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Abstract: Face recognition is a valuable forensic tool for criminal investigators since it certainly helps
in identifying individuals in scenarios of criminal activity like fugitives or child sexual abuse. It is,
however, a very challenging task as it must be able to handle low-quality images of real world settings
and fulfill real time requirements. Deep learning approaches for face detection have proven to be very
successful but they require large computation power and processing time. In this work, we evaluate
the speed–accuracy tradeoff of three popular deep-learning-based face detectors on the WIDER Face
and UFDD data sets in several CPUs and GPUs. We also develop a regression model capable to
estimate the performance, both in terms of processing time and accuracy. We expect this to become
a very useful tool for the end user in forensic laboratories in order to estimate the performance for
different face detection options. Experimental results showed that the best speed–accuracy tradeoff
is achieved with images resized to 50% of the original size in GPUs and images resized to 25% of
the original size in CPUs. Moreover, performance can be estimated using multiple linear regression
models with a Mean Absolute Error (MAE) of 0.113, which is very promising for the forensic field.

Keywords: face detection; CSEM; deep learning; GPU; CPU; Benchmark; regression

1. Introduction

Forensic laboratories very often examine digital evidence during a criminal investigation.
In particular, the criminal investigation of Child Sexual Exploitation Material (CSEM) shows a growing
interest internationally [1]. Advances in technology have increased the use of mobile devices, social
media and P2P networks, making it easier for offenders to create and distribute CSEM, something that
has become highly prevalent worldwide.

Given this scenario, a manual analysis to identify new CSEM in any seized electronic device
(hard drive, desktop, smart phone, and memory stick, among others) becomes absolutely infeasible
within the proposed time constraints of most investigations. Not only is it a very time-consuming and
expensive task, but it also exposes image analysts to sensitive and disturbing data on a daily basis,
which can affect their emotional state and consequently their performance. Hence, the development of
fast, automatic and efficient tools for the automated discovery and analysis of images and videos to be
implemented in criminal laboratories becomes crucial for the forensic field [2,3].
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Although image analysts can easily identify multiple objects in an image with little or no conscious
thought, a high-level understanding from digital images or videos can also be achieved using computer
vision [4]. The availability of huge amounts of data, hardware resources and machine learning
techniques allow to train computers to derive meaningful information from images. Thus, CSEM can
be identified with image classification techniques [5], and its content can be explored using object
detection methods [6–9] and object recognition techniques [10–13].

Our approach to the CSEM detection is based on the combination of face detection, age estimation
and pornography detection. In this work, we address the problem of accurate and fast face detection
since it plays a key role in automatic CSEM detection systems. These systems aim to help speeding-up
the analysis process, extracting from the vast amount of files stored in a given device those that are
suspicious to have child sexual abuse content.

Automatic face detection, meaning the localization of regions that contain faces in digital images,
is a topic widely studied in the past decades due to its wide range of applications that involve face
analysis. Such practical problems include forensic/security applications like video surveillance
for criminal activity detection, facial recognition of fugitives and victims of child sexual abuse,
among others.

Typically, automatic face detection is the first step towards face-related applications and it
is expected to identify faces under arbitrary image conditions. In real-world settings, the face
detector should be robust enough to detect faces in low-resolution and low-quality images with
occlusions, changes in pose/illumination and distortions, such as out-of-focus blur, noise and low
contrast [14–16], which are commonly present in CSEM. However, automatic face detection is a
very challenging task in these conditions since performance degradation has been observed while
testing detectors on low-quality images [15]. There are basically two main approaches to address this
problem [14]: those based on hand-crafted descriptors and the ones based on trainable features with
deep-learning techniques.

Traditional face detectors are based on hand-crafted features, such as cascade methods or
Deformable Parts Model (DPM). For cascade techniques, the work by Viola-Jones [17] with the
AdaBoost cascade scheme using Haar features is the most representative approach. After that,
many works followed this direction and more features were proposed with a similar structure
of the Viola-Jones detector, including SURF [18], HoG [19] and LBP [20]. Another class of face
detection methods based on structured models rely on DPM [21] to cope with the intraclass
variance. The aforementioned features may have a limited modeling and representational power to
deal with difficult detection conditions like low/high illumination, face occlusion, expression and
low-quality images.

Nowadays, deep learning approaches are widely applied for face detection as they enable the
system to automatically learn representations from raw input images using a Convolutional Neural
Network (CNN), achieving a high accuracy under very challenging detection conditions [22–29].
Most of the deep-learning-based face detectors are, however, computationally demanding and may
not be suitable for applications that analyze large amounts of data and require real-time performance,
such as the CSEM detection systems in forensic tools.

Usually, traditional [17–21] and deep-learning-based face detectors [22–29] are designed to process
2D images, but they have also been extended to analyze 3D data [30–33]. These approaches take
advantage of deep information to be less sensitive to low/high illumination conditions and viewpoint
variation in comparison to 2D face detectors. Nevertheless, this is also a drawback, since 3D approaches
are computationally more complex than 2D ones. Therefore, we limited this research to 2D face
detectors since the application domain of the study is forensic tools, where real-time performance
is crucial.

An image resizing strategy, specifically valid for CSEM, has been presented in [34] to improve the
speed–performance tradeoff of three deep learning based face detectors. The face detectors evaluated
were selected according to their processing time and accuracy performance: Multi-Task Cascade CNN
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(MTCNN) [22], the Context-Assisted Single Shot Face Detector (often referred to as PyramidBox) [25]
and Dual Face Shot Detector (DSFD) [26]. The validation of this strategy was, however, limited to one
GTX 1060 GPU, and the results showed that the image resizing strategy can speed-up face detection
with a small reduction in accuracy. A posterior work [35] also showed that it is possible to find a good
balance between speed and performance with this resizing strategy.

