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Context: Spinal cord injury (SCI) is a devastating condition that can lead to significant neurological impairment
and reduced quality of life. Despite advancements in our understanding of the pathophysiology and secondary
injury mechanisms involved in SCI, there are currently very few effective treatments for this condition. The field,
however, is rapidly changing as new treatments are developed and key discoveries are made.
Methods: In this review, we outline the pathophysiology, management, and long-term rehabilitation of individuals
with traumatic SCI. We also provide an in-depth overview of emerging therapies along the spectrum of the
translational pipeline.
Evidence synthesis: The concept of “time is spine” refers to the concept which emphasizes the importance of
early transfer to specialized centers, early decompressive surgery, and early delivery of other treatments (e.g.
blood pressure augmentation, methylprednisolone) to affect long-term outcomes. Another important evolution in
management has been the recognition and prevention of the chronic complications of SCI including respiratory
compromise, bladder dysfunction, Charcot joints, and pressure sores through directed interventions along with
early integration of physical rehabilitation and mobilization. There have also been significant advances in
neuroprotective and neuroregenerative strategies for SCI, many of which are actively in clinical trial including
riluzole, Cethrin, stem cell transplantation, and the use of functional electrical stimulation.
Conclusion: Pharmacologic treatments, cell-based therapies, and other technology-driven interventions will
likely play a combinatorial role in the evolving management of SCI as the field continues to evolve.
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Introduction
Acute spinal cord injury (SCI) is a devastating condition
that results in significant personal and societal loss. In
the United States alone, over 1 million patients live with
a SCI and more than 12 000 new cases occur every year.
In the setting of military medicine, SCIs account for
nearly 11% of service member deaths.1 The fundamental
tenets of SCI management are shared between civilian
and military medicine, however, dangerous battlefield con-
ditions and challenging extraction logistics can complicate
the delivery of treatments. A key concept in either setting is

‘Time is Spine’which highlights the importance of directed
interventions within the acute injury period to improve
long-term outcomes. While a cure for the neurologic
sequelae of SCI has not yet been found, many novel
approaches are currently under clinical investigation and
have shown promise to substantially improve long-term
functional recovery. This article will review the pathophy-
siology and clinical management of acute and chronic SCI
followed by a discussion of emerging therapies along the
translational pipeline. Throughout, we will highlight spe-
cial considerations in the setting of military medicine.

Clinical Case
A 42-year-old man sustained a fracture-dislocation at
T6–7 after a motor vehicle collision. An initial physical
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exam showed a complete T6 neurologic injury assessed
as an American Spinal Injury Association scale
(ASIA) grade ‘A’ (complete loss of motor and sensory
function). He was immediately transported to a spine
trauma center where he was medically stabilized and
underwent surgical decompression with instrumented
fusion from T3 to T10. Following hospital discharge,
he remained in inpatient rehabilitation for 3 months.
Urodynamic studies showed evidence of an overactive
decompensated bladder for which he was started on
anticholinergics along with intravesical botox and
ongoing intermittent catheterization. During rehabilita-
tion he was treated with gabapentin for ongoing neuro-
pathic pain; however, six months post-injury he
developed symptoms of bilateral ascending numbness
and pain extending well above T7. An MRI revealed a
large post-traumatic syrinx with extension up to the

cervicomedullary junction (Fig. 1) for which a syringo-
pleural shunt was inserted. The patient went on to
require two subsequent revisions to his shunt which
was ultimately replaced with a syringosubarachnoid
shunt. He recovered well post-operatively and serial
MRI imaging showed no increase in the size of his
syrinx. This case illustrates some of the many acute
and chronic complications after SCI and the interdisci-
plinary management techniques required at various
stages in the post-injury period. These and other
options will be discussed throughout this review.

Pathophysiology
Primary Injury
SCI is divided into primary and secondary injury phases
(Fig. 2). The primary injury results from direct physical
trauma to the spinal cord due to various mechanisms

Figure 1. Post-traumatic syringomyelia following T6–7
thoracic spinal cord injury. (A) Sagittal T2-weighted magnetic
resonance image demonstrating evidence of an extensive
syrinx (white arrowhead) within the cervical and thoracic cord
extending as high as the cervico-medullary junction (black
arrowhead). (B) Corresponding axial cut at the C3 level
highlighting the ventral-dorsal and medial-lateral size of the
syrinx

