities. Pre- and post-collision velocities
are related through the conservation of momentum and energy,

v′ = v +
|u|Ω− u

2
, v′∗ = v∗ −

|u|Ω− u

2
, (2.2)

where u = v − v∗ is the relative pre-collision velocity and Ω is a unit vector along the
relative post-collision velocity v′−v′∗. The deflection angle θ between the pre- and post-
collision relative velocities satisfies cos θ = Ω · u/|u|, 0 6 θ 6 π. Finally, B(θ, |u|) is the
non-negative collision kernel, which is determined by the intermolecular potential. For
a general spherically symmetrical intermolecular potential φ(r), the deflection angle is
given as (Chapman & Cowling 1970)

θ(b, |u|) = π − 2

∫ W1

0

[
1−W 2 − 4φ(r)

m|u|2

]−1/2

dW, (2.3)

and the collision kernel is

B(θ, |u|) =
b|db|

sin θ|dθ|
|u|. (2.4)
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Here, W = b/r, with b and r being the aiming and center-of-mass distances between two
colliding molecules, respectively, and W1 is the positive root of the term in the brackets
in (2.3). For HS molecules of diameter d, the deflection angle is determined through
b = d cos(θ/2), hence the collision kernel is B = d2|u|/4. For the (6-12) Lennard-Jones
potential,

φ(r) = 4ε

[(
d

r

)12

−
(
d

r

)6
]
, (2.5)

where ε is a potential depth, and d is the distance at which the potential is zero, detailed
calculations/forms of B(θ, |u|) can be found in Sharipov & Bertoldo (2009a) and Venkat-
traman & Alexeenko (2012).

2.2. Gas kinetic boundary conditions

The scattering kernel R(v′ → v) in (1.1) gives the probability that a molecule which
hits the wall surface with velocity in [v′,v′ + dv′] will return to the gas with velocity
in [v,v + dv]. Without considering adsorption/desorption or chemical reactions, the
scattering kernel obeys the normalization condition:

∫
vn>0

R(v′ → v)dv = 1, and the

reciprocity relation (which states that, if the gas is in equilibrium with the surface, both
the incident and reflected molecules must obey the Maxwellian distribution at the surface
temperature Tw):

|v′n|f0(Tw,v
′)R(v′ → v) = |vn|f0(Tw,v)R(−v→ −v′), (2.6)

where

f0(Tw,v) = exp

(
−m|v|

2

2kTw

)
(2.7)

is the Maxwellian VDF with zero velocity in the rest frame of the surface.
The most popular gas-surface BC was proposed in Maxwell (1879), and is known as

the Maxwell or diffuse-specular BC. The scattering kernel reads

RM (v′ → v) = αM
m2vn

2π(kTw)2
exp

(
− mv2

2kTw

)
+ (1− αM )δ(v′ − v + 2nvn), (2.8)

where the constant αM is the TMAC, with a value in the range of 0 6 αM 6 1, and
δ is the Dirac delta function. This BC assumes that, after collision with the surface,
a molecule is specularly reflected with the probability 1 − αM , otherwise it is reflected
diffusely (i.e. reflected towards every direction with equal probability, in a Maxwellian
velocity distribution). Purely diffuse and specular reflections take place for αM = 1 and
αM = 0, respectively.

In the Maxwell model, the TMAC is independent of the velocities (or energies) of the
impinging molecules, which contradicts both theoretical and experimental investigations.
To remove the deficiency in the Maxwell model, Epstein (1967) proposed the generalized
scattering kernel

RE(v′ → v) =
vnf0(Tw,v)Θ(v)Θ(v′)∫
vn>0

vnf0(Tw,v)Θ(v)dv
+ [1−Θ(v′)]δ(v′ − v + 2nvn), (2.9)

where the probability of a gas molecules being reflected diffusely is given by Θ(v), which
is a function of the molecular velocity. For Θ(v) = αM , the Epstein model (2.9) reduces
to the Maxwell model (2.8).

Various forms of Θ(v) can be chosen. Following the arguments that i) for incident
molecules with very low energies, most of the molecules are trapped by the attractive
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part of the gas-surface interaction and hence are almost completely accommodated, ii) at
high energies the degree of accommodation decreases because an increasing fraction of the
molecules have sufficient energy to overcome the trapping effect, and iii) at sufficiently
high energies it is found that the accommodation coefficient increases again toward a
high energy asymptote, Epstein adopted the following form of Θ(v):

Θ(v) = Θ0 exp

(
−α mv2

2kTW

)
+ Θ1

[
1− exp

(
−β mv2

2kTW

)]
, (2.10)

where Θ0 = 1 and α, β, and Θ1 are three constants. If α > β, the first term in the
right-hand-side of (2.10) controls the low-energy behavior of Θ(v), while the second
term controls the high-energy behavior. The accommodation coefficient approaches Θ1

at the high-energy asymptote. This simple expression gives good agreement of the ther-
mal accommodation coefficient (that relates the temperature jump to the heat passing
through the wall) between the theory and experimental data, for various kinds of gases
interacting with tungsten, over a wide range of temperature (Epstein 1967).

In addition to the Maxwell model, the BC developed by Cercignani & Lampis (1971)
has also been widely used. The Cercignani-Lampis scattering kernel reads:

RCL(v′ → v) =
m2vn

2παnαt(2− αt)(kTw)2
I0

(√
1− αnmvnv′n
αnkTw

)
× exp

{
−m[v2

n + (1− αn)v′n]2

2kTwαn
− m|vt − (1− αt)v′t|2

2kTwαt(2− αt)

}
, (2.11)

where vt is the tangential velocity and

I0(x) =
1

2π

∫ 2π

0

exp(x cosφ)dφ. (2.12)

The two parameters αn and αt in the Cercignani-Lampis model are limited to [0, 1]
and [0, 2], respectively. When αn = αt = 1 or αn = αt = 0, the purely diffuse or specular
BCs are recovered, respectively, while for αn = 0 and αt = 2, the Cercignani-Lampis
scattering kernel describes “backwards” scattering.

We believe that the Cercignani-Lampis model is popular because of the following two
major factors: First, the Cercignani-Lampis model can recover the plume-like structure
around the line of specular reflection in the experiment of thermal beam scattering (Cer-
cignani 1971). Second, in the free molecular limit of thermal transpiration flow, the TPD
exponent (an important indicator of the performance of the Knudsen pump) can be less
than 0.5 in the Cercignani-Lampis model, which agrees well with some experimental mea-
surements (Sharipov 2003b), while the Maxwell model always predicts a TPD exponent
of 0.5 at any value of the TMAC and any shapes of the flow cross section.

Klinc & Kuěčer (1972) also proposed an isotropic scattering to describe the gas-surface
interaction:

RKK(v′ → v) =
vn
|v′|3

δ(|v′| − |v|), (2.13)

which was recently extended in Struchtrup (2013) by combining with the Epstein BC.