There is a large variety of available Intel CPUs (https://www.intel.co.uk/content/www/uk/
en/products/processors/core.html) and Nvidia GPUs in the market like Tesla (https://www.nvidia.
com/en-us/data-center/v100), TITAN (https://www.nvidia.com/en-us/deep-learning-ai/products/
titan-rtx), GTX (https://www.nvidia.com/en-us/geforce/10-series) or RTX (https://www.nvidia.
com/en-us/geforce/20-series) series, with different specifications that might also speed-up face
detection. End users, like law enforcement analysts, often face the problem of choosing the most
suitable hardware for the analysis of forensic material at hand.

In this paper, we present a comprehensive comparison of the tradeoff between speed and accuracy
of face detection methods through the image resizing strategy presented in [34] for a wide variety
of hardware architectures. Specifically, we evaluate five Intel CPUs—i5-3450, i7-4790K, i7-8650U,
i9-8950HK, and Xeon E5-2630—and seven Nvidia GPUs—Tesla K40, TITAN Xp, GTX 1050, GTX
1060, GTX 1070, RTX 2060, and RTX 2070. We evaluated three representative face detection methods,
namely MTCNN, PyramidBox and DSFD, using a set of images chosen from the WIDER Face data
set [36] and the Unconstrained Face Detection Data set (UFDD) [37]. The selected images contain less
than five people per scene in order to replicate the number of individuals observed in CSEM images.
Additionally, we train a model that is able to predict for unseen images, the performance metrics (in
terms of accuracy and speed) that the end-user could expect based on the given face detection method,
specific hardware, image size and percentage of image resizing. This research work is part of the
European project Forensic Against Sexual Exploitation of Children (4NSEEK) and the research lines
defined by the Framework agreement between INCIBE (Spanish National Cybersecurity Institute) and
the University of León. Conclusions drawn from this study can be used as a face detection benchmark
for users of the 4NSEEK tools in order to guide them in the selection of hardware for the analysis and
categorization of CSEM.

The rest of the paper is organized as follows. Closely related work to the one addressed in this
paper is presented in Section 2. The evaluation methodology proposed in this work is described
in Section 3. Experimental evaluation is described in 4 and results are shown in Section 5. Finally,
we draw conclusions in Section 6.

2. Related Work

Both processing time and accuracy are important performance issues for face detectors. The mean
Average Precision (mAP) is an appropriate and widely used metric to assess the accuracy of object
detectors [38]. Basically, it computes the area under the precision–recall curve obtained by applying
several decision thresholds. Research efforts have focused on improving simultaneously both of them.

Recent advances in deep learning methods have contributed to significant performance
improvements in a wide range of computer vision applications. They have been particularly successful
for face detection problems where modern deep CNN models show a significant accuracy improvement
in comparison to traditional approaches based on hand-crafted features [22–29,39–45]. Consequently,
these deep learning methods have become the state-of-the-art for face detection.

The MTCNN [22] method uses custom CNNs to solve simultaneously the problem of face
detection and alignment in real-time. It consists of three sub-networks that process the faces
from coarse to fine. Compared with traditional methods, it has a better performance and faster
detection speed, but it may show a low performance on low-quality images. Robust features obtained
with standard CNNs like VGG16 [46] are, therefore, employed to improve face detection in these
conditions [23–26]. In particular, the Single Shot Scale-Invariant Face Detector (S3DF) [24] method

https://www.intel.co.uk/content/www/uk/en/products/processors/core.html
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increases the recall of small faces by predicting candidate locations of faces on multi-scale feature maps
extracted with VGG16.

The Feature Agglomeration Networks for Single Stage Face Detection (FANet) [23] and
PyramidBox [25] methods integrate multi-scale feature maps with multi-level semantic information
to improve the detection of small faces. Similarly, DSFD [26] aggregates multi-scale and semantic
information with enhanced features corresponding to context information to increase face detection
accuracy. More recently, AInnoFace [27] uses the RetinaNet detector [47] in addition to several
optimization strategies to improve the detection of tiny faces and outperforms most of the state-of-art
methods on the WIDER Face data set [36].

Table 1 reports the mAP and the speed values indicated by the reviewed detectors on the WIDER
Face data set, which contains images labeled into three detection difficulty categories: ’Easy’, ’Medium’
and ’Hard’ based on the detection rate of the EdgeBox [48].

Table 1. Face detection performance on the WIDER Face data set [36].

Method Year
mAP per Category

Speed (FPS) GPU Code
Easy(%) Medium(%) Hard(%)

MTCNN [22] 2016 85.1 82.0 60.7 99.0 TITAN Black Yes
S3DF [24] 2017 93.7 92.4 85.2 36.0 TITAN X Yes
FANet [23] 2017 95.6 94.7 89.5 35.6 GTX 1080 ti Yes
PyramidBox [25] 2018 96.1 95.0 89.5 — — Yes
DSFD [26] 2018 96.6 95.7 90.4 — — Yes
AInnoFace [27] 2019 96.5 95.7 91.2 — — No

New face detectors are commonly evaluated in the literature in terms of their accuracy, which
is usually quantified by the mAP metric. Their speed is somehow overlooked and rarely reported.
Zhang et al. [49] addressed this issue and presented a CNN-based face detector with a good tradeoff
between accuracy and speed, considering both CPU and GPU and emphasising the worth of building
effective models without being computationally prohibitive. The detection speed is, however, a
relevant factor for end-users taking into account (i) the complexity of some of these models, (ii) the
effect of the face detection step in the processing time of several applications where it is required to
process large amount of data as found in forensic ones, and (iii) the wide offer in the market of CPUs
and GPUs that may help to speed up deep-learning-based detectors.

A comparison of the required training time for several deep learning frameworks during the
object classification task with various CPUs and GPUs is presented in [50,51], but they lack analysis of
the speed at testing/deployment phase. The performance of common image processing algorithms,
such as image segmentation, rotation and deblurring, was studied in [52]. That work, however, did not
consider more complex tasks and it was limited to a small number of CPUs and GPUs. To the best of
our knowledge, there is no study that can be used as a benchmark for face detection performance with
several hardware configurations. Thus, we aim to provide one with this work.