Figure 2. Primary and secondary injuries of spinal cord injury.
An initial primary physical insult initiates a rapid cascade of
secondary biochemical injuries extending over the immediate,
early acute and subacute phases. Figure adapted from Wilson
et al.33.
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classified as either penetrating or blunt injuries.
Penetrating injuries include gunshot wounds, fragmen-
tation injury from a blast mechanism, or low-velocity
injuries (e.g. knife wounds). Blunt injuries are most
often caused by falls, crush injuries, collisions, or ter-
tiary injuries from a blast. While these mechanisms of
injury can be seen in both civilian and military SCI,
the latter are often associated with more complex
injury patterns and concomitant organ damage.
Moreover, in the military setting, SCIs sustained in
battle may have a worse prognosis than non-battle
SCI. A retrospective study of American service
members conducted between 2003 and 2008 found
that SCIs sustained in battle were more often caused
by a blast mechanism, involved multiple spinal levels,
and had a trend towards increased injury severity
scores and longer hospital stay compared to non-battle
SCI.2 Similarly, Blair et al. reported increased rates of
surgical intervention and a trend toward poorer neuro-
logic recovery after SCIs sustained in battle relative to
non-battle SCI, which may reflect more extensive inju-
ries.3 In addition, lumbosacral dissociations, low
lumbar burst fractures and post-amputation scoliosis,
while rare in the setting of civilian medicine, are more
frequently seen in combat injuries.4 While different
injury mechanisms result in different degrees of second-
ary injury, early neurologic sequelae are most often the
result of direct mechanical injury to the cells and the
sensitive microvasculature of the cord.

Secondary Injury
A cascade of physiologic, extracellular biochemical, and
intracellular insults comprises the secondary injury
phase.5 Local disruption of the vasculature results in
acute hemorrhage and ongoing spinal cord ischemia.
Disruption of neurons and a failure to reuptake by
glial cells leads to excess extracellular glutamate concen-
tration promoting excitotoxic cell death. Disruption of
the critical blood-spinal cord barrier also results in an
influx of cytokines, vasoactive peptides, and peripheral
inflammatory cells which cyclically contribute to cord
edema and the pro-inflammatory state.6 Over hours to
days, cells continue to undergo cell death releasing
potent pro-apoptotic signals and recruiting regional
microglia. Together, these events introduce numerous
cytotoxic by-products (e.g. ATP, potassium ions,
DNA, reactive oxygen species, etc.) into the local micro-
environment which further propagates cell death.7

Barriers to Regeneration
During the acute-subacute period parenchymal volume
is lost and microcystic cavitations begin to form. These

fluid-filled spaces gradually coalesce into larger bodies
in the subacute-chronic phases creating a physical
barrier to cell migration and endogenous regenerative
attempts. Similarly, astrocytes in the region surrounding
the injury epicenter migrate, activate, and proliferate to
contain damage in the acute injury period. However,
large numbers of astrocytes with tightly interwoven pro-
cesses continue to persist in the perilesional region for
years after injury making regeneration beyond this
glial scar challenging. The inhibitory effects are
further compounded by the local deposition of chon-
droitin sulfate proteoglycans (CSPGs) which have been
suggested to act via the Rho-ROCK (rho-associated
protein kinase) pathway to inhibit neurite outgrowth.
Together, these and other mechanisms severely restrict
endogenous regeneration and anatomic plasticity after
traumatic SCI.

Spinal Shock
In the immediate period following severe SCI, spinal
shock has classically been defined as complete loss of
motor and sensory function below the level of injury,
loss of deep tendon reflexes, and absent sphincter
reflex. The absence of the sphincter reflex is indicative
of spinal shock making attempts at prognostication
inaccurate. Return of the bulbocavernosus reflex has tra-
ditionally indicated the end of spinal shock and contin-
ued complete motor and sensory loss would indicate a
complete SCI at that time. Recently, a four-phase
model of spinal shock has emerged that provides
further insight into the ongoing spectrum of clinical
changes and physiological mechanisms underlying this
condition.8 An initial phase of absent or diminished
reflexes occurs during the first 24 hours after injury
where deep tendon and cutaneous reflexes below the
injury level are generally both absent, however, the
latter may begin to recover during this stage. This
period of areflexia is a result of lost supraspinal exci-
tation from damaged descending tracts along with
increased spinal inhibition. The second phase occurs
between 1 to 3 days post-injury, and is characterized
by an initial return of cutaneous reflexes such as the bul-
bocavernosus reflex. These changes are largely attribu-
ted to denervation sensitivity along with upregulation
of excitatory NMDA receptors. Following this and
lasting up to one month, a period of early hyperreflexia
ensues with the return of deep tendon reflexes as a result
of axon-mediated synapse growth. The last phase of
spinal shock lasts between 1 to 12 months after injury
and is characterized by spasticity and hyperreflexia of
cutaneous and deep tendon reflexes. During this
phase, synapse growth continues via soma-mediated
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mechanisms. It is critical to remain aware of spinal
shock and assess the sphincter reflex in patients present-
ing with a complete injury as early interventions may
still produce long-term functional benefits for patients
with incomplete injuries masked by spinal shock.
Moreover, enhanced understanding of the evolving
phases of spinal shock may help inform future interven-
tions targeting spinal cord plasticity after injury.