In Poiseuille and thermal transpiration flows, it can be shown that the Klinc & Kuěčer
(1972) model yields the same mass flow rates as the diffuse BC. Therefore, in the fol-
lowing, only the Maxwell, Epstein, and Cercignani-Lampis BCs will be considered, and
special attention will be paid to the long-overlooked Epstein BC (2.9).
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3. Velocity slip coefficients in slightly rarefied gas flows

The Epstein BC, which contains more adjustable parameters than the Cercignani-
Lampis BC, may have a wider range of applications. A simple way to illustrate this is
to calculate the velocity slip and temperature jump coefficients in slightly rarefied gas
flows. Although there exist accurate numerical methods to calculate these coefficients (i.e.
see Loyalka (1989), Siewert (2003), and Takata et al. (2003) for the Boltzmann equation
with the HS potential, and Sharipov (2003a) for the Shakhov kinetic model equation),
we adopt the method used in Struchtrup (2013) to obtain analytical expressions for these
coefficients, which have errors of about 10% or so. With these approximate expressions,
it becomes much easier for us to choose the appropriate parameters in the BC, without
running the numerical simulation over all the parameter regions.

Here we focus only on the velocity slip coefficients, because it has already been shown
that the Epstein (1967) BC can recover the energy accommodation coefficient over a wide
range of temperature. In general, in the near-continuum flow regime, the slip velocity Vt
can be written as

Vt√
kTw/m

= −2− χ
χ

√
π

2

σnt
p
− ω

5

qt

p
√
kTw/m

, (3.1)

where the normal and tangential components are indicated by the indices n and t, re-
spectively, and σ is the trace-free viscous stress tensor.

The two coefficients χ and ω in (3.1), which depended on the gas-surface BCs, describe
different physical effects: χ is the effective TMAC, and (2 − χ)/χ is the viscous slip
coefficient frequently used in isothermal slip flows (Karniadakis et al. 2005; Sharipov
2003a), while ω is the thermal slip coefficient that describes a flow induced by a heat
flux tangential to the wall surface (thermal transpiration). For the Maxwell model (2.8),
we have

χM = αM , ωM = 1, (3.2)

for the Cercignani-Lampis model (2.11), we have

χCL = αt, ωCL = 1. (3.3)

Note that in the Maxwell model, αM 6 1; hence the viscous slip coefficient cannot
be less than unity. However, in the Cercignani-Lampis model, 0 < αt 6 2, so that the
viscous slip coefficient can be less than unity when αt > 1 (this corresponds to some
extent the backwards scattering).

The viscous and thermal slip coefficient in the Epstein model (2.9) are

χE =

Θ0

(1+α)3
+ Θ1 − Θ1

(1+β)3

1 + Θ0

2(1+α)3

(
1− 1√

1+α

)
− Θ1

2(1+β)3

(
1− 1√

1+β

) , (3.4)

ωE = 1−
6
[

α
(1+α)4

Θ0 − β
(1+β)4

Θ1

]
Θ0

(1+α)3
+
[
1− 1

(1+β)3

]
Θ1

. (3.5)

Figure 1 shows examples of the effective TMAC χ and thermal slip coefficient ω in the
Epstein model, for Θ0 = 1, Θ1 = 0.5 and α = β or α = 20β, respectively. When α and β
are small, both the TMAC χ and the thermal slip coefficient ω are close to unity. When
α and β approach infinity, we have ω → 1 and χ → Θ1. Between the two limits, χ and
ω can be adjusted over a wide range, by choosing different values of α and β.

It will be useful to bear in mind the following points before comparing the numerical
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Figure 1: The effective TMAC χ (solid lines) and thermal slip coefficient ω (dashed lines)
in the Epstein BC. The parameters are Θ0 = 1, Θ1 = 0.5, and (a) α = β, (b) α = 20β.
The viscous slip coefficient is given by (2− χ)/χ.

and experimental data in § 5. First, like the Maxwell BC, the effective TMAC χ can
never be larger than unity in the Epstein BC. Mathematically, χ > 1 can be achieved by
choosing, for example, Θ0 > 1. However, this cannot always guarantee the positiveness
of the VDF, and therefore will not be considered. This means that, if the experimental
TMAC is larger than unity, the Cercignani-Lampis BC must be used. Second, in the
Epstein BC the thermal slip coefficient ω can be varied over a wide range, including
values above unity, or even negative values. This stands in contrast to the Maxwell and
Cercignani-Lampis models, for both of which the thermal slip coefficient is constant,
irrespective of the coefficients in the kernel. Therefore, if ω deviates significantly from
unity, the Epstein BC should be used. Finally, a (linear) combination of Epstein and
Cercignani-Lampis BCs will allow to simultaneously have TMAC above unity, and a
wide range for the thermal slip coefficient, see § 5.3.3 below.

4. The linearized Boltzmann equation

In most experiments in gas micro-electro-mechanical systems, the dimensionless pres-
sure and temperature gradients are small (see the first equation in Sharipov & Bertoldo
(2009b)), so that the Boltzmann equation (2.1) can be linearized. For convenience, we
introduce dimensionless variables: the spatial coordinate is normalized by the character-
istic length `, temperature is normalized by the wall surface temperature Tw, velocity is
normalized by the most probable molecular speed vm =

√
2kTw/m, molecular number

density is normalized by the average number density n0, and the VDF is normalized by
n0/v

3
m.

To calculate the collision kernel for the Lennard-Jones potential (2.5), the intermolec-
ular distance r is normalized by d, so that the collision kernel can be calculated by the
method of Sharipov & Bertoldo (2009a). The collision kernel is expressed as B(θ, |u|) =
|u|σ(θ, |u|vm), where σ(θ, |u|vm) is exactly the same as the differential cross-section
σ(θ,E) calculated by Sharipov & Bertoldo (2009a), with the dimensionless relative col-
lision energy E = |u|2kTw/2ε.

In Poiseuille flow, suppose the wall temperature is fixed at Tw, and a uniform pressure
gradient, p = n0kTw(1+ξPx3/`) with |ξP | � 1, is imposed on the gas in the x3 direction.
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Then, the VDF in steady state can be expressed as

f(x1, x2,v) = feq(v) + ξP [x3feq(v) + h(x1, x2,v)], (4.1)

where the global equilibrium state is described by

feq(v) =
exp(−|v|2)

π3/2
, (4.2)

and the perturbed VDF h satisfies the linearized Boltzman equation (LBE),

v1
∂h

∂x1
+ v2

∂h

∂x2
= L(h)− v3feq(v), (4.3)

with the linearized Boltzmann collision operator

L(h) = n0d
2`

∫∫
B(θ, |u|)

[
feq(v

′
∗)h(v′) + h(v′∗)feq(v

′)

− h(v∗)feq(v)− feq(v∗)h(v)
]
dΩdv∗. (4.4)

We use the fast spectral method to solve the collision operator (4.4) and the fast itera-
tive method to solve (4.3) with rapid convergence to the steady state; detailed numerical
techniques can be found in Wu et al. (2015a, 2017). When the VDF h is solved, the flow
velocity V3 and the heat flux q3, which are normalized by vm and n0kTwvm, respectively,
are calculated as

V3(x1, x2) =

∫
v3hdv,

q3(x1, x2) =

∫
v3

(
|v|2 − 5

2

)
hdv.