3. Methodology

We aim to provide a guide for end-users to choose the most appropriate hardware for face-related
applications, such as face recognition or child detection in CSEM. We address this objective in two
ways. First, we present a comparison of the tradeoff between speed and accuracy metrics of face
detection through the image resizing strategy described in [34] for several CPUs and GPUs with a
small number of subjects per image in order to simulate CSEM. Second, using the collected information
regarding the face detection performance, we train a model to predict the behavior of a face detector,
in terms of speed and accuracy, in an image based on specific hardware, image size and percentage of
image resizing, Figure 1.
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Figure 1. Strategy to predict the face detection performance to an input image.

3.1. Image Data Sets

We evaluate and gather the performance of face detectors, namely computation time and accuracy
metrics (mAP and F1 score), by analyzing images from two data sets: WIDER Face [36] and UFDD [37].
Images on the WIDER Face data set contain a large number of real world scenes from 60 events,
which are labeled by three levels of difficulty to detect faces: easy, medium and hard (see Table 2).
Images in the UFDD data set are labeled into seven categories: rain, snow, haze, blur, high/low
illumination, lens distortion, and distractors.

Table 2. Events in the WIDER Face data set grouped by level of face detection difficulty [36].

Difficulty Real World Events

Easy Gymnastics, Handshaking, Waiter Waitress, Press Conference, Worker Laborer, Parachutist
Paratrooper, Sports, Coach Trainer, Meeting, Aerobics, Row Boat, Dancing, Swimming, Family
Group, Balloonist, Dresses, Couple, Jockey, Tennis, Spa, Surgeons.

Medium Stock Market, Hockey, Students Schoolkids, Ice Skating, Greeting, Football, Running, People
Driving Car, Soldier Drilling, Photographers, Sports Fan, Group, Celebration/Party, Soccer,
Interview, Raid, Baseball, Soldier Patrol, Angler, Rescue.

Hard Traffic, Festival, Parade, Demonstration, Ceremony, People Marching, Basketball, Shoppers,
Matador Bullfighter, Car Accident, Election Campaign, Concerts, Award Ceremony, Picnic,
Riot, Funeral, Cheering, Soldier Firing, Car Racing, Voter.

These two data sets were chosen because they consider a wide range of acquisition conditions,
including a high degree of variability in illumination, scale, pose and occlusion. Moreover, they allow
to evaluate the generalization capability of face detectors since images in the WIDER Face data set
have the same acquisition conditions of the data commonly used to train detectors [22,25,26]. On the
contrary, images in the UFDD Face data set comprise conditions that are not usually considered in
facial images data sets, such as weather degradation, motion and focus blur. Furthermore, analyzing
images with a wide range of conditions allows to address different realistic CSEM situations.

In order to try to replicate the usual number of subjects involved in CSEM, only images with
less than five people were analyzed. A total of 1994 images with 3358 faces, and resolution between
218 × 1024 and 1027 × 1024 pixels were manually chosen from the WIDER Face data set. Moreover,
a total of 2222 images with 4214 faces, and resolution between 301 × 1024 and 1029 × 1024 pixels were
selected from the UFDD data set.

3.2. Face Detectors

Following the study in [34], we select three popular face detectors with publicly available
implementations for analysing their performance: MTCNN [22,53–55], PyramidBox [23,25,56,57]
and DSFD [26,56,58].

MTCNN simultaneously applies face detection and face alignment to improve the detection of
rotated faces. This method uses three CNNs: the first one obtains candidate regions that may contain
faces, the second improves the initial face detection by rejecting false positive candidates and refining
face locations, and the third CNN detects facial landmarks. MTCNN overcomes the limitations of
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other CNN models by considering the diversity of weights and reducing the number of filters and their
sizes. MTCNN is the face detector currently integrated in the Evidence Detector software, provided by
INCIBE to the two Law Enforcement Agencies that operate in Spain (Policia y Guardia Civil Española).

PyramidBox, a context-assisted single shot face detector, combines high-level context semantic
features and low-level facial features to predict faces in different scales in a single shot which improved
the detection of small faces. In addition, PyramidBox uses feature maps generated at different levels
and anchors with an extended VGG16 as backbone and Data-anchor-sampling to increase the diversity
of training data.

DSFD extended SSD [59] by integrating feature maps obtained from a VGG16 architecture
with enhanced feature maps. It uses a Feature Enhancement Module, which uses information from
different levels. Moreover, DSFD introduced a collaborative face sampling and anchor design during
augmentation to enhance regressor initialization. This module boosted the semantics of the features
and improved the locations of faces in difficult detection conditions.

3.3. Resizing Strategy

In Figure 2 we illustrate the data flow of the resizing strategy that we evaluate. We use it to
substantially decrease processing time for face detection in [34]. First, the largest dimension of the
image—height or width—is used as reference to reduce the image resolution in a percentage of their
original size using bilinear interpolation. This allows us to keep the aspect ratio proportional of
the image content including faces. Secondly, bounding boxes corresponding to the face locations
are detected on resized images using a deep-learning based method. Finally, detected bounding
boxes containing face locations are scaled back to the original image dimensions and returned as
output. This step is necessary due to the fact that detected faces would be used in applications
where face locations are expected in original image coordinates, such as face recognition, age and
gender estimation.

We compare the performance of the selected face detectors on several hardware architectures
with four relative sizes—100%, 75%, 50% and 25% of the original dimensions—by following the image
resizing strategy described above.

Figure 2. Pipeline of detecting faces after resizing.

3.4. Hardware

We choose a representative group of Intel CPUs—i5-3450, i7-4790K, i7-8650U, i9-8950HK, and
Xeon E5-2630—and Nvidia GPUs—Tesla K40, TITAN Xp, GTX 1050, GTX 1060, GTX1070, RTX 2060,
and RTX 2070—to ensure an exhaustive evaluation of the selected face detectors. Tables 3 and 4
summarise the main specification details of the selected CPUs and GPUs.
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Table 3. Evaluated CPUs specification details. CPUs were installed in desktop+ computer, laptop† or
tablet surface pro∗.