Cardiorespiratory Compromise
Acute SCI can lead to both cardiovascular and respirat-
ory compromise. Damage to the sympathetic tracts in
the intermediolateral column from high spinal (cervical
and upper thoracic) injuries can result in neurogenic
shock characterized by bradycardia and hypotension
from decreased vascular tone due to unopposed para-
sympathetic vagal outflow. This further exacerbates
ischemia to the sensitive injured cord by producing
global hypoperfusion and is compounded in the
setting of blood loss (i.e. polytrauma patients).
Cervical and thoracic injuries can also result in hypoxe-
mia and hypercarbia due to compromised innervation of
the diaphragm, intercostal muscles, and/or abdominal
muscles. This is particularly true in patient with
decreased reserve due to age or concomitant thoracoab-
dominal injuries (e.g. blast fragments, gun shot wounds,
fractures, contusions, etc.) Impairment in cough and
secretion clearance may also predispose patients with
SCI to an increased risk of pneumonia and respiratory
infections in both the acute and chronic periods.

Acute Management
The concept of ‘time is spine’ is a key tenet in the acute
management of SCI and should guide interventions.
Treatment begins in the field and a streamlined
approach to management in the acute phase is essential

for efficient delivery of care and improved outcomes
(Summarized in Fig. 3).9

Point of Injury and Stabilization
As with civilian medicine, management of a patient with
SCI on the battlefield should aim to follow standard
Advanced Traumatic Life Support (ATLS) guidelines.
Evidence or suspicion of a cervical spine injury necessi-
tates immediate immobilization at the scene with either a
rigid cervical collar or supportive blocks and straps on a
backboard. Similarly, thoracic and lumbosacral frac-
tures should be immobilized on a backboard using the
logroll maneuver for transfers. For patients with a pene-
trating injury, immobilization should be attempted as
long as it does not significantly interfere with resuscita-
tion efforts.10 Any evidence of airway compromise
requires establishment of a definitive airway and
careful attentionmust be paid to ongoing spine immobil-
ization during intubation. Circulatory support may also
be necessary as service members in the field may conco-
mitantly suffer from a combination of exhaustion/dehy-
dration, blood loss, and/or neurogenic shock.10 Even
brief periods of hypotension (systolic blood pressure
[SBP] <90mmHg) have been shown to have detrimental
effects on long-term outcomes after SCI.11 IV fluids are
often the first means to maintain blood pressure though
in cases of neurogenic shock vasopressors may also be
required. For injuries in the upper thoracic and cervical
spine with clinical features of neurogenic shock, infu-
sions of norepinephrine or dopamine to reduce periph-
eral vasodilation may be appropriate in combination
with crystalloid volume resuscitation.12

Transfer
Following an acute spinal cord injury, patients should be
rapidly resuscitated or transferred to a local hospital for
resuscitation. When this is not available due to access or

Figure 3. Overarching management goals at each stage following spinal cord injury. Each target must be considered within the
broader care of an individual, coexisting polytrauma, and local resources. Time windows are a suggestion, however, the ‘Time is
Spine’ concept should be emphasized as earlier initiation of treatments/prophylactic measures, when safe, may have beneficial
effects
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medical resource restrictions in the field, it may be
necessary to transfer patients first to a safer location
such as a Casualty Collection Point or Field Treatment
Site prior to immobilization and resuscitation to avoid
further casualties.13 Once stabilized, early transfer (<
24 hours) to a specialized SCI center has been associated
with improved long-term outcomes.14 In civilian medi-
cine, Burney et al. found no difference in the probability
of neurologic improvement between air and ground
transport and there was no associated worsening of
injury during transfer provided that proper spine immo-
bilization was maintained.15 In military medicine, the
safe extraction and transportation of patients will be dic-
tated by local geography, regional medical resources,
and the severity of co-existing injuries.