(4.5)

The dimensionless mass flow rate (MFR) and heat flow rate (HFR) in the Poiseuille
flow, which are relevant to experimental measurement, are given by

MFR: GP =− 4

A

∫∫
V3(x1, x2)dx1dx2,

HFR: QP =
4

A

∫∫
q3(x1, x2)dx1dx2,

(4.6)

where A is the cross section area of the flow.
In thermal transpiration flow, a temperature gradient is imposed on the wall in the x3

direction: the wall temperature is T = Tw(1 + ξTx3/`) with |ξT | � 1, but the pressure
is fixed at n0kTw. In this case, the VDF can be expressed as f = feq + ξT [x3feq(|v|2 −
5/2) +h], and the perturbed VDF h satisfies (4.3), with the source term −v3feq replaced
by −v3

(
|v|2 − 5

2

)
feq. In this paper, we do not calculate the thermal transpiration flow,

since, according to the Onsager-Casimir relation (Loyalka & Cipolla 1971), the MFR in
thermal transpiration flow, GT , is opposite to the HFR in Poiseuille flow,

GT = −QP . (4.7)

Note that the dimensionless flow rates are affected by the gas-surface interaction, the
intermolecular potential between gas molecules, and the rarefaction parameter

δ =
n0kTw`

µvm
, (4.8)

where µ is the shear viscosity of the gas. The shear viscosity can be calculated as long as
the intermolecular potential is known, details of which can be found in Wu et al. (2015a).
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The dimensionless rarefaction parameter δ is related to the inverse of the Knudsen num-
ber, δ ∼ 1

Kn .

4.1. The linearized boundary conditions

Due to the reciprocity relation (2.6), the BC for the perturbed VDF h can be obtained
by simply replacing f with h in (1.1). Since (4.3) possesses the symmetry

h(x1, x2, v1, v2, v3) = −h(x1, x2, v1, v2,−v3), (4.9)

the Epstein BC can be greatly simplified, as the reflected gas molecules from the surface
are only resulting from the specular reflection. Also, in this case, the Klinc & Kuěčer
(1972) BC is exactly the same with the diffuse BC. Suppose a flat wall is located at the
x2-x3 plane and its normal direction is along the x1 direction. The perturbed VDF for
the reflected gas molecules hr is related to the perturbed VDF of the impinging molecules
hi as

hr(v1, v2, v3) = [1−Θ(v)]hi(−v1, v2, v3). (4.10)

For the Cercignani-Lampis BC, the scattering kernel (2.11) is simplified to (Sharipov
2002, 2003a,b):

RCL(v′ → v) = Rn(v′n → vn)Rt(v
′
t → vt), (4.11)

where

Rn(v′n → vn) =
2vn
αn

I0

(
2

√
1− αnvnv′n

αn

)
exp

{
− [v2

n + (1− αn)v′n]2

αn

}
,

Rt(v
′
t → vt) =

1

παt(2− αt)
exp

[
−|vt − (1− αt)v′t|2

αt(2− αt)

]
. (4.12)

4.2. Numerical results using the Cercignani-Lampis boundary condition

In this section, we present solutions of the LBE for the Poiseuille flow between two infi-
nite parallel plates and through a circular cross section. Although this classical problem
has been investigated extensively, accurate numerical results based on the LBE and the
Cercignani-Lampis BC is scarce (Garcia & Siewert 2009). In our numerical simulations,
the accuracy of the flow rates are controlled within 0.5% (Wu et al. 2015a).

We first consider the Poiseuille flow between two infinite parallel plates at a distance
`. Table 1 shows the MFR and HFR for HS molecules, when the Cercignani-Lampis and
Maxwell BCs are used. When the parameters αn, αt, and αM in the Cercignani-Lampis
and Maxwell BCs are fixed, the HFR always increases when the rarefaction parameter δ
decreases, while the MFR first decreases and then increases with δ, such that the famous
Knudsen minimum is observed at δ ≈ 1.

For the Maxwell BC, when δ is fixed, both the MFR and HFR increases significantly
when the TMAC αM is reduced. For the Cercignani-Lampis BC, when the values of δ
and αn are fixed, the MFR also increases rapidly when αt decreases. From (3.3) we know
that αt is the effective TMAC of the Cercignani-Lampis BC. By choosing αM = αt, we
see in Table 1 that the MFR from the Cercignani-Lampis BC increases slower than that
of the Maxwell BC, as αt and αM decrease.

The approximate analytical expression (3.3) predicts no influence of αn on the MFR.
From the numerical simulation we see that the influence is indeed very limited. When αt
and δ are fixed, the MFR decreases slightly when αn increases. For instance, for δ = 0.01,
the MFR is decreased by 10% when αn is increased from 0.25 to 1; as δ increases, this
influence becomes weaker and weaker.

The variation of the HFR with respect to αn and αt is more complicated than that
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GP −QP GP −QP GP −QP GP −QP GP −QP

δ αt αn=0.25 αn=0.5 αn=0.75 αn=1 αM = αt

0.01 0.5 5.115 1.699 4.871 1.499 4.752 1.390 4.684 1.322 6.844 2.991
1 2.911 1.320 2.911 1.320 2.911 1.320 2.911 1.320 2.911 1.320
1.5 2.084 1.122 2.196 1.205 2.265 1.265 2.320 1.319

0.1 0.5 3.996 1.098 3.854 0.953 3.774 0.866 3.724 0.807 4.389 1.570
1 1.951 0.801 1.951 0.801 1.951 0.801 1.951 0.801 1.951 0.801
1.5 1.200 0.634 1.270 0.699 1.319 0.749 1.360 0.796

0.2 0.5 3.710 0.906 3.616 0.798 3.558 0.726 3.519 0.675 3.907 1.211
1 1.747 0.667 1.747 0.667 1.747 0.667 1.747 0.667 1.747 0.667
1.5 1.037 0.525 1.086 0.577 1.123 0.620 1.156 0.661

1 0.5 3.308 0.458 3.297 0.435 3.288 0.415 3.280 0.398 3.327 0.529
1 1.507 0.389 1.507 0.389 1.507 0.389 1.507 0.389 1.507 0.389
1.5 0.894 0.336 0.901 0.351 0.908 0.366 0.915 0.381