CPU Base Frequency Cores Cache Bus Speed Memory

Intel i5-3450+ 3.10 GHz 4 6 MB 5 GT/s 8 GB
Intel i7-8650U∗ 1.90 GHz 4 8 MB 4 GT/s 16 GB
Intel i7-4790K+ 4.00 GHz 4 8 MB 5 GT/s 32 GB
Intel i9-8950HK† 2.90 GHz 6 12 MB 8 GT/s 32 GB
Intel Xeon E5-2630+ 2.40 GHz 6 15 MB 7.2 GT/s 128 GB

Table 4. Evaluated GPUs specification details. GPUs were installed in desktop+ or laptop† computers.

GPU Arch. Cores
Video Memory Clock

Memory
Memory Bandwidth Frequency

Tesla K40c+ Kepler 2880 12 GB 288 GB/s 745 MHz 128 GB
TITAN Xp+ Pascal 3840 12 GB 547.7 GB/s 1404 MHz 128 GB
GTX 1050 Ti+ Pascal 768 4 GB 112 GB/s 1290 MHz 32 GB
GTX 1060+ Pascal 1280 6 GB 162 GB/s 1506 MHz 32 GB
GTX 1070+ Pascal 1920 8 GB 256 GB/s 1506 MHz 32 GB
RTX 2060† Turing 1920 6 GB 336 GB/s 1365 MHz 16 GB
RTX 2070† Turing 2304 6 GB 448 GB/s 1410 MHz 16 GB

3.5. Prediction of Face Detection Performance Using Regression Models

Face detection is a crucial step in several applications, however the most accurate methods require
high computational resources and processing time that may be limited in some domains, such as
forensics, where (near) real time performance is expected. Taking into account the use of downsampled
images speeds up the face detection stage but reduces the accuracy of the methods, it is desirable to
predict the performance of several face detectors with various resized images in a specified hardware.
This will enable the end-user to select the best parameters (method and image resolution) for face
detection considering the available computational resources.

In this work, we built regression models to predict the face detection performance (computational
time and F1 score) using five explanatory variables: the input image size (width and height), the image
resized percentage (100%, 75%, 50% and 25% of the original image size), the face detector (MTCNN,
PyramidBox, DSFD), and the hardware (specific CPU or GPU). We collected the face detection
performance information considering the image data sets, detectors, resizing strategy, and hardware
described above.

4. Experimental Setup

Experiments were run on a GNU/Linux machine box with Ubuntu 18.04, Cuda 9, and CuNDD 7
to: (i) compare the tradeoff between the accuracy and the speed of publicly available implementations
of the face detectors—MTCNN, PymaridBox and DSFD—using as input four relative sizes—100%,
75%, 50% and 25% of the original sizes—in several GPUs and CPUs described in the Section 3,
and (ii) evaluate the models built to predict the performance of face detectors in a given image with a
specific hardware.

Face detectors were coded with Python 3 (https://www.python.org/) and Tensorflow (https:
//www.tensorflow.org/). Both of them are commonly used to design, build, and train deep learning
models. During the assessment of detectors in CPUs and GPUs, images containing less than five
individuals, which is the usual number of subjects observed in CSEM, were processed sequentially.
Moreover, in case computers were equipped by GPUs had their GPUs disabled in order to exploit the
CPU computational capability during evaluation. Also, the usage of GPU memory was not limited
during GPU tests, and it was set to grow as needed by the face detectors.

https://www.python.org/
https://www.tensorflow.org/
https://www.tensorflow.org/
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In order to evaluate the tradeoff between the accuracy and the speed of the face detectors,
we assessed the accuracy using the mean Average Precision [38] (mAP) and the F1 score metrics [60].
The mAP combines the precision and recall measures by summarizing the shape of the precision–recall
curve. The mAP is defined as the mean precision at a set of eleven equally spaced recall levels computed
for a threshold that varies from 0 to 1 in intervals of 0.1. An interpolation of the precision–recall curve
is used to reduce the impact of the “wiggles” in the curve, caused by small variations in the ranking
of examples. The F1 score is the harmonic mean of the precision and the recall measures considering
a threshold of 0.5 against ground truth regions to determine true positive and false positive face
detections. Furthermore, we computed an improvement (Impv) measure to compare the performance
of the face detectors considering the analyzed input image sizes and hardware. The improvement is
defined in Equation (1) as the relative difference between the baseline configuration, A, and another
one, B.

Impv =
A − B

A
× 100 (1)

Positive values of Impv indicate that B outperforms A in terms of the evaluated performance
metrics (mAP, F1 score or speed).

Regression models to predict the face detector speed were built considering a set of
461,826 examples with the four explanatory variables described in the Section 3: the input image
size, the image resized percentage, the face detector and the type of hardware. We randomly split the
data set into 80% for training and the remaining was used for the evaluation of the speed prediction
model. Regression models to predict the F1 score metric of face detectors were trained considering
only three explanatory variables (the input image size, the image resized percentage, and the face
detector) since the detectors have the same F1 score performance regardless of the hardware used for
the analysis. In this case, a set of 38,616 examples was used to build the prediction models, which was
split into a training set with 80% of the examples and a test set with the remaining 20%.

In both cases, we evaluated the regression models using the Mean Absolute Error (MAE),
the Mean Squared Error (MSE), and the Root Mean Squared Error (RMSE) [61]. These measures are
defined below for a set of n samples where y is the ground truth value and ŷ is the predicted value.

MAE =
n

∑
i=1

|yi − ŷi|

n
(2)

MSE =
n

∑
i=1

(yi − ŷi)
2

n
(3)

RMSE =

√

√

√

√

n

∑
i=1

(yi − ŷi)
2

n
(4)

The MAE corresponds to the average of the absolute errors of the prediction model and indicates
how close are the predicted values to the ground truth. The MSE measures the average of the square
errors of the regression model. The RMSE corresponds to the standard deviation of the errors of the
model. The closer MAE, RMSE and MSE are to zero, the better the regression models perform.