Diagnostic Assessments
Once stabilized, clinical examination using the ASIA
International Standards for Neurological Classification
of SCI (ISNCSCI) should be done to determine the
level of injury and extent of functional impairment.16

This careful baseline assessment is important for treat-
ment selection, monitoring of recovery, clinical trial eli-
gibility, and prognostication. Early imaging is
important to determine the extent of structural spinal
column injury, assess for missed associated injuries,
and ultimately guide further treatment. CT is the
modality of choice in the initial work up of acute
SCI.16 MRI may also help assess for ligamentous inju-
ries, large disc herniations, and epidural hematomas,
however, availability is most often the limiting factor.
MRI is not mandatory in the initial workup of patients
except in instances of unexplained neurological deficits
where it is critical to rule out ongoing cord compression
or missed ligamentous injuries.17 If available, however,
MRI is recommended as it has prognostic value and is
integrated into several important clinical prediction
scores.18

Early Treatment
Surgical Decompression
Early surgical decompression has been shown to
improve outcomes after acute SCI. The Surgical
Timing in Acute Spinal Cord Injury Study
(STASCIS),19 found that among 313 patients with cervi-
cal SCI, early decompressive surgery (performed within
24 h of injury) increased the odds of a 2-grade AIS
improvement by 2.8 times compared to patients who
received surgery more than 24 hours after injury. A mul-
ticenter Canadian cohort study of 84 patients further
supported these findings reporting a greater proportion
of patients receiving early surgery with at least a two-

grade AIS improvement.20 Early surgery has also been
associated with decreased hospital length of stay
(LOS) for patients with ASIA grades A and B injuries.21

A multicenter prospective, observational European
study (SCI-POEM) is currently underway.22 While the
major criticism of these studies has been their cohort
design which was selected for practical and ethical
reasons, this literature represents the highest-quality
large-scale data available on surgical decompression
for SCI and offers evidence to support a commonly
practiced intervention in a field with otherwise limited
treatment options for patients.23 Stemming from these
positive findings, forthcoming AOSpine 2017 guidelines
from an international expert panel suggest early decom-
pressive surgery when feasible.24,25

Methylprednisolone
Systemic steroid therapy upregulates anti-inflammatory
cytokine release and promotes neural cell survival in
animal models of injury. Multiple clinical studies have
investigated the role of methylprednisolone (MPSS) in
the treatment of SCI, the best available evidence for
which is found in the National Acute Spinal Cord
Injury Study (NASCIS) series.26–28 While the primary
analysis found no statistically significant improvement
in outcomes, secondary subgroup analyses planned a
priori revealed significant motor recovery in patients
receiving high-dose MPSS within 8 hours of injury.27

There was an increased infection risk (e.g. severe pneu-
monia and sepsis) with a 48-hour regimen of high-
dose MPSS, however, substantially lower complication
rates were observed with 24 hours of high-dose MPSS
(30 mg/kg bolus + 5.4 mg/kg/hr x 23 hours) while
still providing long-term neurological benefits.28 A
2012 Cochrane review summarizing 6 large-scale
studies on MPSS in acute SCI found an overall 4-
point increase in ASIA motor score when MPSS was
administered within 8 hours of injury.29 While the
2013 AANS/CNS guidelines for the management of
acute SCI did not recommend MPSS in the treatment
of SCI,30 forthcoming AOSpine 2017 guidelines from
an international expert panel suggest administration of
IV MPSS for 24 hours be considered within 8 hours of
cervical injury in patients without significant medical
contraindication.31,32

Blood Pressure Augmentation
Cord edema and damage to the microvasculature result
in ongoing perilesional ischemia for days after injury.
Systemic blood pressure augmentation looks to reduce
this risk by increasing perfusion to at-risk neural
tissue. The most recent AANS/CNS guidelines
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recommend mean arterial pressure (MAP) be main-
tained for 7 days post-injury at ≥ 85–90 mmHg as this
has been shown to improve long-term ASIA
Impairment Scale (AIS) outcomes.33 This often necessi-
tates continuous blood pressure monitoring (most often
by arterial line) in an ICU setting, normovolemia to
slight hypervolemia, and central access to administer
vasopressors.34 To investigate whether these challenging
requirements can be reduced, a non-inferiority trial
comparing clinical outcomes with MAP ≥ 65mmHg
vs MAP ≥ 85mmHg is current underway (Mean
Arterial blood Pressure Treatment for Acute Spinal
Cord Injury [MAPS]; NCT02232165) with results
expected in 2017.22