2 0.5 3.340 0.300 3.339 0.296 3.338 0.292 3.337 0.288 3.347 0.328
1 1.564 0.281 1.564 0.281 1.564 0.281 1.564 0.281 1.564 0.281
1.5 0.970 0.265 0.971 0.268 0.971 0.272 0.972 0.275

3.5 0.5 3.518 0.201 3.517 0.203 3.516 0.204 3.515 0.206 3.524 0.212
1 1.742 0.202 1.742 0.202 1.742 0.202 1.742 0.202 1.742 0.202
1.5 1.148 0.203 1.149 0.202 1.150 0.200 1.150 0.198

10 0.5 4.522 .0834 4.514 .0861 4.508 .0887 4.503 .0912 4.535 .0843
1 2.729 .0900 2.729 .0900 2.729 .0900 2.729 .0900 2.729 .0900
1.5 2.120 .0962 2.127 .0938 2.133 .0913 2.138 .0889

20 0.5 6.162 .0437 6.151 .0454 6.142 .0470 6.133 .0485 6.177 .0437
1 4.360 .0480 4.360 .0480 4.360 .0480 4.360 .0480 4.360 .0480
1.5 3.743 .0519 3.752 .0505 3.761 .0490 3.769 .0474

100 0.5 19.47 .0091 19.45 .0094 19.44 .0098 19.43 .0102 19.49 .0090
1 17.66 .0101 17.66 .0101 17.66 .0101 17.66 .0101 17.66 .0101
1.5 17.03 .0110 17.05 .0107 17.06 .0103 17.07 .0100

Table 1: Dimensionless flow rates in the Poiseuille flow of HS molecules between two
infinite parallel plates, obtained from the LBE with the Cercignani-Lampis and Maxwell
(last two columns) BCs.

of the MFR. First, when αn and δ are fixed, the HFR increases slightly with αt at large
values of δ, while it increases with decreasing αt at small values of δ. Second, when αt = 1
and δ is fixed, the HFR does not change with αn: in fact, in this case it can be proven
that the Cercignani-Lampis BC is reduced to the diffuse BC (Sharipov 2002). Third,
when αt(6= 1) and δ are fixed, the HFR increases slightly with αn at large values of δ,
but it increases with decreasing αn at smaller values of δ. Similar behaviors have been
observed by Sharipov (2002) when the linearized Shakhov kinetic model is used instead
of the LBE.

The influence of the intermolecular potential between gas molecules is also investigated.
For this we choose helium and xenon, since from Sharipov & Bertoldo (2009b) it is known
that the results of other noble gases such as neon, argon, and krypton will lie between
helium and xenon. Some typical MFR and HFR profiles are shown in Fig. 2, from which
we see that the influence of the intermolecular potential is obvious at small values of
δ, irrespective of the gas-surface BCs. For small values of δ (i.e. δ < 1), among the HS
gas, helium, and xenon, the HS gas has the largest MFR and HFR, while xenon has the
smallest: in the diffuse BC, the relative differences in the MFR and HFR between HS
gas and xenon are about 15% when δ = 0.01. In the Cercignani-Lampis BC with αn = 1



12 Lei Wu and Henning Struchtrup

δ

10
-2

10
-1

10
0

10
1

10
2

0

0.5

1

1.5

2

2.5

3

3.5

4

GP

−QP

(a)

δ

10
-2

10
-1

10
0

10
1

10
2

0

0.5

1

1.5

2

2.5

3

3.5

4

−QP

GP

(b)

δ

10
-2

10
-1

10
0

10
1

10
2

−
Q

P
/G

P

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

αt = 0.75 αt = 1

(c)

Figure 2: The MFR and HFR in the Poiseuille flow between two parallel plates, when the
Cercignani-Lampis and Maxwell BCs are used. Triangles: HS molecules. Dashed lines:
Helium. Dash-dotted lines: Xenon. In the Cercignani-Lampis BC, we use αn = 1, (a)
αt = 1 and (b) αt = 0.75. In the Maxwell BC, αM = 0.75 is used (Pentagrams). (c) The
TPD exponent.

and αt = 0.75, the relative differences in the MFR and HFR between HS gas and xenon
are about 12% and 23%, respectively, when δ = 0.01.

Figure 2(c) also shows the TPD exponent, which is an important parameter deter-
mining the performance of a Knudsen pump. The TPD exponent is defined as follows:
consider a closed system consisting of two reservoirs connected by a long channel. If the
temperature ratio T1/T2 is maintained between the reservoirs, a pressure ratio p1/p2 is
established between them. When the steady state is reached, the two ratios are related
to each other as

p1

p2
=

(
T1

T2

)γ
, (4.13)

where γ is the TPD exponent, an important indicator of the performance of the Knudsen
pump. If the temperature ratio between the two reservoirs is small, it can be expressed
as

γ =
GT
GP

= −QP
GP

. (4.14)

It can be found from Fig. 2(c) that, in the range of δ considered, the HS gas has the
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GP −QP GP −QP GP −QP GP −QP

δ αt αn=0.25 αn=0.5 αn=0.75 αn=1
0 0.5 3.401 1.026 3.356 0.912 3.328 0.838 3.309 0.786

1 1.504 0.752 1.504 0.752 1.504 0.752 1.504 0.752
1.5 0.838 0.608 0.856 0.646 0.871 0.684 0.887 0.725

0.01 0.5 3.363 0.989 3.321 0.881 3.295 0.809 3.277 0.759
1 1.472 0.725 1.472 0.725 1.472 0.725 1.472 0.725
1.5 0.809 0.584 0.825 0.620 0.840 0.657 0.855 0.697

0.1 0.5 3.251 0.837 3.227 0.763 3.210 0.709 3.198 0.669
1 1.397 0.634 1.397 0.634 1.397 0.634 1.397 0.634
1.5 0.753 0.516 0.763 0.545 0.773 0.574 0.784 0.607

0.5 0.5 3.181 0.574 3.176 0.553 3.172 0.536 3.169 0.520
1 1.381 0.492 1.381 0.492 1.381 0.492 1.381 0.492
1.5 0.767 0.432 0.770 0.443 0.772 0.455 0.775 0.468

1 0.5 3.233 0.432 3.232 0.429 3.231 0.426 3.230 0.423
1 1.448 0.403 1.448 0.403 1.448 0.403 1.448 0.403
1.5 0.845 0.379 0.847 0.380 0.847 0.383 0.848 0.385

2 0.5 3.423 0.295 3.420 0.300 3.418 0.305 3.417 0.309
1 1.639 0.298 1.639 0.298 1.639 0.298 1.639 0.298
1.5 1.038 0.301 1.040 0.297 1.042 0.293 1.043 0.288

5 0.5 4.113 0.152 4.105 0.157 4.098 0.162 4.093 0.167
1 2.319 0.164 2.319 0.164 2.319 0.164 2.319 0.164
1.5 1.708 0.175 1.715 0.170 1.721 0.165 1.726 0.161