5. Experimental Results

5.1. Speed–Accuracy Tradeoff Analysis

Evaluation metrics computed for face detectors (processing time, F1 score, mAP, precision–recall
curves, and Impv) were grouped by the image data set (WIDER Face and UFDD) and discussed in the
next two sections.
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5.1.1. Results on the WIDER Face Data Set

Table 5 shows the mAP, the F1 score and the face detection speed (in seconds) computed for the
evaluated hardware and image sizes. Table 6 presents the Impv of the mAP, the F1 score and the
processing time by comparing the detectors’ performance with three relative sizes—75%, 50% and
25%—against the results with original images. Figure 3 presents the precision–recall curves for the
evaluated detectors, and Figure 4 exhibits the average computation time on CPUs and GPUs. In both
cases, results are grouped by the evaluated image sizes.

As can be seen in Table 5, Figures 3 and 4, MTCNN is the fastest and the least accurate detector,
while DSFD is the slowest and the most accurate method. MTCNN has mAP values between 45.67%
and 56.40%, F1 score range between 0.392 and 0.505 and a maximum processing time of 0.573 sec
in CPUs and 0.200 sec in GPUs. DSFD presents mAP values between 86.33% and 94.73%, F1 score
values between 0.743 and 0.917 and maximum detection time of 18.211 sec in CPUs and 0.829 sec in
GPUs. In most cases, the use of GPUs significantly speed-up the detection in comparison to CPUs.
The results show that GPU detection times outperformed the CPU ones (improvement between 55.51%
and 96.86%). This percentage of Impv is related to the complexity of the methods. In general, complex
detectors, such as PyramidBox and DSFD, have a large speed-up by using GPUs. Hence, using GPUs,
MTCNN presented a speed improvement Impv between 55.51% and 62.70%, while DSFD speed
increased between 92.14% and 96.86%.

(a) Original images, 100% (b) Images resized at 75%

(c) Images resized at 50% (d) Images resized at 25%

Figure 3. Precision–Recall curves on WIDER Face data set for MTCNN, PyramidBox and DSFD face
detection methods using four different image resolutions.
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Table 5. Speed and accuracy (mAP and F1 score) tradeoff results on the WIDER Face data set for MTCNN, PyramidBox and DSFD face detection methods using four
image resolutions, and different CPUs/GPUs configurations. The best mAP, F1 score and speed values per image size and face detector are highlighted in bold.
Higher mAP and F1 score with lower speed values mean a better performance.

Metric
Method Full Size Image (100%) Resized Image to 75% Resized Image to 50% Resized Image to 25%

MTCNN PyramidBox DSFD MTCNN PyramidBox DSFD MTCNN PyramidBox DSFD MTCNN PyramidBox DSFD

Avg. mAP (%) 56.10 92.47 94.20 56.40 92.57 94.73 54.07 89.57 93.77 45.67 72.40 86.33
Avg. F1 score 0.505 0.881 0.917 0.505 0.863 0.914 0.478 0.791 0.883 0.392 0.566 0.743

CPU i5-3450 (s) 0.333 6.749 18.211 0.203 3.766 10.017 0.113 1.689 4.429 0.051 0.448 1.053
CPU i7-8650U (s) 0.442 8.182 17.943 0.268 4.648 10.152 0.142 2.110 4.767 0.061 0.571 1.291
CPU i7-4790K (s) 0.225 5.784 11.872 0.135 3.231 6.170 0.071 1.418 2.699 0.030 0.375 0.581
CPU i9-8950HK (s) 0.200 4.253 10.036 0.134 2.378 5.396 0.078 1.059 2.335 0.027 0.276 0.565
CPU Xeon E5 (s) 0.573 4.658 9.585 0.367 2.810 3.925 0.219 1.414 2.258 0.101 0.500 0.884

Tesla K40c (s) 0.200 0.718 0.829 0.126 0.443 0.500 0.069 0.244 0.268 0.035 0.120 0.132
TITAN Xp (s) 0.141 0.206 0.278 0.091 0.140 0.181 0.054 0.093 0.110 0.031 0.055 0.066
GTX 1050 Ti (s) 0.116 0.649 0.648 0.073 0.355 0.371 0.042 0.180 0.171 0.020 0.057 0.078
GTX 1060 (s) 0.114 0.359 0.363 0.076 0.225 0.218 0.041 0.117 0.108 0.021 0.050 0.050
GTX 1070 (s) 0.123 0.268 0.320 0.079 0.169 0.201 0.046 0.095 0.111 0.023 0.046 0.063
RTX 2060 (s) 0.112 0.492 0.260 0.070 0.279 0.169 0.040 0.129 0.076 0.020 0.045 0.042
RTX 2070 (s) 0.119 0.493 0.276 0.075 0.271 0.183 0.043 0.129 0.077 0.020 0.046 0.051

Impv. GPU vs. CPU (%) 62.70 92.32 96.86 61.95 92.01 96.35 61.54 90.83 96.01 55.51 86.19 92.14

Table 6. Improvement (Impv) in terms of accuracy (mAP and F1 score) and speed obtained with different image resolutions—75%, 50% and 25%—with respect to
values computed for full size images—baseline—using MTCNN, PyramidBox and DSFD, and different CPUs/GPUs configurations on the WIDER Face data set. The
best Impv per image size and face detector is highlighted in bold. Higher Impv values indicate a better performance.

Impv (%)
Method Img. 75% vs. Img. 100% Img. 50% vs. Img. 100% Img. 25% vs. Img. 100%

MTCNN PyramidBox DSFD MTCNN PyramidBox DSFD MTCNN PyramidBox DSFD

Avg. mAP 0.53 0.11 0.57 −3.62 −3.14 −0.46 −18.60 −21.70 −8.35
Avg. F1 score −0.06 −2.05 −0.30 −5.36 −10.22 −3.71 −22.35 −35.72 −18.91
Avg. Speed CPUs 37.42 43.06 48.35 65.03 73.88 75.91 85.24 92.53 93.46
Avg. Speed GPUs 36.22 39.81 37.70 63.64 67.51 68.61 81.81 85.45 82.92
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(c) Images resized at 50%
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(d) Images resized at 25%

Figure 4. Average CPU and GPU computation time(s) on the WIDER Face data set for MTCNN,
PyramidBox and DSFD face detection methods using four different image resolutions.