Complications and Management of Chronic SCI
Cardiovascular Complications
Autonomic Dysreflexia
Autonomic dysreflexia (AD) most commonly occurs in
patients with an injury level at or above T6 and is
characterized by sudden, acute hypertension which can
be life-threatening. The pathophysiology underlying a
dysreflexic episode involves sympathetic discharge trig-
gered by a stimulus below the level of injury causing per-
ipheral vasoconstriction with a strong parasympathetic
response above the level of injury leading to sweating,
sinus congestion, and headaches. Common triggers
include bladder or bowel distension and thus appropri-
ate voiding and bowel regimens are a central tenet in
preventing AD events. Treatment of AD involves con-
servative measures such as upright positioning and
removing any triggers or possible noxious stimuli. If
SBP remains high despite conservative measures, rapid
acting antihypertensive agent such as immediate-
release nifedipine, captropril or nitroglycerine should
be initiated.35

Orthostatic Hypotension
Loss of sympathetic regulation and reflex vasoconstric-
tion after SCI predisposes patients to orthostatic hypo-
tension and peripheral upregulation of nitric oxide
may also further exacerbate hypotensive episodes.36

Non-pharmocological treatment of orthostatic hypoten-
sion includes regulation of fluid and salt intake, elastic
stockings or abdominal binders. Pharmocological
agents aimed at increasing peripheral vascular tone
(e.g. midodrine) or volume expansion (e.g.
Fludrocortisone, salt tablets) may also be considered.35

Episodes tend to occur more frequently initially and
gradually improve over weeks to months though some
individuals are chronically affected.37

Respiratory Complications
Respiratory complications are a major cause of morbid-
ity and mortality in patients with acute SCI. High cervi-
cal injuries can impair phrenic innervation of the
diaphragm leading to ventilator dependence. Injuries
below C5 can still produce substantial weakness of
muscles of respiration (e.g. intercostals and abdominal
muscles) compromising respiratory function.
Aggressive management of secretions is of utmost
importance in caring for a patient with SCI to prevent
mucous plugs, atelectasis and pneumonia. Percussion,
vibration, or assisted suctioning may be used as means
to help mobilize secretions.38 Respiratory muscle train-
ing may also improve respiratory function in patients
with SCI, however, there is little evidence to support
its widespread use.39 There is a high risk of deep vein
thrombosis (DVT) and subsequent pulmonary
embolus in patients with SCI due to prolonged immo-
bility, impaired venous return and coagulopathy. Thus,
DVT prophylaxis in the form of unfractionated
heparin, low-molecular weight heparin (LMWH),
novel oral anti-coagulants (NOACs) or pneumatic com-
pression devices should be instituted in all patients with
acute and subacute SCI and severe motor deficits.40

Urologic Complications
Individuals with SCI often suffer from neurogenic
bladder dysfunction, which can lead to a multitude of
complications. As catheter dependency is common,
affected people are prone to the development of recurrent
urinary tract infections (UTIs). Several studies have exam-
ined the role of prophylactic antibiotics in patients with
SCI and while results vary between studies, the overall
consensus does not support its routine use as it does not
reduce clinical UTIs and increases the chances of develop-
ing resistant bacteria. Other catheter-related compli-
cations include urethritis, prostatitis and epididymitis.41

Appropriate bladder care must be carefully adhered to
in patients with SCI. Clean intermittent catheterization
is preferred over an indwelling Foley as it reduces the
risk of infections. As an adjunct, anticholinergics may
be used for neurogenic detrusor muscle over-activity.