10 0.5 5.333 .0835 5.322 .0868 5.313 .0899 5.305 .0929
1 3.531 .0917 3.531 .0917 3.531 .0917 3.531 .0917
1.5 2.913 .0992 2.923 .0963 2.932 .0934 2.939 .0904

20 0.5 7.815 .0437 7.802 .0456 7.791 .0472 7.782 .0489
1 6.007 .0484 6.007 .0484 6.007 .0484 6.007 .0484
1.5 5.385 .0527 5.396 .0511 5.406 .0495 5.416 .0479

50 0.5 15.30 .0179 15.28 .0187 15.27 .0194 15.26 .0201
1 13.49 .0200 13.49 .0200 13.49 .0200 13.49 .0200
1.5 12.86 .0218 12.87 .0212 12.89 .0205 12.89 .0198

100 0.5 27.78 .0090 27.77 .0094 27.75 .0098 27.74 .0101
1 25.97 .0101 25.97 .0101 25.97 .0101 25.97 .0101
1.5 25.34 .0110 25.35 .0107 25.37 .0103 25.38 .0100

Table 2: Dimensionless flow rates in the Poiseuille flow of HS molecules through a circular
tube, using the Cercignani-Lampis BC.

largest TPD, while xenon has the smallest. This difference increases when δ decreases.
For instance, in the diffuse BC, the relative difference in TPD exponent between the
HS gas and xenon is about 8% when δ = 0.01. In the Cercignani-Lampis BC, when δ
is fixed, the TPD exponent decreases with αt. In the Maxwell BC, when αM decreases,
the TPD exponent decreases at large values of δ, but at small values of δ (free-molecular
flow regime), the TMAC αM does not have any influence on the TPD exponent.

Next we consider the Poiseuille flow through a long tube, where the characteristic
length ` is chosen as the radius of the circular cross section. The flow rates are shown in
Table 2. Unlike to Poiseuille flow between two parallel plates, where the MFR and HFR
increase logarithmically as − ln δ when δ → 0 (Takata & Funagane 2011), both approach
constant values when δ → 0. The influence of the BC on the dimensionless flow rates is
similar to that between two parallel plates.

Figure 3 shows the influence of the intermolecular potential on the MFR in the thermal
transpiration flow. For δ > 0.5, the HS model underpredicts the MFR of the Lennard-
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Figure 3: The relative error (GLennard-Jones/GHS − 1) × 100 in the MFR between the
Lennard-Jones and HS potentials, in the Poiseuille (dashed lines) and thermal transpi-
ration (solid lines) flows through a tube, when the diffuse BC is used.

Jones potentials, say, when δ = 10, by about 8% and 4% for argon and helium, respec-
tively. When δ < 0.5, however, the HS model overpredicts the MFR. When δ → 0, the
intermolecular potential has no influence on the dimensionless mass flow rate. On the
other hand, the influence of the intermolecular potential in the MFR of the Poiseuille
flow is within 2% for all the rarefaction parameters considered.

5. Comparisons between the numerical simulations and experiments

In this section, we solve the LBE (4.3) for the Lennard-Jones potential (2.5), by the
method developed by Wu et al. (2015a, 2017). The performance of various gas-surface
BCs are compared for Poiseuille and thermal transpiration flows between two infinite
parallel plates, and for flows through pipes with rectangular or circular cross sections,
where several experimental data are available (Yamaguchi et al. 2014, 2016; Ewart et al.
2007; Rojas-Cárdenas et al. 2013). We emphasis that the MFR in both Poiseuille and
thermal transpiration flows are measured for the same gas and solid surface interactions
simultaneously, which provide ideal and strict test cases to the kinetic BCs.

5.1. Thermal transpiration through a rectangular cross section

Consider the thermal transpiration of helium through a long rectangular channel made
of polyether ether ketone (Yamaguchi et al. 2014, 2016), where the aspect ratio of the
rectangular cross section is 27.27. For such a large aspect ratio, the numerical simulation
based on the Shakhov kinetic model revealed that, when δ > 0.5, there is no difference in
the dimensionless flow rates for flows through two infinite parallel plates and rectangular
cross sections (Graur & Ho 2014). Thus, we use the numerical data for flows between two
parallel plates to reduce the computational cost, since the experimental measurements
are limited to this region of the rarefaction parameter.

Figure 4 and Table 3 compare the experimental data with the numerical results, when
the diffuse, Cercignani-Lampis, and Epstein BCs are used. From Table 1 we know that,
for the Maxwell BC, when δ < 3.5 is fixed, the lowest MFR is reached for αM = 1.
The comparison with the experiment shows that the diffuse BC overpredicts the MFR
by more than 10%, and choosing other values of the TMAC will increase the prediction
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Figure 4: The MFR in the thermal transpiration of helium through a rectangular cross
section of the aspect ratio 27.27. Solid dots: experimental data collected from the Table
1 in Yamaguchi et al. (2016). Pentagrams: the diffuse BC. Squares: the Cercignani-
Lampis BC with αn = 0.25 and αt = 0.5. Triangles: the Cercignani-Lampis BC with
αn = 0.25 and αt = 1.75. Lines without symbols: the Epstein BC (2.9) with the thermal
slip coefficient ω = 0.9: dash-dotted line for Θ0 = 0.9 and α = 0.0192, while solid line
for Θ0 = 1 and α = 0.019. Other parameters are Θ1 = 0.1 and β = α, so that according
to (3.4), the effective TMAC χ are 0.85 and 0.95 when Θ0 = 0.9 and 1, respectively.
Inset: the MFR in the Poiseuille flow between two parallel plates.

error drastically. We then turn to the Cercignani-Lampis BC. From Table 1 we know
that, for large values of δ, better agreement between the simulation and experiment can
be achieved when we choose small values of αn and αt, see the squares in Fig. 4 and data
denoted by “Cercignani-Lampis1” in Table 3, where αn = 0.25 and αt = 0.5. However,
when δ < 2, the agreement becomes even worse than that of the diffuse BC, for example,
for δ = 2.22 and 0.998, this Cercignani-Lampis BC overpredicts the MFR by about
16% and 42%, respectively. One can significantly reduce this difference by choosing large
values of αt (see triangles in Fig. 4 and data corresponding to “Cercignani-Lampis2” in
Table 3, where αn = 0.25 and αt = 1.75), but this increases the error when δ is large.
For example, when δ > 5, numerical results overpredicts the MFR by about 20%. This
large difference in the slip regime is caused by the fact that the thermal slip coefficient
of the Cercignani-Lampis BC is larger than one (Sharipov 2003a), which is much larger
than the experimental measured value of about 0.9.