Furthermore, the use of resized images improves detection speed in comparison with the analysis
of full size images (see Table 6). A large resized image percentage leads to a significant processing
time decrease. Therefore, the maximum speed-up, in both CPUs and GPUs, is observed with images
resized to 25% of the original size. In this case, the fastest face detection is achieved using GPUs
with an average (Avg.) Impv in speed of 81.81% for MTCNN, 85.45% for PyramidBox and 82.92% for
DSFD. Although face detection is performed faster in GPUs, the use of resized images allow a larger
speed-up during CPU analysis with an Avg. Impv in detection times of 85.24% for MTCNN, 92.53%
for PyramidBox and 93.46% for DSFD.

However, as expected, the resizing strategy leads to a reduction of accuracy metrics (the mAP and
the F1 score), related to the modified size of the images. In particular, large resized image percentages
led to higher decreases in mAP and F1 scores in comparison to the performance obtained using full
size images. Thus, the maximum mAP and F1 score reduction are observed with images resized to 25%
with a drop for MTCNN in mAP of −18.60% and F1 score of −22.35%, a reduction for PyramidBox in
mAP of −21.70% and F1 score of −35.72%, and a decrease for DSFD in mAP of −8.35% and F1 score
of −18.91%. The best accuracy performance is achieved with images resized to 75% where the mAP
slightly improved in comparison to the mAP values obtained with full size images. Thus, it ranges
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from 0.11% for PyramidBox to 0.53% for MTCNN and 0.57% for DSFD. Moreover, DSFD performed
better than MTCNN and PyramidBox with resized images.

Figure 5 illustrates the face detection results on images with subjects in a side-view position
(difficult pose). In these conditions, MTCNN does not detect any face from the original or resized
images. While the most robust face detectors—DSFD and PyramidBox—detect faces in all the evaluated
cases. The precise localization of the bounding boxes around the detected faces are affected by the
dimensions of the concerned image.

MTCNN PyramidBox DSFD

100%

75%

50%

25%

Figure 5. Detected faces using the MTCNN, PyramidBox and DSFD methods with four
image resolutions.

The best speed–accuracy tradeoff is obtained on the WIDER Face data set using DSFD and GPUs
with images reduced to 50% of the original size or CPUs with images reduced to 25% of the full
size (see Table 5 and Figure 4). In the case of the GPU analysis, the accuracy—Avg. mAP of 93.77%
and Avg. F1 score of 0.883—is improved and the computation time is not affected—0.132 sec—in
comparison to the results observed with MTCNN and full size images—Avg. mAP of 56.10%, Avg.
F1 score of 0.505, and processing time of 0.132 sec. In general, during the processing of the WIDER
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Face data set, the best performance for MTCNN, PyramidBox and DSFD is achieved using the GPUs
RTX 2060 and TITAN, and the CPUs i9-8650HK and Xeon E5, respectively. This indicates that on CPUs
the detection speed is determined by the base frequency, number of cores and bus speed. Therefore,
the CPU i9-8650HK, with high base frequency and bus speed, has a better performance in comparison
to the CPU Xeon E5, with low base frequency and bus speed, regardless the high memory of the test
computer and the CPU cache. In the case of GPUs, it is observed that the architecture determines the
detection speed. Thus, RTX GPUs with Turing architecture performs better than GPUs with Pascal and
Keppler architectures despite that these GPUs have a large number of cores, memory video or memory
bandwidth. Furthermore, GPUs with a large number of cores, video memory and clock frequency
perform face detection in less time.

5.1.2. Results on the UFDD Data Set

Table 7 shows the mAP values, the F1 scores and the speed obtained for the evaluated face
detectors using the considered image sizes, CPUs and GPUs. Figure 6 depicts the precision–recall
curves of detectors, and Figure 7 presents the average processing time on CPUs and GPUs. In both
figures, results are summarized by the analysed image resolutions. Table 8 reports the Impv of the
mAP, the F1 score and the speed of the face detectors with different image resolutions against the
results using full size images.

(a) Original images, 100% (b) Images resized at 75%

(c) Images resized at 50% (d) Images resized at 25%

Figure 6. Precision–Recall curves on the UFDD Face data set for the MTCNN, PyramidBox and DSFD
face detection methods using four different image resolutions.



Sensors 2020, 20, 4491 14 of 21

MTCNN PyramidBox DSFD

0

5

10

15

0.324

5.841

12.627

0.120 0.417 0.419

C
om

p
u

ta
ti

on
ti

m
e

(s
)

Avg. CPU (sec) Avg. GPU (sec)

(a) Original images, 100%

MTCNN PyramidBox DSFD

0

5

10

15

0.206

3.257

6.397

0.078 0.257 0.247

C
om

p
u

ta
ti

on
ti

m
e

(s
)

Avg. CPU (sec) Avg. GPU (sec)

(b) Images resized at 75%
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(c) Images resized at 50%
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(d) Images resized at 25%

Figure 7. Average CPU and GPU computation time (s) on the UFDD Face data set for the MTCNN,
PyramidBox and DSFD face detection methods using four different image resolutions.

Consistent with the results obtained on the WIDER Face data set, MTCNN is the fastest face
detector, while DSFD is the most accurate (see Table 7, Figures 6 and 7). The mAP values range from
10.30% to 65.40%, whereas the F1 score values vary from 0.123 to 0.724.

Regarding the computation time (see Table 7), the best detection performance is achieved with the
CPU i9-8650HK and the GPU RTX 2060, followed by the GPU TITAN Xp. Similar to the WIDER Face
data set, on CPUs, it is observed that the base frequency, number of cores and bus speed determined
the computational time during face detection. In contrast, the most relevant characteristics of GPUs
are the architecture, number of cores, video memory and clock frequency. Furthermore, the use of
GPUs speeds up face detectors in comparison to CPUs, reducing the processing time of complex
detectors significantly. In particular, MTCNN shows an improvement in detection speed using GPUs
between 52.68% and 62.87%, while DSFD (more computationally demanding) achieved a reduction in
processing times between 92.16% and 96.68% using GPUs.
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Table 7. Speed and accuracy (mAP and F1 score) tradeoff results on the UFDD data set for the MTCNN, PyramidBox and DSFD face detection methods using four
different image resolutions, and CPUs/GPUs configurations. The best mAP, F1 score and speed values per image size and face detector are highlighted in bold.
Higher mAP and F1 score with lower speed values mean a better performance.