Musculoskeletal Complications
Charcot Joints
Charcot joints or neuropathic arthropathy is character-
ized by progressive destruction of a joint which has
reduced sensation due to unchecked repeated micro-
traumas and localized hyperemia secondary to
changes in autonomic innervation. When localized to
the spinal joints, charcot spinal arthropathy (CSA),
although a rare entity, can progress rapidly and carry
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significant morbidity. CSA commonly presents clini-
cally with evidence of spinal deformity, sitting imbal-
ance and back pain and is radiographically suspected
by evidence of discovertebral destruction, vacuum
discs and osseous joint debris.42 Conservative treatment
includes a multimodal approach with physiotherapy,
bracing for stabilization and pain management.
Surgical treatment may be required in severe cases to
correct the deformity and provide stabilization.43

Pressure Sores
Pressure sores are a common complication after SCI that
can lead to significant morbidity/mortality, prolonged
hospitalization and even act as a trigger for autonomic
dysreflexia. The most common sites are on the buttocks
(31%), over the greater trochanter (26%) and on the
sacrum (18%).44 Prevention strategies must be
implemented immediately after injury and careful adher-
ence must be instituted for the long term.45 Daily skin
inspections and utilization of pressure redistribution
support surfaces are essential in any pressure ulcer pre-
vention strategy. It is recommended that individuals be
repositioned every 2 hours in the acute phases of
injury. Prevention of moisture accumulation and pro-
motion of good nutrition are also important. This can
be particularly challenging in remote or highly-humid
regions but is very important to reduce the long-term
morbidity of these lesions. Treatment of pressure ulcers
after they develop follows principles similar to preven-
tion along with careful wound cleaning, debridement
and possible surgery for deep non-healing ulcers.

Physical Therapy
Traditional rehabilitation strategies following SCI
include range of motion and strengthening exercises,
bed mobility and transfer exercises along with loco-
motor training. Aggressive and early mobilization is a
primary tenet of rehabilitation after SCI. Body-weight
supported treadmill training (BWSTT) provides task-
specific sensory input and is a promising strategy to
enhance locomotor function after SCI. A systematic
review by Lam et al. found level 3 evidence that
BWSTT improves locomotion after chronic SCI.46

Braces and orthoses may also be used for support in
SCI rehabilitation strategies.

Emerging Therapies In Clinical Trial
Neuroprotection
Riluzole
Riluzole, a sodium channel antagonist, is the only agent
approved for use in patients with amyotrophic lateral
sclerosis and has shown promising results in the

treatment of SCI in laboratory and clinical studies.47

Treatment with riluzole after SCI in rodents decreases
cell death, reduces cavitation size and enhances func-
tional recovery.48,49 Riluzole-mediated neuroprotection
is thought to act by inhibiting pre-synaptic glutamate
release and modulating neuronal voltage gated sodium
channels. A phase I trial examining the safety of riluzole
in patients with SCI found significant motor improve-
ment in patients with cervical injuries treated with rilu-
zole compared to controls. The Riluzole in Spinal
Cord Injury Study (RISCIS; NCT01597518) is a phase
II/III international clinical trial examining the efficacy
of riluzole in patients with acute C4–8 ASIA grade A/
B/C injuries currently underway with results expected
by 2020.7,50

Minocycline
Minocycline, a tetracycline-class antibiotic, has shown
neuroprotective effects in animal models of acute SCI.
Specifically, treatment with minocycline has been
found to modulate cytokine expression, reduce cell
death, decrease lesion size and improve functional recov-
ery following SCI in rodents.51 These promising results
led to a phase II clinical trial on 25 patients with
acute, incomplete cervical SCI which demonstrated an
additional 14-point ASIA motor score recovery with
minocycline treatment.52 A larger phase III study
(Minocycline in Acute Spinal Cord Injury [MASC];
NCT01828203) is now investigating 7 days of intrave-
nous minocycline compared with placebo.22

Systemic Hypothermia
Reducing core temperature to 32–34°C is known to
reduce neuroglial cell death and inflammatory cell acti-
vation/infiltration in the central nervous system (CNS)
with clinical success in cardiac arrest and hypoxic-
ischemic encephalopathy.53–55 Systemic hypothermia
following SCI in rodents has shown benefit as well by
reducing lesion size and enhancing motor recovery.56

A pilot study in 14 patients with AIS-A SCI found a
trend for improved neurologic recovery at 1 year post-
injury in the group who underwent cooling.57 A phase
II study called “Acute Rapid Cooling Therapy for
Injuries of the Spinal Cord” (ARCTIC) has been
planned to definitively address the efficacy of this inter-
vention for SCI.