The Epstein BC allows more flexibility to choose the velocity slip coefficients and should
be able to give better agreement to the experiment. To demonstrate this, we choose the
effective thermal slip coefficient ω to be the experimental measured value (Yamaguchi
et al. 2016). To achieve this, we choose α = β in (2.10) for simplicity. We first fix the
values of Θ0 and Θ1, and obtain α and β from (3.5) by setting ω = 0.9. We then vary the
values of Θ0 and Θ1, to see the possible influence of different parameters. Our numerical
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δ 0.998 1.48 2.22 2.98 3.71 5.57 7.41 11.1
Exp. 0.316 0.276 0.239 0.210 0.188 0.140 0.107 0.0803
Diffuse 0.385 0.326 0.267 0.226 0.198 0.149 0.119 0.0851
Cercignani-Lampis1 (αt = 0.5) 0.450 0.360 0.278 0.227 0.193 0.141 0.111 0.0779
Cercignani-Lampis2 (αt = 1.75) 0.301 0.274 0.243 0.217 0.197 0.156 0.128 0.0932
Epstein1 (Θ0 = 0.9) 0.355 0.300 0.245 0.208 0.181 0.137 0.110 0.0784
Epstein2 (Θ0 = 1) 0.375 0.312 0.251 0.210 0.182 0.136 0.109 0.0771

Relative error:
Diffuse 21.66 17.94 11.67 7.73 5.04 6.35 11.59 5.98
Cercignani-Lampis1 42.41 30.43 16.32 8.10 2.66 0.71 3.74 -2.99
Cercignani-Lampis2 -4.85 -0.87 1.62 3.50 4.55 11.34 19.63 16.07
Epstein1 12.22 8.59 2.66 -1.02 -3.49 -2.21 2.69 -2.33
Epstein2 18.60 12.86 4.91 0.02 -3.18 -2.93 1.42 -4.01

Table 3: The MFR in the thermal transpiration of helium between two infinite parallel
plates, using the diffuse, Cercignani-Lampis, and Epstein BCs. The experimental data
are collected from the Table 1 in Yamaguchi et al. (2016). The relative error between
the experimental and numerical results is defined as 100 × (Gnumerical

T /Gexp
T − 1). The

parameters for various BCs are given in Fig. 4.

results show that Θ1 has very small influence on the MFR, so in Fig. 4 and Table 3 only
the results for Θ1 = 0.1 are shown. It is clear that for ω = 0.9, the simulation results
agree well with the experimental data when δ & 2, for a wide range of Θ0, see Θ0 = 0.9
and 1 in Fig. 4 and Table 3. For δ . 2, the value of Θ0 begins to have a strong influence
on the MFR: the larger the value of Θ0, the smaller the MFR in thermal transpiration
flow. Taking into account that the experimental data has large errors when δ < 1 (the
accuracy of the measurement decreases when the pressure decreases because the physical
variation of the pressure is no longer very great with respect to the resolution of the
pressure sensor), it seems that the case of Θ0 = 1 provides good agreement with the
experimental measured MFR.

So far, based solely on the comparison in Fig. 4 and Table 3, it is too early to say that
the Epstein BC is better than the Cercignani-Lampis BC. In the inset of Fig. 4 we find
that the MFR in Poiseuille flow varies a lot among different BCs. Therefore, the TPD
exponent and thermal molecular pressure ratio (TPR) should vary significantly between
the two BCs. Fortunately, these two parameters have been measured experimentally using
the same gas and solid surface (Yamaguchi et al. 2014), which provides an ideal case to
assess the accuracy of the Epstein and Cercignani-Lampis BCs.

In the two experiments (Yamaguchi et al. 2014, 2016), the temperature difference is
small compared to the average gas temperature. Therefore, the TPD exponent can be
accurately approximated by (4.14), while the TPR is calculated as follows: in the steady
state, according to (3.2) in Yamaguchi et al. (2016), the gas pressure p along the flow
direction satisfies

dp

dx3
= −QP (δ)

GP (δ)

p

T

dT

dx3
, (5.1)

where p and T have been normalized by the initial pressure and the average pressure of
the hot and cold reservoirs, respectively. Assuming a linear temperature variation along
the rectangular channel, the pressure distribution can be obtained easily; we find that
the result does not change even when using the exponential shape of the temperature
distribution (Rojas-Cárdenas et al. 2013), due to the small temperature difference be-



Assessment and development of the gas kinetic boundary condition 17

δ

0.5 0.8 1 1.5 2 3 5 7 10 15 20

T
P

D
 e

x
p
o
n
e
n
t

0

0.1

0.2

0.3

δ

0.5 0.8 1 1.5 2 3 5 7 10 15 20

T
P

R

0.95

0.96

0.97

0.98

0.99

1

Figure 5: The TPD exponent and TPR in the thermal transpiration of helium through
a rectangular cross section of aspect ratio 27.27. Solid dots: experimental data collected
from Fig. 8 in Yamaguchi et al. (2014). Pentagrams, squares, triangles, and lines without
symbols: see the parameters in Fig. 4.

tween two reservoirs in the experiments. The TPR is then calculated as the ratio of the
pressures of the cold and hot reservoirs.

Figure 5 compares the TPD exponent and TPR between the experimental and nu-
merical results using different gas-surface BCs. It becomes clear that the Epstein BC
with Θ0 = 0.9 (other parameters shown in Fig. 4) gives the best agreement, while the
Cercignani-Lampis BC either overestimates (αt = 1.75) or underestimates (αt = 0.5) the
TPD exponent significantly. For the TPR, the trend is opposite to that of the TPD ex-
ponent. We believe the discrepancies between the very Epstein BC and the experimental
data when δ < 2 is due to the experimental error, which becomes larger and larger as
the gas pressure reduces.

5.2. Poiseuille flow through a rectangular cross section

Consider Poiseuille flow of helium through a silicon microchannel, with a rectangular
cross section of the aspect ratio 52.45, subject to a pressure ratio of 5 between the
inlet and outlet of the long channel. With such a large pressure ratio, the experimental
measurement of the MFR can be made very accurate even in the free molecular flow
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Figure 6: The comparison of the MFR in the Poiseuille flow through a rectangular cross
section of the aspect ratio 52.45 with the experimental data (Ewart et al. 2007), where the
LBE with the Lennard-Jones potential of helium is solved, with the Maxwell, Cercignani-
Lampis, and Epstein BCs.

regimes. This provides a more strict test of the gas-surface BC, as the profile of the
perturbed VDF varies significantly at small values of δ. For instance, both the theoretical
and numerical analysis (Takata & Funagane 2011; Wu et al. 2014) show that the width
of the VDF in the normal direction to the wall surface is proportional to the rarefaction
parameter δ, when δ → 0. Thus, the effective TMAC in § 3 obtained using the VDF from
the Chapman-Enskog expansion becomes inaccurate.