Metric
Method Full Size Image (100%) Resized Image to 75% Resized Image to 50% Resized Image to 25%

MTCNN PyramidBox DSFD MTCNN PyramidBox DSFD MTCNN PyramidBox DSFD MTCNN PyramidBox DSFD

Avg. mAP (%) 19.90 53.40 65.40 19.0 50.0 64.10 17.10 42.20 57.30 10.30 23.60 39.20
Avg. F1 score 0.236 0.576 0.724 0.224 0.546 0.705 0.199 0.451 0.626 0.123 0.248 0.419

CPU i5-3450 (s) 0.311 6.525 17.585 0.191 3.655 9.727 0.103 1.629 4.287 0.045 0.438 1.016
CPU i7-8650U (s) 0.407 7.991 17.077 0.248 4.467 11.002 0.128 2.035 4.773 0.053 0.551 1.263
CPU i7-4790K (s) 0.206 5.584 11.253 0.124 3.099 6.417 0.064 1.390 2.557 0.027 0.365 0.550
CPU i9-8950HK (s) 0.184 4.598 9.425 0.119 2.354 0.376 0.066 1.023 2.253 0.028 0.267 0.525
CPU Xeon E5(s) 0.510 4.509 7.795 0.347 2.711 4.462 0.199 1.351 2.154 0.091 0.459 0.835

Tesla K40c (s) 0.179 0.676 0.820 0.116 0.424 0.477 0.061 0.237 0.259 0.034 0.117 0.127
TITAN Xp (s) 0.130 0.196 0.276 0.086 0.136 0.179 0.050 0.092 0.110 0.030 0.056 0.068
GTX 1050 Ti (s) 0.105 0.608 0.636 0.066 0.347 0.359 0.037 0.184 0.170 0.017 0.063 0.067
GTX 1060 (s) 0.103 0.337 0.350 0.066 0.215 0.210 0.038 0.113 0.107 0.019 0.049 0.050
GTX 1070 (s) 0.111 0.249 0.311 0.073 0.162 0.196 0.042 0.092 0.110 0.022 0.045 0.063
RTX 2060 (s) 0.102 0.428 0.252 0.065 0.259 0.162 0.037 0.122 0.076 0.018 0.045 0.041
RTX 2070 (s) 0.111 0.426 0.287 0.072 0.253 0.143 0.042 0.124 0.079 0.021 0.048 0.045

Impv. GPU vs. CPU (%) 62.87 92.86 96.68 62.19 92.12 96.14 60.86 90.74 95.94 52.68 85.49 92.16

Table 8. Improvement (Impv) in terms of accuracy (mAP and F1 score) and speed obtained with different image resolutions—75%, 50% and 25%—with respect to
values computed for full size images—baseline—using the MTCNN, PyramidBox and DSFD and different CPUs/GPUs configurations on the UFDD data set. The best
Impv per image size and face detector are highlighted in bold. Higher Impv values indicate a better performance.

Impv (%)
Method Img. 75% vs. Img. 100% Img. 50% vs. Img. 100% Img. 25% vs. Img. 100%

MTCNN PyramidBox DSFD MTCNN PyramidBox DSFD MTCNN PyramidBox DSFD

Avg. mAP −4.52 −6.37 −1.99 −14.07 −20.97 −12.39 −48.24 −55.81 −40.06
Avg. F1 score −5.29 −5.19 −2.66 −15.77 −21.81 −13.55 −48.12 −56.97 −42.21
Avg. Speed CPUs 36.97 44.25 52.40 65.91 74.49 74.68 85.28 92.77 93.13
Avg. Speed GPUs 35.32 37.45 40.43 63.36 65.70 68.36 80.93 84.22 83.31
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Moreover, the use of resized images speeds up face detection at the cost of a decrease in mAP
and F1 scores. The smaller the input image size is, the higher reduction in mAP and F1 score are in
comparison to the values achieved using the original images. Hence, the maximum improvement of
the detection speed and decrease of the mAP is observed using CPUs and GPUs to process images
resized to 25% of the original image size (see Table 8). In this case, the use of GPUs leads to the fastest
face detection: MTCNN performed the detection in 0.023 sec with mAP of 10.30% and F1 score of 0.123;
PyramidBox carried out detection in 0.060 sec with mAP of 23.60% and F1 score of 0.248 and DSFD
achieved detection in 0.066 sec with mAP of 39.20% and F1 score of 0.419. This corresponds to an
Impv in speed of 80.93% for MTCNN, 84.22% for PyramidBox and 84.31% for DSFD, and a reduction
in mAP values of −48.24% for MTCNN, −55.81% for PyramidBox and −40.06% for DSFD. Similar
reductions are observed for the F1 scores of the three face detectors.

The best speed–accuracy tradeoff is obtained on the UFDD data set using DSFD and GPUs with
images reduced to 50% of the original size—average mAP of 57.30%, F1 score of 0.626 and processing
time of 0.130 sec—or CPUs with images reduced to 25% of the original size—average mAP of 39.20%,
F1 score of 0.419 and computation time of 0.698 sec. In the case of the best GPU set-up, the mAP and
F1 score is improved considerably in comparison to the results attained with MTCNN and full size
images—average mAP of 19.90%, F1 score of 0.236 and processing time of 0.120 sec—with a similar
detection speed.