Granulocyte Colony-Stimulating Factor (G-CSF)
Granulocyte colony-stimulating factor (G-CSF) has
been shown to decrease lesion size,58 attenuate cell
death and promote functional recovery59 after SCI in
rodents. The mechanism of action is thought to be due
to inhibition of neuronal apoptosis,59 promotion of
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angiogenesis,60 promotion of neurotrophic factor
expression and down regulation of pro-inflammatory
factors.61 Multiple phase I/II clinical trials showed
improvements in AISA motor scores with delivery of
G-CSF after SCI, however, well-designed randomized
trials will need to be conducted to confirm efficacy.62,63

AC105
Magnesium is an NMDA antagonist and known anti-
inflammatory molecule. It has shown important neuro-
protective effects in various models of neuronal cell
injury and there is robust pre-clinical evidence demon-
strating the neuroprotective effects of magnesium in
experimental models of SCI.64,65 Clinically, delivery of
magnesium in combination with polyethylene glycol
(PEG) in a formulation called AC-105 has allowed
high cerebrospinal fluid levels to be achieved while
avoiding systemic toxicity. A phase II study of AC-105
in patients with acute traumatic SCI was initiated in
2012 by Acorda Therapeutics Inc. (Chelsea, MA,
USA), however, the trial was discontinued.22

Neuroregeneration
Stem Cells
Stem cell therapies have shown significant potential for
regeneration after SCI, particularly with recent
advances in developmental biology and cell culture tech-
niques.66 Various types of multipotent and differen-
tiation cells (e.g. neural precursor cells, Schwann cells,
neurons, etc.) have been examined in preclinical and
clinical trials of SCI and are thought to act through mul-
tiple mechanisms including cell replacement, neuro-
trophic factor release and immunomodulation.67

Two main sources of parent cell exist in current cell
therapies. Embryonic stem cells are a pluripotent cell
type found in the inner cell mass of blastocytes that
can be induced to differentiate into any other cell type
in vitro prior to transplantation. Induced pluripotent
stem cells (IPSCs) are adult cells that have been repro-
grammed to an ESC (embryonic stem cell)-like pluripo-
tent state providing them with the same capacity to
differentiation into any somatic cell type. IPSCs avoid
the ethical concerns surrounding the use of aborted
fetal tissue to harvest ESCs and provide a unique oppor-
tunity to potentially be autologously-derived.
Transplantation of neural stem cells (NSCs), derived

from both ESCs and iPSCs, into rodents with SCI has
been shown to provide histological and functional
improvements across multiple preclinical studies.68,69 A
well-known pair of Phase II trials by Stem Cells Inc.
examining the use of human CNS stem cells for patients
with cervical or thoracic injuries was terminated early in

2016. While publication of the results is pending, interim
data suggested no significant increase in adverse events
with cell treatment and the conduct of the study con-
firmed the feasibility of cell transplant as a treatment
strategy for SCI. Further optimization of cells and
their recipient environment will likely be required to
achieve greater recovery.
A similarly strategy has been the differentiation and

transplant of oligodendrocyte precursor cells (OPCs)
which are multipotent CNS cells with a preference for
becoming myelinating oligodendrocytes. After promis-
ing data from preclinical studies, a Phase I/II trial
(NCT02302157) by Asterias Biotherapeutics Inc.
(Fremont, CA, USA) is underway assessing their AST-
OPC1 line for changes in long-term sensorimotor
scores. Results are expected by 2018.22

Mesenchymal stem cells (MSCs) are a multipotent
cell type that have been shown to enhance regeneration
and locomotor function after both acute70 and chronic71

SCI in rodents. The mechanism of action is thought to
be mediated primarily through local and systemic
immunomodulation and trophic factor support. A
phase II/III trial of autologous MSCs administered
intraparenchymally and intrathecially into patients
with AIS grade B injuries is currently underway by
Pharmicell Co. (NCT01676441) (Seoul, Republic of
Korea). The study is expected to conclude in 2020.22

Schwann cells (SCs) provide myelination of axons in
the peripheral nervous system where they provide a
robust pro-regenerative conduit for nerve regeneration.
They have also been used for transplantation after SCI
in multiple animal models where they were found to
promote axon remyelination, reduce cavitation, and
improve recovery.72 Important ongoing clinical trials
investigating the use of autologous Schwann cells
harvested from the sural nerve of SCI patients in the
subacute and chronic period after injury are
currently underway (Miami Project; ClinicalTrials.gov
Identifier: NCT01739023, ClinicalTrials.gov Identifier:
NCT02354625).22