Since the pressure ratio is not small, the dimensionless MFR GP (δ), obtained from
the LBE for the Lennard-Jones potential, is transformed to the measured MFR G(δm)
by (Sharipov & Seleznev 1994)

G(δm) =
3

4δm

∫ 5δm/3

δm/3

GP (δ)dδ, (5.2)

where δm is the gas rarefaction parameter at the average value of the inlet and outlet
pressures, with the characteristic flow length ` being the shorter side of the rectangular
cross section.

At such a large aspect ratio, when δ > 1, the numerical results for the Poiseuille flow
between two parallel plates can be safely used (Graur & Ho 2014). However, when δ < 1,
the numerical simulation is performed in the two-dimensional cross-section: the symmetry
is considered and only one quarter of the rectangular cross section is simulated, which
is approximated by 31 × 101 nonuniform cells, with most of the cells adjacent to the
surface (Wu et al. 2014).

Figure 6 compares the MFR between the experimental and the numerical results, when
the Maxwell, Cercignani-Lampis, and Epstein BCs are used. Since in the slip flow regime
the measured TMAC is about 0.92, we choose αM = 0.92 in the Maxwell BC, αt = 0.92
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in the Cercignani-Lampis BC with αn = 1, and χ = 0.92 in the Epstein BC, together
with Θ0 = 1, Θ1 = 0.1, and α = β = 0.0293. At δm > 2, the three BCs yield almost
identical results. However, as δm decreases, the Cercignani-Lampis and Epstein BCs
generate smaller MFR than the Maxwell BC. For the Epstein BC, this behavior is easy
to understand: as δ decreases, the VDF in the normal direction to the wall shrinks (Takata
& Funagane 2011; Wu et al. 2014), so that according to (2.10), fewer gas molecules are
specularly reflected than that of the Maxwell BC, and the MFR is therefore smaller.

In general, it is seen that the Cercignani-Lampis and Epstein BCs perform better than
the Maxwell BC in this special case. But since the MFR in the thermal transpiration
flow is not available, it is hard to say which one is better. If only MFR in the Poiseuille
flow is concerned, we prefer to use the Epstein BC, since in the discrete velocity method
the computational cost for the gas-surface interaction is at the order of N3

v , while that of
the Cercignani-Lampis BC is N6

v , where Nv is the number of discretized points in each
velocity direction.

5.3. Thermal transpiration through a long tube

Rojas-Cárdenas et al. measured the thermal transpiration flow through a glass tube of
circular cross section (Rojas-Cárdenas et al. 2013), where, like the thermal transpiration
along the channel of rectangular cross section (Yamaguchi et al. 2014, 2016), data of the
MFR, TPD exponent, and TPR are available. This means that both the viscous and
thermal slip coefficients χ and ω in the various BCs need to be adjusted simultaneously,
and again, provides a tough assessment of the various BCs.

Before the comparison, it is noted that, according the the definitions in Rojas-Cárdenas
et al. (2013) and Yamaguchi et al. (2016), the experimental measured MFR G(δm) is
related to the simulated MFR GT = −QP as

G(δm) = 2GT (δm)

(√
Tm
TC
−
√
Tm
TH

)
, (5.3)

where δm is the gas rarefaction parameter at the initial gas pressure and mean temper-
ature of the two reservoirs, with the characteristic flow length ` being the radius of the
tube.

The experiments are conducted for both argon and helium. In the following we consider
them separately since different gases have different interaction with the same glass tube.
Also, it is noted that when the temperature difference is small, the TPD exponent and
the TPR are closely related: if the BC can accurately describe the TPR, it can definitely
describe the TPD exponent with good accuracy, see the example in Fig. 5. For this reason,
in the following only the MFR and TPR are considered. Finally, the experimental error is
large when δ is small, i.e. when the gas pressure is low such that the pressure sensor is no
longer very sensitive to the pressure variations and the accuracy of the MFR measurement
is reduced. Therefore, in the following, we only analyze the region where δ > 2.

5.3.1. Experiment on argon

We solve the LBE with the realistic Lennard-Jones potential for argon. The results
of GT and TPR for the diffuse BC are shown as solid lines in Fig. 7. It can be seen
that GT agrees well with the experimental data, but the TPR is slightly higher than
the experimental data at large values of δ. This means that, according to (5.1), GP
should be decreased and/or GT should be increased when compared to the diffuse BC.
This can not be realized in the Maxwell BC (since according to Table 1, the diffuse BC
with αM = 1 has the minimum MFR in the Poiseuille flow and maximum MFR in the
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Figure 7: The MFR and TPR in the thermal transpiration of argon through a circular
glass tube. Solid dots: the experimental MFR is adopted from Fig. 8 in Rojas-Cárdenas
et al. (2013) and has been normalized by (5.3), while the TPR is adopted from Fig. 9
in Rojas-Cárdenas et al. (2013) when the temperature difference is 71 K. Solid lines:
diffuse BC. Dashed lines: the Epstein BC with Θ0 = Θ1 = 1, and α = 20β = 50.6, so
that the thermal slip coefficient is ω = 1.1 and the effective TMAC is χ = 0.98. Dotted
lines: the Cercignani-Lampis BC with αt = 1.2 and αn = 0.25.

thermal transpiration flow, compared to other Maxwell BC with αM < 1), but can be
easily done in the Cercignani-Lampis BC, by choosing the effective TMAC αt > 1. The
results for αt = 1.2 are shown as dotted lines, and good agreement in both GT and
TPR is observed for δ > 2. Alternatively, one can use the Epstein BC with the effective
thermal slip coefficient ω > 1; the results for ω = 1.1 are shown as dashed lines, which
are slightly better than the diffuse BC.

5.3.2. Experiment on helium

We first solve the LBE with the realistic Lennard-Jones potential for helium, using
the diffuse BC. Although the TPR predicted by the numerical solutions agrees well with
the experimental data, the MFR GT is higher than the experimental measurements, see
the solid lines in Fig. 8. Like the thermal transpiration through the rectangular channel
studied in § 5.1, the Cercignani-Lampis BC has difficulty to predict both the MFR and
TPR correctly. Therefore, we solve the LBE with the Epstein BC to obtain a good
agreement in GT first. This is easily achieved when we choose ω = 0.9, however, the
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Figure 8: The MFR and TPR in the thermal transpiration of helium through a circular
glass tube. Solid dots: the experimental MFR is adopted from Fig. 8 in Rojas-Cárdenas
et al. (2013) and has been normalized by (5.3), while the TPR is adopted from Fig. 9
in Rojas-Cárdenas et al. (2013) when the temperature difference is 71 K. Solid lines:
diffuse BC. Dashed lines: the Epstein BC with Θ0 = 1, Θ1 = 0.1, and α = β = 0.019,
so that the effect thermal slip coefficient ω = 0.9 and effective TMAC is χ = 0.95. Dash-
dotted lines: the combined BC (5.4), where αn = 1 and αt = 1.5 in the Cercignani-Lampis
BC, while Θ0 = 1, Θ1 = 0.1, and α = β = 0.06, so that the thermal slip coefficient is
ω = 0.7 and the effective TMAC is χ = 0.85 in the Epstein BC.