5.2. Performance Estimation Model

Here we assess Generalized Linear Models (GLMs) to estimate the processing time and the F1
score of face detectors. GLM [62] is a flexible generalization of ordinary linear regression models that
assume that response variables, such as processing time and F1 scores, follow an error distribution
which does not have to correspond to the Gaussian or normal distribution. The GLM parameters were
estimated using the generalized least squares method. In this work, we compared GLMs assuming a
normal distribution of variables against different data distributions, such as the Binomial Negative
one. Furthermore, we assessed the improvement of GLMs through a logarithmic transformation of
the response variables or a concatenation of explanatory variables. The logarithmic transformation is
commonly employed in regression models to handle a non-linear relationship between the response
and explanatory variables. The concatenation of explanatory variables is considered as a way to reduce
the complexity of regression models which may improve the linear fit of the data.

5.2.1. Processing Time Estimation

Table 9 reports the MAE, the RMSE and the MSE values for the regression models built to predict
the computational time of face detectors based on the areas of images, face detection methods, image
resized percentages, and hardware used to process images (see Section 3.5). Taking into account that
the computational time may have an exponential tendency, we first applied a logarithmic transform
to the detection speed before building GLMs (see rows 2 and 5). It was observed that using this data
transformation improves the fit of regression models to predict the processing time, in particular,
the performance of the baseline (model 1)—MAE of 1.438, MSER of 2.164 and MSE of 4.682—improved
to MAE of 0.624, MSER of 1.851 and MSE of 3.425 (model 2). Furthermore, we compared models built
with individual variables (see rows 1-3) against models trained using a concatenation of the categorical
variables: method, resized and machine (see rows 4 and 5). Results show that the concatenation of
variables improved the fit of regression models for estimating the computational time. In the best
case (model 5), the combination of the concatenated variables along with speed logarithmic transform
allows a significant improvement in performance—MAE of 0.113, MSER of 0.455 and MSE of 0.207—in
comparison to the baseline (model 1).
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Table 9. Mean Absolute Error (MAE), Root Mean Squared Error (RMSE) and Mean Squared Error
(MSE) of the regression models built to predict the computational time (speed) based on the area
of images (area), face detectors (method), image resized percentage (resized), and hardware used to
process images (machine). Lower values of MAE, RMSE and MSE mean better performance.

# GLM Regression Explanatory variables Prediction MAE RMSE MSE

1 Gaussian distribution (normal) area, method, machine, resized speed 1.438 2.164 4.682
2 Normal + logarithmic (log) speed area, method, machine, resized log (speed) 0.624 1.851 3.425
3 Binomial Negative distribution area, method, machine, resized speed 0.287 0.840 0.705
4 Normal + variables concatenation (concat) area, concat (method, machine, resized) speed 0.246 0.636 0.405
5 Normal + variables concat + log speed area, concat (method, machine, resized) log (speed) 0.113 0.455 0.207

5.2.2. F1 Score Estimation

Table 10 shows the MAE, the RMSE and the MSE values for the regression models built to predict
the F1 score of face detectors based on the areas of the images, face detection methods, and image
resized percentages (see Section 3.5). Recall that the hardware is not considered as an explanatory
variable since the detection has the same F1 score regardless of the CPUs or GPUs employed to process
images. Besides, since the logarithmic function is defined for positive values larger than zero, and
the F1 metric ranges between 0 and 1, it is not feasible to use logarithmic transformation in this case.
Hence, we compared the performance of GLMs built with individual variables assuming a normal
and a Binomial Negative distribution, models 1 and 2, respectively, against a model trained with a
concatenation of the categorical variables: method and resized (see model 3). Results show that there
is not a significant difference between the assessed models for F1 score estimation, having a slightly
better performance the model built with a normal distribution and the concatenated variables—MAE
of 0.370, MSER of 0.417 and MSE of 0.174.

Table 10. MAE, RMSE and MSE of the regression models built to predict the F1 score (F1Score) based
on the area of images (area), face detectors (method), and image resized percentage (resized). Lower
values of MAE, RMSE and MSE mean better performance.

# GLM Regression Explanatory variables Prediction MAE RMSE MSE

1 Gaussian distribution (normal) area, method, resized F1Score 0.371 0.418 0.175
3 Binomial Negative distribution area, method, resized F1Score 0.370 0.446 0.199
2 Normal + variables concatenation (concat) area, concat (method , resized) F1Score 0.370 0.417 0.174

6. Conclusions and Future Work

Deep learning approaches based on CNNs have proven to be highly effective for automated face
detection achieving remarkable accuracy. Forensic face recognition, like CSEM detection systems,
remains a more difficult task because it must be able to handle images captured under non-ideal
conditions and meet stringent time constraints. These deep learning models, however, tend to be very
computationally demanding, and some of them may not be appropriate for CSEM-like applications.

In this work, we present a comparison of the speed and the accuracy of three popular face
detectors based on deep learning—MTCNN, PyramidBox, and DSFD—on five Intel CPUs—i5-3450,
i7-4790K, i7-8650U, i9-8950HK, and Xeon E5—and seven Nvidia GPUs cards—Tesla K40, TITAN Xp,
GTX 1050Ti, GTX 1060, GTX 1070, RTX 2060, and RTX 2070—by analyzing images reduced to three
different images sizes from two data sets—WIDER Face and UFDD.

Results confirm that the use of resized images speeds up the face detection stage but reduces the
accuracy. We found that the speed-up achieved by using resizing images and GPUs depends on the
complexity of the face detector used. Thus, sophisticated detectors have a substantial improvement
in processing times. It turns out that the best speed–accuracy tradeoff is yielded by applying the
DSFD detector to images resized to 50% of the original size in GPUs and images resized to 25% of the
original size in CPUs. Moreover, the best performances were obtained with CPU i9-8950HK and GPU
RTX 2060.
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Considering this tradeoff between speed and accuracy, we train a model capable of predicting
for new images the performance of several face detectors with various resized images in a specified
hardware. Experimental results with multiple linear regression models are able to predict the face
detection performance with a MAE of 0.113.

The proposed models are expected to help end-users as forensic investigators to select the most
appropriate hardware for applications where face detection is required, such as face recognition or
child detection in CSEM. Additionally, the prediction model will guide the forensic practitioners to
choose the best parameters (detection method and image resolution) for face detection considering the
available computational resources.

Building more complex prediction models becomes part of our future work. Our aim is to also
analyze the features that have the most influence on the model performance.
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