Polymer Scaffolds and Hydrogels
Biodegradable polymer scaffolds and hydrogels can
provide structural support, guide cell migration and
neurite outgrowth, and facilitate the delivery of thera-
peutic agents in the setting of SCI. Multiple pre-clinical
laboratory studies have shown promising results using
synthetic peptides (e.g. QL673), human protein matrices
(e.g. fibrin-thrombin complexes74), polymers (e.g.
Neuro-Spinal Scaffold), and other naturally-occurring
materials (e.g. chitin and methylcellulose75). A study
by InVivo Therapeutics (Cambridge, MA, USA)
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investigating the efficacy of a Neuro-Spinal Scaffold in
patients with AIS grade A thoracic SCI is currently
ongoing (NCT02138110).22

Cethrin
The Rho-ROCK (Rho-associated protein kinase)
pathway has long been implicated in the inhibition of
axonal growth after injury. Antagonism of this
pathway has shown promise in pre-clinical studies of
SCI by enhancing neurite outgrowth and behavioural
motor outcomes.76 In a mixed cervical/thoracic phase
I/IIa clinical trial, treatment with Cethrin, a potent
Rho inhibitor, led to a 27.3±13.3 point improvement
in ASIA motor score at 12 months for individuals
with a cervical injury. Furthermore, 66% of cervical
SCI patients converted from ASIA A to ASIA C or
D.77 Given these results, a phase II/III trial is now
underway to assess the efficacy of Cethrin for acute cer-
vical SCI.22

Neurorehabilitation
Conventional physical rehabilitation to strengthen
muscles, improve range of motion and induce cardiore-
spiratory loading is increasingly being augmented by the
technologies discussed below.

Functional Electrical Stimulation
SCI leads to a loss of central control of the neuromuscu-
lar system resulting in motor paralysis. Functional elec-
trical stimulation (FES) relies on the principal of
providing electrical currents to the nerve and muscles
that provide key movements in order to enhance their
activity for the short and long term. FES can be used
as a supplement during rehabilitation training to
augment movements thereby increasing sensory feed-
back, muscle use, and providing a degree of cardiore-
spiratory conditioning.78 Stimulation of trunk muscles
using FES has also been shown to enhance trunk
posture and stability.79 A phase II trial examining
upper limb FES in patients with cervical SCI is
currently underway to assess improvements in long-
term functional independence and motor skills
(ClinicalTrials.gov Identifier: NCT01292811). Other
trials assessing the cardio-metabolic benefits of FES
and lower limb function are also ongoing.22

Epidural Spinal Cord Stimulation
Epidural spinal cord stimulation supplies rhythmic elec-
trical current to the cord via an epidural electric with the
aim of activating central circuits that mediate loco-
motion, pain and/or cardiorespiratory systems.
Epidural stimulation has also shown its ability to modu-
late pharmacologically refractory neuropathic pain,80

enhance locomotion in select patients,81 and improve
urinary bladder control82 after SCI.

Exoskeleton
Exoskeletons are external motorized orthoses that
can be used to enable locomotion in paralyzed or
paretic individuals. Control may be via a hand
controller, mouth controller, and/or detection of
micro movements with development ongoing towards
direct CNS-machine interface based control. A meta-
analysis including 14 studies examining the use of
exoskeletons for SCI demonstrated improved ambu-
lation with the use of these device.83 Multiple additional
clinical trials are ongoing investigating exoskeletal-
assisted walking devices in patients with SCI including
Ekso™ (Richmond, CA, USA; ClinicalTrials.gov
Identifier: NCT01701388), Indego® (Parker Hannifin
Corp., Cleveland, OH, USA; ClinicalTrials.gov
Identifier: NCT02202538) and ReWalk™ (ReWalk
Robotics, Inc., Marlborough, MA, USA;
ClinicalTrials.gov Identifier: NCT02658656).

Conclusion
SCI is a complex condition associated with substantial
disability, reduction in quality of life, and costs. A
large emphasis has now been placed on the concept
of ‘time is spine’ where early, streamlined interventions
in the immediate post-injury phase are essential for
improving long-term outcomes. While some require
advanced levels of expert care (e.g. surgical decom-
pression), others can be feasibly employed at field or
regional hospital (e.g. methylprednisolone, modest
blood pressure augmentation). Although there are
currently very few widely-accepted neuroprotective
strategies for SCI and no neuroregenerative strategies,
multiple promising therapies are actively being
explored along the basic science and translational
research pipeline. Pharmacologic treatments, cell-
based therapies, and other technology-driven inter-
ventions will likely play a combinatorial role in the
evolving management of SCI for both civilians and
military service members.
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