TPR from the numerical simulation is higher than the experimental ones when δ > 2,
see the dashed lines in Fig. 8. This means that, according to (5.1), we have to make the
effective TMAC in the Epstein BC larger than unity, which is impossible to guarantee
the positiveness of the VDF, see the discussion in the end of § 3. Thus, a new kinetic BC
is required to describe this experimental data.

5.3.3. A new combined boundary condition

We note that both Epstein and Cercignani-Lampis models are well rooted in argu-
ments based on the physics of the gas-surface interactions, so that their parameters are
not merely curve-fitting parameters. Nevertheless, as models, they only approximate the
actual behavior of the molecular collisions. Hence, each model has individual shortcom-
ings which limit its range of application: the Epstein model cannot describe flows with
serious “backwards” scattering, for which the viscous slip coefficient (2− χ)/χ is below
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unity (i.e., the TMAC is above unity), and does not give plume-like structure for reflec-
tion of molecular beams; the Cercignani-Lampis model predicts a fixed value (ωCL = 1)
for the thermal slip coefficient.

For gas-surface interactions where the experimental results indicate viscous slip co-
efficient and thermal slip coefficient below unity, neither model can be used to model
the ensuing flow problems. Since the Epstein BC can adjust the thermal slip coefficient
easily (see Fig. 1), and the Cercignani-Lampis BC can have an effective TMAC (3.3)
above unity, we propose to combine them together linearly, that is, to use the following
new gas kinetic BC:

RMix(v′ → v) = $RCL(v′ → v) + (1−$)RE(v′ → v), (5.4)

to describe the gas-surface interaction, where $ is a constant with a value between zero
and one. Since the only reason to include the Cercignani-Lampis BC into the combined
BC is to make the effective TMAC larger than unity, the normal accommodation coeffi-
cient αn, which has little effect to the effective TMAC, can be chosen as unity. This will
reduce the computational complexity of the BC from N6

v to N5
v , where Nv is the number

of discrete velocities in each velocity direction. It should also be noted that the combined
model should only be used when significant backwards scattering (χ > 1) occurs, which
is the case for only a few gas-surface interactions, e.g., the scattering of light molecules by
a rough surface such as for the helium flow through a glass tube (Rojas-Cárdenas et al.
2013), because the computational cost to compute the Epstein model is only O(N3

v ).

Considering that both Epstein and Cercignani-Lampis models have a solid background
in physics, and give reliable results within their realm of application, a linear combination
of both appears to be the most reasonable approach to maintain the benefits of both, and
extend their range of validity. Unfortunately, this increases the number of parameters to
be fitted. The new boundary condition has six free parameters: α, β, Θ0, Θ1 in (2.10), αt
in (2.11) with αn = 1, and $ in (5.4). These parameters allows more freedom to fit the
experimental data. Following the method in Struchtrup (2013), approximate analytical
solutions for the effective TMAC and thermal slip coefficient are derived to guide the
comparison, as

1

χMix
=

$

χCL
+

1−$
χE

,

ωMix =$ωCL + (1−$)ωE . (5.5)

To compare with the experimental data of Rojas-Cárdenas et al. (2013) on helium,
we consider an equal mixture of the Epstein and Cercignani-Lampis BCs, i.e. $ = 0.5
in (5.4). We choose αt = 1.5 in the Cercignani-Lampis BC, and χ = 0.85 and ω = 0.7 in
the Epstein BC, so that according to (5.5), the effective TMAC is χMix ≈ 1.1 and the
thermal slip coefficient is ωMix ≈ 0.9. Good agreement between the numerical simulation
and experiment is now achieved, see the dash-dotted lines in Fig. 8.

It should be noted that the parameters used here is just one of the possible choices.
This means that our new BC (5.4) still has the freedom to fit other experiments, such
as those involving the thermal accommodation coefficient. Unfortunately, there is no
experiment measuring the Poiseuille, thermal transpiration, and Fourier flows for the
same gas and solid surface interaction. Therefore, we leave the further validation of the
new BC to future experiments.
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6. Conclusions

In summary, various gas kinetic boundary conditions—Maxwell, Cercignani-Lampis,
and Epstein—have been assessed by comparing the numerical solution of the linearized
Boltzmann equation with recent experimental data on Poiseuille and thermal transpira-
tion flows. To our knowledge, this assessment is the first of its kind, in the sense that
i) mass flow rates in both Poiseuille and thermal transpiration flows are measured for
the same gas and solid surface interaction, which poses an ideal and strict test of the
boundary conditions, and ii) the linearized Boltzmann equation for the Lennard-Jones
potential has been solved accurately, so that the comparison is only affected by the
details of the boundary conditions and the accuracy of the experiments. Within the
confidence interval of the recent accurate experiments, we found that, although being
widely used, the Maxwell and Cercignani-Lampis boundary conditions cannot accurately
describe Poiseuille and thermal transpiration flows simultaneously, while the overlooked
Epstein model can provide accurate predictions of the mass flow rate as long as the
effective TMAC is less than unity.

When the effective TMAC is larger than unity (this corresponds to the backwards
scattering to some extent), the Cercignani-Lampis model must be used, since neither
the Maxwell model nor the Epstein model can give such a value for the coefficient while
guaranteeing the positiveness of the velocity distribution function. For this case a linear
combination of the Epstein and Cercignani-Lampis models (5.4) is proposed to describe
gas-surface interaction for the Boltzmann equation. Although it contains six free param-
eters, our approximate analytical expressions for the viscous and thermal slip coefficients
provide a useful guidance to select these parameters. It has been found that only the
combined boundary condition can reproduce the experimental data of Rojas-Cárdenas
et al. (2013) on the helium flow through a glass tube.

To conclude, if there is no backwards scattering, the Epstein model should be used.
Otherwise, our newly proposed boundary condition should be used. Typically, backwards
scattering is not a dominant process, and the measured value of the TMAC are below
unity. If this is the case, the four-parameter Epstein model promises the best overall
description of rarefied flows, since it allows to fit the TMAC, the thermal slip coefficient,
the thermal accommodation coefficient, and with a less computational cost compared to
the Cercignani-Lampis model when solved by the discrete velocity method. Once the
free parameters are determined by comparing the numerical solution of the Boltzmann
equation with simple experiments, the kinetic boundary condition can be used in gas
micro-electro-mechanical systems with complex geometries and flow conditions. This is
a practical way to study internal rarefied gas flows until efficient and accurate methods
to determine the gas-surface boundary condition become mature. Finally, we point out
that the Epstein model and the combined Epstein and Cercignani-Lampis model may
also find application at the vapor-liquid interface (Ishiyama et al. 2005; Kon et al. 2014).
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